Department of Zoology

Master of Zoology

Course plan

Academic Year 2018-19

Semester 1

COURSE PLAN FOR MASTER OF SCIENCE PROGRAMME IN ZOOLOGY

		SACRED HEART COLLEGE(AUTONOMOUS), THEVARA				
		DEPARTMENT OF ZOOLOGY				
		COURSE PLAN FOR ACADEMIC YEAR 2019-2020				
PROG	RAMME	M.Sc. Zoology				
COURS AND T		P1ZOOT02 EVOLUTIONARY BIOLOGY AND ETHOLOGY				
HOUR	RS/SEM	72				
	LTY NAME	Raagam P M and Dr. Moncey Vincent				
PROG	RAMME OUT	TCOMES				
PO 1	Exercise th	neir critical thinking in creating new knowledge leading to innovation, entrepreneurship and emplo				
PO 2	Effectively society at I	communicate the knowledge of their study and research in their respective disciplines to their stalarge.				
PO 3		ices based on the values upheld by the institution, and have the readiness and know-how to prese towards sustainable growth and development.				
PO 4	Develop ar	n ethical view of life and have a broader (global) perspective transcending the provincial outlook.				
PO5	Explore ne learning pr	ew knowledge independently for the development of the nation and the world and are able to rocess.				
PROG	RAMME SPE	CIFIC OUTCOMES (PSOs)				
1	Understandorgan-system	d of the programme, the students will at the advanced concepts of life at different levels of biological organization, from gene to genom tems and whole organisms; and drawing upon this knowledge, understand physiological adaptation, behaviour and evolution of different forms of life.				
2	Understan of populati	Understand the ecological interconnectedness of life on earth; to relate the physical features of the environ of populations, communities and ecosystems; and analyse the various environmental issues for providing so socially acceptable solutions.				
3	Demonstrate proficiency in experimental techniques and methods of analysis appropriate for different braiscientific temperament and problem-solving attitude.					
4	Develop aptitude and skills in research in different branches of Zoology and in careers related to teaching in having innovative ideas and necessary training to initiate unique start-ups and entrepreneurship in the real					
COUR	SE OUTCOM	ES (COs)				
1	Understan	nd the concepts of organic evolution				
2	Understan	nd and Analyze the evidences of biological evolution				

3	Understand	the process of animal evolution f	through studving the population ge	netics and on	togeny			
J	Understand the process of animal evolution through studying the population genetics and ontogeny							
4	Understand the theories regarding human evolution and analyze the molecular evidences of our phylogeny							
5	Understand	the significance of studying Etho	ology					
6	Understand	the causal factors of behaviour a	and different types of behaviour					
7	Understand	the Neurophysiological aspects of	of behaviour					
8	Understand	the processes underlying the ex	pression of behaviour patterns by a	animals				
8 SI.No	Understand	the processes underlying the exp	pression of behaviour patterns by a	Value Additions	СО			
		Topic Historical background, Stimulus-Response, Causal factors, Quantitative aspects - Duration, interval	Method of Teaching Lecture with Power Point	Value				
SI.No 1	Session 1	Topic Historical background, Stimulus-Response, Causal factors, Quantitative aspects	Method of Teaching Lecture with Power Point Presentation and Video show Lecture with Power Point Presentation and Video show	Value				
SI.No 1	Session 1	Topic Historical background, Stimulus-Response, Causal factors, Quantitative aspects - Duration, interval frequency. Behaviour bouts. Scope of ethology.	Method of Teaching Lecture with Power Point Presentation and Video show Lecture with Power Point Presentation and Video show Lecture with Power Point Presentation and Video show	Value	CO1, CO2			
SI.No 1 2 MODU	Session 1 2 JLE II- Neuroph	Topic Historical background, Stimulus-Response, Causal factors, Quantitative aspects - Duration, interval frequency. Behaviour bouts. Scope of ethology. hysiological Aspects of Behaviour	Method of Teaching Lecture with Power Point Presentation and Video show Lecture with Power Point Presentation and Video show	Value	CO1, CO2			

	T 4	1 5 C		n	
5	1	Definition- Goal oriented drive, internal causal factor, Homeostatic and Nonhomeostatic drives.		Physiology CO2	2
6	2	Hormones and behaviour, Psycho-hydrologic model of motivation.		Physiology CO4 of Behaviour	4
			MODULE IV- Learning		
7	1	Short and long term memory, Habituation	Lecture with Power Point Presentation	CO4	4
8	2	Classical conditioning (Pavlov's experiments), Instrumental conditioning,	Lecture with Power Point Presentation	CO4	4
9	3	Latent learning, Trial and error learning, Instinct, Imprinting.	Lecture with Power Point Presentation	CO4	4
	1	· · · ·	MODULE V- Communication	,	
10	1	Evolution of communication	Lecture with Power Point Presentation and Video show	CO4	4
11	2	Sensory mechanisms: Electrical	Lecture with Power Point Presentation and Video show	CO4	4
12	3	Sensory Mechanisms: Chemical, Olfactory	Lecture with Power Point Presentation and Video show	CO4	.
13	4	Sensory Mechanisms: Auditory and Visual.	Lecture with Power Point Presentation and Video show	CO4	ļ
14	5	Dance language of honey bees, Pheromonal communication (Ants and mammals).	Lecture with Power Point Presentation and Video show	CO4	4
MODU	LE VI- Reprod	duction and Behaviour 4 hrs.			
15	1	Reproductive strategies and Mating systems	Lecture with Power Point Presentation and Video show	CO4	ļ
16	2	Courtship behaviour	Lecture with Power Point Presentation and Video show	CO4	ļ
17	3	Sexual selection- patterns	Lecture with Power Point Presentation and Video show	CO4	
18	4	Parental care and investment.	Lecture with Power Point Presentation and Video show	CO4	1
ASSIGN	 MENTS AND	 SEMINARS			

Nature of Assignment

Descriptive

Alignment with POs, PSOs a

PSO1, CO1

SI No

1

Module

1

Topic

Scope of Ethology

2		Animal Communication rough Electric impulses	n Descriptive	PSO1, CO4		
3		xamples for Acousti ommunication in Mammals	•	PSO1, CO4		
4		xamples for Pheromona ommunication in Mammals	·	PSO1, CO4		
5	С	examples for Visua communication in Mammals	•	PSO1, CO4		
TEXTBO	OKS AND REFE	RENCES				
1	Alcock John.	2009. Animal Behaviour: Ar	n Evolutionary Approach (8th edr	n). Sinauer Associates Inc.	Sunderl	
2	Aubrey Man U.K.	ning and Mariam Stamp Dav	wkins. 2000. An Introduction to A	nimal Behaviour (5th Edn)	.Cambr	
3			10. Perspectives of Animal Behav	•		
4	Krebs, J. R. ar	nd N.B. Davis.2000. An Intro	oduction to Behavioral Ecology. B	Blackwell Scientific Publica	tions, C	
S. No	Topic		Method of Teaching		Valu Addi	
1	Module I.	Concepts in Evolution	Lecture with Power Point Prese	entation	Vide	
	struggle, selection-s and the ev	of variation, adaptation, fitness and natural pontaneity of mutation olutionary synthesis				
2		ons of Margulis, Eldredge Gould (Punctuated n),	Lecture with Power Point Prese	entation	Vide	
3		ry and Peter Grant evolution in Darwinian	Lecture with Power Point Prese	entation	Vide	
4	Life	Origin and Evolution of vorld. Idea of Panspermia.	Lecture with Power Point Prese	entation		
5		of Prokaryotes- origin of	Lecture with Power Point Prese	entation		
6		of unicellular eukaryotes,	Lecture with Power Point Prese	entation		
7	Anaerobic photosynt	metabolism- origin of nesis	Lecture with Power Point Prese	entation		
8	Aerobic m	etabolism	Lecture with Power Point Prese	ntation		
	l	<u> </u>	FIRST INTERNAL EXAMINATION	N		
9	Evidences	First transfer of Evolution from morphology and reanatomy - homologous vestigial organs,	Lecture with Power Point Prese	ntation	Vide	

	analogous structures, adaptive radiation, atavism, connecting links		
10	Evidences from embroyology – egg and developmental stages, similarity of embryos	Lecture with Power Point Presentation	Vide
11	Baer's law, recapitulation theory.	Lecture with Power Point Presentation	
12	Physiological and biochemical evidences – protoplasm, chromosomes, DNA, enzymes, hormones	Lecture with Power Point Presentation	
13	Physiological and biochemical evidences – blood groups, excretory products, biochemical recapitulation, comparative serology	Lecture with Power Point Presentation	
14	Palaentological evidences – fossils and fossil formation	Lecture with Power Point Presentation	Vide
15	conditions essential for fossil formation, types of fossils, dating of fossils	Lecture with Power Point Presentation	Vide
16	Siginifcance of fossils, geological time scale.	Lecture with Power Point Presentation	
17	Module IV. Population Genetics Gene pool, gene frequency, Hardy- Weinberg Law	Lecture with Power Point Presentation	
18	Rate of change in gene frequency through natural selection, migration and random genetic drift	Lecture with Power Point Presentation	
19	Founder effect. Isolating mechanisms and speciation	Lecture with Power Point Presentation	
20	Micro evolution	Lecture with Power Point Presentation	
21	Macro evolution	Lecture with Power Point Presentation	
22	Mega evolution.	Lecture with Power Point Presentation	
23	Co-evolution	Lecture with Power Point Presentation	
24	Module V. Developmental and Evolutionary Genetics The idea of Evo-Devo	Lecture with Power Point Presentation	
25	Heterochrony	Lecture with Power Point Presentation	
26	Heterotopy	Lecture with Power Point Presentation	
27	Heterometry and Heterotypy	Lecture with Power Point Presentation	
28	Developmental genes	Lecture with Power Point Presentation	

29	Gene co-option	Lecture with Power Point Presentation	
30	Evolution of plasticity	Lecture with Power Point Presentation	
31	Evolution of complexity	Lecture with Power Point Presentation	
32	Evolution of Sex	Lecture with Power Point Presentation	
33		SECOND INTERNAL EXAMINATION	
34	Stages in primate evolution	Lecture with Power Point Presentation	Vide
35	Prosimii, Anthropoidea, Hominids	Lecture with Power Point Presentation	Vide
36	Factors in human origin	Lecture with Power Point Presentation	Vide
37	hominid fossils	Lecture with Power Point Presentation	Vide
38	Cytogenetic basis of origin of man	Lecture with Power Point Presentation	Vide
39	Molecular basis of origin of man	Lecture with Power Point Presentation	Vide
40	African origin of modern man	Lecture with Power Point Presentation	Vide
41	Mitochondrial Eve	Lecture with Power Point Presentation	Vide
42	Y Chromosomal Adam	Lecture with Power Point Presentation	Vide
43	Evolution of Human Brain	Lecture with Power Point Presentation	Vide
44	Communication	Lecture with Power Point Presentation	Vide
45	Speech	Lecture with Power Point Presentation	Vide
46	Language	Lecture with Power Point Presentation	Vide
47	Revision I	Lecture with Power Point Presentation	
48	Revision II	Lecture with Power Point Presentation	
			1

Department of Zoology

COURSE PLAN

PROGRAMME	M.SC. ZOOLOGY	SEMESTER	1
COURSE CODE AND TITLE	16P1ZOOT01 ANIMAL DIVERSITY AND BIOSYSTEMATICS	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	DR. SMITHA S		

Programme Outcomes

	Programme Outcomes
PO 1	Exercise their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	Effectively communicate the knowledge of their study and research in their respective disciplines to their stakeholders and to the society at large.
PO 3	Make choices based on the values upheld by the institution, and have the readiness and know-how to preserve the environment and work towards sustainable growth and development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending the provincial outlook.
PO5	Explore new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

MASTER OF SCIENCES IN ZOOLOGY

PROGRAM SPECIFIC OUTCOMES					
DCC 4	Understand the advanced concepts of life at different levels of biological organization,				
PSO 1	from gene to genome, cell, tissue, organ, organ-systems and whole organisms; and				

	drawing upon this knowledge, understand physiological adaptations, development, reproduction, behaviour and evolution of different forms of life.
PSO 2	Understand the ecological interconnectedness of life on earth; to relate the physical features of the environment to the structure of populations, communities and ecosystems; and analyse the various environmental issues for providing scientifically sound and socially acceptable solutions.
PSO 3	Demonstrate proficiency in experimental techniques and methods of analysis appropriate for different branches of biology with scientific temperament and problem-solving attitude.
PSO 4	Develop aptitude and skills in research in different branches of Zoology and in careers related to teaching in Zoology; as well as in having innovative ideas and necessary training to initiate unique start-ups and entrepreneurship in the realm of life sciences

со	CO Statement	PO/PSOs	CL	кс	Class sessions
CO1	Understand the basic concepts of systematics and taxonomy	PO1, PO4, PO5 PSO3, PSO4	U	С	14
CO2	Understand the procedures in taxonomy and ethics in publications	PO1, PO3, PO4 PSO3, PSO4	U	С	10
соз	Appreciates the contributions made by scientists and organisations towards conservation of animal diversity	PO3, PSO4	U	С	5
CO4	Understand the present status of Indian fauna and the role played by ZSI for conservation of Indian fauna	PO2, PO3 PSO2, PSO4	U	С	10
CO5	Appreciates the diversity of Palaeofauna	PO1 PSO1, PSO4	U	С	5

CO6	Understands the animal architecture	PO1, PO2, PO5 PSO1, PSO2	A	С	3
CO7	Differentiates the invertebrate fauna by their characteristics	PO1, PO2, PO5 PSO2, PSO4	А	С	15
CO8	Differentiates the vertebrate animals by their characteristics	PO1, PO2, PO5 PSO2, PSO4	Α	С	10

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE
BIOSYST	EMATICS MODULE I	RESOURCES	ADDITIONS	OOTCOME
1	Systematics and Taxonomy. Levels of Taxonomy - alpha, beta and gamma taxonomy	PPT	video	CO 1
2	Microtaxonomy – pheneon, taxon, category	Lecture		CO 1
3	Macrotaxonomy; Importance of Taxonomy.	Lecture		CO 1
4	Three Domain Concept in Systematics, two, five and six kingdom classification.	PPT/Lecture		CO 1
5	Hierarchy of categories and higher taxa	PPT/Lecture		CO 1
6	Concept of species	PPT/Lecture		CO 1
7	Intraspecific Catagories	Lecture		CO 1
8	Revision	Questioning		CO 1
BIOSYST	EMATICS MODULE II			
9	Typological, Phenetics	PPT/Lecture		CO 1
10	Evolutionary, Phylogenetic	Lecture		CO 1
11	Taxonomic characters of different kinds	Lecture		CO 1
BIOSYST	EMATICS MODULE III			
12	Taxonomic Procedures	Lecture		CO 2
13	Taxonomic Keys	Lecture		CO 2
14	Different types of keys, merits and demerits.	Lecture		CO 2
15	Process of typification	Lecture		CO 2
16	Use of computer softwares in taxonomic identification.	Lecture		CO 2
17	Taxonomic nomenclature	Lecture		CO 2
18	Importance principles of Zoological Nomenclature	Lecture		CO 2

19	Taxonomic publications	Lecture		CO 2
20	Taxonomic revisions, monographs, atlases, field	Lecture		CO 2
	guides and manuals, catalogs and checklists.			
21	Ethics in taxonomy	Lecture		CO 2
BIOSYS	TEMATICS MODULE IV	•	1	1
22	Molecular Taxonomy	Lecture		CO 1
23	Tree of Life	Lecture		CO 1
24	Bar-coding of Life	Lecture		CO 1
	CIA- I	•	<u> </u>	
ANIMAL	DIVERSITY MODULE I			
25	Contributions from British period	PPT/Lecture		CO 3
26	Organizations	PPT/Lecture		CO 3
27	Publication	Lecture		CO 3
28	Contributors to the research on Indian Fauna	Lecture		CO 3
29	Contributors to the research on Indian Fauna	Lecture		CO 3
	L DIVERGITY MADRIUS II	1	1	
	L DIVERSITY MODULE II	DDT/Locture	Seminar	CO 4
30	An overview of Animal Diversity in India	PPT/Lecture PPT/Lecture	Seminar	CO 4
31 32	Corals of India, Earthworm diversity of India Commercial Shrimps and Prawns of India	PPT/Lecture	Seminar	CO 4
32	Insect fauna of India, Butterflies of India, Indian	PPT/Lecture	Seminar	CO 4
33	Arachnids.	PPI/Lecture	Seminal	CO 4
34	Indian molluscs, Echinoderms of India	PPT/Lecture	Seminar	CO 4
35	Major fishes of India, Amphibian diversity of India	PPT/Lecture	Seminar	CO 4
36	Major fishes of India, Amphibian diversity of India	PPT/Lecture	Seminar	CO 4
30	Indian mammals, Diversity of domesticated animals	PPT/Lecture	Seminar	CO 4
37	of India,	,		
	Endangered animals of India, Endemic animals of	PPT/Lecture	Video	CO 4
38	Kerala.			
	Western Ghats – Geography, Faunal diversity,	PPT/Lecture	Video	CO 4
39	endemism			
40	Revision	Discussion		CO 4
ANIMA	L DIVERSITY MODULE III			
	Fossil records of prokaryotes, fossil protists, Edicaran	PPT/lecture		CO 5
	and Burgess Shale fauna. Cambrain explosion- causes			
41	and consequences			
40	Fossil arthropods - Trilobites, Extinct molluscs, Fossil	PPT/Lecture		CO 5
42	Echinoderms, Fossil records of Fishes,	DDT/Leat	1	60.5
43	Mesozoic world of reptiles and their extinction	PPT/Lecture		CO 5
4.4	Fossil record of birds, Mammalian ancestral forms,	Discussion	Group	CO 5
44	Animal fossil records from India.	Ouis	activity	CO F
45	Revision	Quiz		CO 5
ANIMA	L DIVERSITY MODULE IV	T (:	1	
47	Animal complexity	PPT/Lecture		CO 6
48	Symmetry and its embryonic origin	PPT/Lecture		CO 6
49	Metamerism, cephalisation, complexity and body size	PPT/Lecture		CO 6
ANIMA	L DIVERSITY MODULE V			

50	Diversity of protists	PPT/Lecture		CO 7
51	Recent trends in the classification of protists.	Lecture		CO 7
52	Body architecture of sponges	PPT/Lecture		CO 7
53	Diversity of Cnidaria	PPT/Lecture		CO 7
54	Acoelomata	PPT/Lecture		CO 7
55	Pseudocoelomata	PPT/Lecture		CO 7
56	Phylogeny of Arthropod	Lecture		CO 7
57	Revision		Group discussion	CO 7
	CIA II			
58	Diversity of arthropod larvae; Adaptive Radiation in Molluscs	PPT/Lecture	Discussion	CO 7
59	Larval forms of Molluscs	PPT/Lecture	Discussion	CO 7
60	Lesser Protostomes	PPT/Lecture		CO 7
61	Brachipoda, Onychophora and Chaetognatha	PPT/Lecture		CO 7
62	Echinoderms - Adaptive radiation, Larval forms of Echinoderms	PPT/Lecture		CO 7
63	Hemichordates – Taxonomic position	PPT/Lecture		CO 7
ANIMA	L DIVERSITY MODULE VI			
64	Lower Chordates	PPT/Lecture		CO 8
65	Chondrichthyes and Osteichthyes	PPT/Lecture		CO 8
66	Modern Amphibians, diversity, distribution, status and threats	PPT/Lecture		CO 8
67	Reptiles – origin and adaptive radiation	PPT/Lecture		CO 8
68	Birds - Structural and functional modifications for aerial life	PPT/Lecture		CO 8
69	Adaptive radiation in mammals	PPT/Lecture		CO 8
70	Revision	Questioning		
71	Revision	Quiz		
72	Revision	Discussion		
		-		

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	4/1/2019	Indian Fauna- Present Status	CO 4

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Couse Outcome
1	2/2/2019	Animal fossil records from India.	CO 5

1		
_		

REFERENCES

- Alfred, J.R.B and Ramakrishna. 2004. *Collection, Preservation and Identification of Animals*. Zoological Survey of India Publications, Kolkata, India.
- Anderson, T.A. 2001. Invertebrate Zoology (2nd edn). Oxford University Press, New Delhi.
- Barnes, R. D.1982. Invertebrate Zoology (6th edn). Toppan International Co., NY
- Barrington, E. J. W. 1969. *Invertebrate Structure and Functions*. English Language Book Society.
- Benton, M.J. 2005. Vertebrate Paleontology Blackwell Publishing Com. Oxford, UK.
- David, M. H, Craig Moritz and K.M. Barbara.1996. *Molecular Systematics*. Sinauer Associates, Inc.
- Fauna of India (Formerly Fauna of British India). Zoological Survey of India (ZSI) Publications, Kolkata, India.
- Hickman Jr., Cleveland, Larry Roberts, Susan Keen, Allan Larson, and David Eisenhour .2011.

 Animal Diversity. McGraw-Hill Companies, Inc. NY
- Hyman, L. H. 1940 –1967. The Invertebrates (6 vols). McGraw-Hill Companies Inc. NY
- K.A.Subramanian and K.G.Sivaramakrishnan *Aquatic Insects of India-A fieldguide*Ashoka Trust for Research in Ecology and the Environment, Bengaluru, India.
- Kapoor, V.C. 1991. Theory and Practice of Animal Taxonomy. Oxford and IBH Publishing Co., Pvt. Ltd. New Delhi.
- Margulis,Lynn and M.J.Chapman 2001. *Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth*(4th edn.). W.H.Freeman &Company,USA
- Mayr, E .1969. Principles of Systematic Zoology. McGraw Hill Book Company, Inc., NY.
- Mayr, E and Ashlock P.D. 1991. *Principles of Systematic Zoology*. McGraw Hill Book Company, Inc., NY.
- Narendran, T.C. 2008. An introduction to Taxonomy. Zoological survey of India.
- Niles, E. 2000.Life on earth: an Encyclopedia of Biodiversity, Ecology and Evolution (Vol.1&II).ABCCLIO, Inc.CA,USA
- Priyadarsanan D. R., S. Devy, Aravind N. A., Subramanian, K. A., and S. Narayanan 2012. Invertebrate diversity and conservation in the Western Ghats Ashoka Trust for Research in Ecology and the Environment, Bengaluru, India.

- Romer, A.S. and T.S. Parsons. 1985. The Vertebrate Body. (6th edn.) Saunders, Philadelphia.
- State Fauna Series Zoological Survey of India (ZSI) Publications, Kolkata, India. Strickberger, M.W. 2005. *Evolution*. Jones and Bartett Publishers, London.
- T.K. PAL. R.VENKATACHALAPATHY. B. BARAIK. *Animal Fossils* of Nagaland. OCCASIONAL PAPER NO. 338. *Records* of the Zoological Survey of *India*.
- Winston, J.E.2000. *Describing species: Practical Taxonomic Procedures for Biologists*.

 Columbia University Press, Columbia, USA. Administrator BNHS 2002. *The Book of Indian Birds* (13th Edn.) Bombay Natural History Society (BNHS) Publications, Mumbai, India.
- Administrator BNHS 2014. *Threatened Birds of India Their Conservation Requirements*. Bombay Natural History Society (BNHS) Publications, Mumbai, India.
- Asad R. Rahmani & Gayatri Ugra. *Birds of Wetlands and Grasslands* Bombay Natural History Society (BNHS) Publications, Mumbai, India.
- Daniel J.C.2002. *The Book of Indian Reptiles and Amphibians*. Bombay Natural History Society (BNHS) Publications, Mumbai, India.
- Isaac Kehimkar 2008. *The Book of Indian Butterflies*. Bombay Natural History Society (BNHS) Publications, Mumbai, India. Prater S.H. 2005. The Book of Indian Animals (12th Edn.) Bombay Natural History Society (BNHS) Publications, Mumbai, India.
- Ranjit Manakadan, J.C. Daniel, and Nikhil Bhopale *Birds of the Indian Subcontinent A Field Guide*. Bombay Natural History Society (BNHS) Publications, Mumbai, India.

Department of Zoology

COURSE PLAN FOR MASTER OF SCIENCE PROGRAMME IN ZOOLOGY (2020-2021)

PROGRAMME	MASTER OF ZOOLOGY	SEMESTER	1
COURSE CODE AND TITLE	16P1ZOOT03 BIOPHYSICS, INSTRUMENTATION AND BIOLOGICAL TECHNIQUES	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	54
FACULTY NAME	Dr. MONCEY VINCENT		

Programme Outcome

	Programme Outcome
PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development
PO 4	The students possess an ethical view of life, and have a broader (global) perspective transcending the provincial outlook
PO5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

MASTER OF ZOOLOGY

	PROGRAM SPECIFIC OUTCOMES				
1	At the end of the programme, the students will Understand the advanced concepts of life at different levels of biological organization, from gene to genome, cell, tissue, organ, organ-systems and whole organisms; and drawing upon this knowledge, understand physiological adaptations, development, reproduction, behaviour and evolution of different forms of life.				

2	Understand the ecological interconnectedness of life on earth; to relate the physical features of the environment to the structure of populations, communities and ecosystems; and analyse the various environmental issues for providing scientifically sound and socially acceptable solutions.
3	Demonstrate proficiency in experimental techniques and methods of analysis appropriate for different branches of biology with scientific temperament and problem-solving attitude.
4	Develop aptitude and skills in research in different branches of Zoology and in careers related to teaching in Zoology; as well as in having innovative ideas and necessary training to initiate unique start-ups and entrepreneurship in the realm of life sciences.

BIOPHYSICS, INSTRUMENTATION AND BIOLOGICAL TECHNIQUES

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Understand the biophysical principles that govern the functioning	PO1/PSO3	U
	of life processes.		
CO 2	Understand the interactions of electromagnetic radiations with	PO1/PSO3	U
	matter.		
CO 3	Understand the techniques for studying live cells and preserved	PO1/PSO3	U
	cells under the microscope.		
CO 4	Understand the principles of chromatographic and electrophoretic	PO1/PSO3	U
	separation and characterisation of biomolecules.		
CO 5	Understand the technique of centrifugation and its multiple uses	PO1/PSO3	U
	in studying cells and biomolecules.		
CO6	Understand the physics behind radioactivity measurement for	PO1/PSO3	U
	medical as well as environmental dosimetry.		
CO7	Understand the basic principles of bionanotechnology and its	PO1/PSO3	U
	potential in biomedical applications		
CO8	Understand the principles of colorimetric, spectroscopic, and	PO1/PSO3	U
	biochemical assay techniques for monitoring physico-chemical		
	perturbations of life processes.		

CL* Cognitive Level

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	Module I. Diffusion and Osmosis-4 hrs.			
1	Diffusion -Kinetics of diffusion, Fick"s law of diffusion and diffusion coefficient	PPT/Lecture	Video demonstration	CO1
2	Biological significance in animals and plants, Facilitated diffusion, Gibbs-Donnan equillibrium.	PPT/Lecture		CO1
3	Osmosis- osmotic concentration and osmotic pressure, Van"t Hoff"s laws.	PPT/Lecture		CO1
4	Biological significance of osmosis in animals and plants.	PPT/Lecture		CO1
	Module II. Biophysics of Cell Membrane 5 hrs.			
5	Membrane Transport - endocytosis, exocytosis,	PPT/Lecture	Video	CO1
6	Nutrient transport across membranes, porins	PPT/Lecture	Video	CO1
7	facilitated diffusion, porter molecules	PPT/Lecture		CO1

8	Facilitated transport: symport, antiport, uniport, anion porter, glucose porter	PPT/Lecture	Animation	CO1
9	Active transport: proton pumps, Na+ K+ pumps and Ca++ pumps, ionic channels. Artificial membranes.	PPT/Lecture		CO1
	Module III. Bioenergetics 4 hrs.			
10	Reversible thermodynamics and irreversible thermodynamics; Systems - open, closed and isolated.			CO1
11	Redox couple and redox potential.	PPT/Lecture		CO1
12	Chemo-bioenergetics: electron transport and oxidative phosphorylation,	PPT/Lecture		CO1
13	Chemiosmotic theory and binding change mechanism of ATP synthesis	PPT/Lecture	Animation video	CO1
	Module IV. Radiation Biophysics - 4 hrs.			
14	Interaction of radiation with matter - Photoelectric effect, ion pair production, absorption and scattering of electrons.	PPT/Lecture	Video	CO2
15	Biological effects of radiation: effect on nucleic acids, proteins, enzymes and carbohydrates.	PPT/Lecture		CO2
16	Biological effects of radiation: effect on enzymes and carbohydrates.	PPT/Lecture		CO2
17	Cellular effects of radiation: somatic and genetic.	PPT/Lecture		CO2
	INSTRUMENTATION & BIOLOGICAL			
	TECHNIQUES			
	Module I. Microscopy	4 hrs.		
18	Differential Interference contrast (Nomarsky) microscopy,	PPT/Lecture		CO3
19	Confocal microscope, Electron microscope - TEM,	PPT/Lecture		CO3
20	SEM, Scanning Tunnelling Microscope	PPT/Lecture		CO3
21	Atomic Force Microscopes	PPT/Lecture	Animation	CO3
	Module II. Chromatography	6 hrs.		
22	Paper chromatography, Thin layer chromatography,	PPT/Lecture	Model	CO4
23	Ion exchange chromatography.	PPT/Lecture		CO4
24	Gel permeation chromatography,	PPT/Lecture		CO4
25	Affinity chromatography, Gas chromatography	PPT/Lecture		CO4
26	High pressure liquid chromatography (HPLC),	PPT/Lecture		CO4
27	Brief description of Fast protein liquid chromatography (FPLC).	PPT/Lecture		CO4
	Module III. Electrophoresis	4 hrs		
29	Paper electrophoresis, Gel electrophoresis	PPT/Lecture	Model	CO4
30	Polyacrylamide gel electrophoresis (PAGE) - SDS and non SDS	PPT/Lecture		CO4
31	Disc electrophoresis, High voltage electrophoresis, immunoelectrophoresis	PPT/Lecture		CO4
	Capillary gel electrophoresis, Electrophoretic	PPT/Lecture		CO4

		•		
	Module IV. Colorimetry, Spectrophotometry and Spectroscopy	5 hrs.		
	Principle and applications of colorimetry and	PPT/Lecture	Demonstration	CO8
33	spectrophotometry.	,		
34	Spectroscopy: Flame emission spectroscopy,	PPT/Lecture		CO8
35	Atomic absorption spectroscopy,	PPT/Lecture		CO8
36	Nuclear Magnetic- resonance spectroscopy (NMR).	PPT/Lecture		CO8
37	Brief account on Fourier-Transform infrared	PPT/Lecture		CO8
37	spectroscopy (FTIR) Module V. Centrifugation	3 hrs		
				COF
38	Basic principles of sedimentation Types of centrifuges	PPT/Lecture		CO5
39	Analytical and Preparative centrifugation	PPT/Lecture	Demonstration	CO5
	Differential and density gradient centrifugation.	PPT/Lecture	Demonstration	CO5
40	, , , , , , , , , , , , , , , , , , , ,	4 hrs.		
	Module VI. Radioisotope Detection and Measurement	4 1115.		
41	Dosimetry: Ionization chamber	PPT/Lecture		CO6
	GM counter, Solid and liquid scintillation counters	PPT/Lecture		CO6
42	·	•		CO6
43	Autoradiography. Nuclear medicine: Internally administered radioisotopes.	PPT/Lecture		COB
44	Radioiodine in thyroid function analysis.	PPT/Lecture		CO6
	Module VII. Nanotechnology	2 hrs.		
	Introduction to Nanobiology. Nanosensors and	PPT/Lecture		CO7
45	Nanomedicines.		Video	
	Bio-Nanorobotics, Artificial muscles using	PPT/Lecture	Animation	CO7
46	Electroactive polymers, Multifunctional materials		video	
	Module VIII. Assays	2 hrs.		
	Radio Immuno-Assay, Enzyme Linked Immuno	PPT/Lecture		CO8
47	Sorbant Assay (ELISA).		Video	
48	Sandwich ELISA	PPT/Lecture		CO8
	Module IX. pH meter	1 hr.		
49	Principle and working. Types of pH meters.	PPT/Lecture		CO8
	Module X. Biological and Histological Techniques	5 hrs.		
	Fixation, preparation of temporary and permanent	PPT/Lecture		CO8
	slides, whole mounts, smears, squashes and		Example	
50	sections.		illustration	
51	Specimen preparation for TEM, SEM, shadow casting,	PPT/Lecture		CO8
	freeze fracturing, freeze etching,negative	PPT/Lecture		CO8
52	staining.Microphotography.		Animation	-
	Cytochemical and histological methods-	PPT/Lecture		CO8
53	Microtome techniques, fixation, staining.			
	Cytochemistry of nucleic acids, detection of	PPT/Lecture		CO8
54	carbohydrates, proteins and lipids.			

Assignments

SI.	Title	Submission
No.		Date
1	Applications of Colorimetry	16-August
2	Applications of RIA Applications of HPLC	2018
3	Applications of the Le	
4	Technique of HPLC	
5	Applications of Gas Chromatography	
6	Methodology of GC	
7	Radiation and matter interactions	
8	Applications of NMR	
9	Methodology of ELISA	
10	Applications of AAS	
10		

References

TEXT	TBOOKS AND REFERENCES
1	Ackerman, E. 1962. Biophysical Science. Prentice Hall Inc. NJ, USA
2	Alonso, A., and Arrondo, J.L.R.2006. Advanced Techniques in Biophysics. Springer, UK
3	Arora, M. P. 2007. <i>Biophysics</i> . Himalaya Publishing House, New Delhi
4	Baker, E.J. and Silverton R.E. 1978. Introduction to Medical Laboratory Technology. ELBS.
5	London,UK
	Das, D. 1991. Biophysics and Biophysical Chemistry. Academic Publishers, Calcutta
6	Edward, A.L. 1997. Radiation Biophysics. Academic Press, NY, USA.
7	Ernster, L. (Ed.). 1985. <i>Bioenergetics</i> . Elsivier, NewYork,USA.
8	Ghatak K.L. 2011. Techniques and Methods in Biology. PHI Learning Pvt. Ltd. New Delhi
9	Gupta A. 2009. Instrumentation and Bio

Department of Zoology

COURSE PLAN

PROGRAMME	MASTER OF ZOOLOGY	SEMESTER	1
COURSE CODE AND TITLE	16P1ZOOT04: BIOSTATISTICS, COMPUTER APPLICATION AND RESEARCH METHDOLOGY	CREDIT	4
HOURS/WEEK	2	HOURS/SEM	36
FACULTY NAME JOBIN C THARIAN, GISHA SIVAN, MATHEW M J			

Programme Outcome

	Programme Outcome
PO 1	Exercise their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability
PO 2	Effectively communicate the knowledge of their study and research in their respective disciplines to their stakeholders and to the society at large.
PO 3	Make choices based on the values upheld by the institution, and have the readiness and know-how to preserve the environment and work towards sustainable growth and development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending the provincial outlook.
PO5	Explore new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process

MASTER OF ZOOLOGY

	PROGRAM SPECIFIC OUTCOMES			
PSO 1	Understand the advanced concepts of life at different levels of biological organization, from gene to genome, cell, tissue, organ, organ-systems and whole organisms; and drawing upon this knowledge, understand physiological adaptations, development, reproduction, behaviour and evolution of different forms of life.			
PSO 2	Understand the ecological interconnectedness of life on earth; to relate the physical features of the environment to the structure of populations, communities and ecosystems; and analyse the various environmental issues for providing scientifically sound and socially acceptable solutions.			
PSO 3	Demonstrate proficiency in experimental techniques and methods of analysis appropriate for different branches of biology with scientific temperament and problem-solving attitude.			
PSO 4	Develop aptitude and skills in research in different branches of Zoology and in careers related to teaching in Zoology; as well as in having innovative ideas and necessary training to initiate unique start-ups and entrepreneurship in the realm of life sciences.			

со	CO Statement	POs/PSOs	CL	КС
CO1	Understand basics of statistics and measures of central tendency and dispersion	PO1, PO5 PSO3	U	С
CO2	Understand correlation and regression analysis	PO1, PO5 PSO3	C	С
CO3	Understand probability, hypothesis testing and vital statistics	PO1, PO5 PSO3	U	С
CO4	Understand the basics of computer application and software	PO1, PO5 PSO3	U	С
CO5	Understand the application of SPSS	PO1, PO5 PSO3	U	С

CO6	Understand the basic concepts of research	PO1, PO2, PO5	Α	С
		PSO1, PSO2		
CO7	Understand research formulation and design	PO1, PO2, PO5	Α	С
		PSO2, PSO4		
CO8	Understand information, documentation and	PO1, PO2, PO5	U	С
	communication	PSO2, PSO4		

SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	MODULE I		•	
1	Steps in Statistical Investigation, Data and Variable (Collection, Types, Sources).	Lecture		CO 1
2	Population, Sample, Sampling Methods (Random, Cluster, Stratified and Geographical) and Sampling Errors/Bias.	Lecture		CO 1
3	Organization of Data - Editing, Classification, Tabulation (forming a frequency distribution from raw data and types and characteristics of a Frequency table).	Lecture		CO 1
4	Presentation of Data - Types and Characteristics of Tables and Visual aids – Graphs, Charts, Diagrams, Flow charts, Cartographs.	Lecture		CO 1
5	Statistical Analysis Tools - Parametric and Non- Parametric	Lecture		CO 1
6	Bivariate and Multivariate Analysis. Interpretation and Forecasting	Lecture		CO 1
7	Introduction, Characteristics	Lecture		CO 1
8	Merits and Demerits of Mean	Lecture		CO 1
9	Merits and Demerits of Median	Lecture		CO 1
10	Merits and Demerits of Mode	Lecture		CO 1
11	Calculations/Problems for different data (raw, frequency table).	Lecture		CO 1
12	Geometric Mean	Lecture		CO 1
13	Introduction, Characteristics	Lecture		CO 1

14	Merits and Demerits of Range		
15	Merits and Demerits of Quartile deviation	<u> </u>	<u> </u>
16	Merits and Demerits of Mean deviation	Lecture	CO 2
17	Merits and Demerits of standard deviation	Lecture	CO 2
18	Calculations/Problems for frequency table.	Lecture	CO 2
19	Standard Error and Relative Measures of Dispersion, Skewness and Kurtosis	Lecture	CO 2
20	Correlation - types and methods of correlation analysis	Lecture	CO 2
21	Problems for Karl Pearson's correlation coefficient	Lecture	CO 2
22	Spearman's rank correlation	Lecture	CO 2
23	Regression and Line of Best Fit	Lecture	CO 2
24	Types and methods of regression analysis.	Lecture	CO 2
25	Graphic Methods (Scatter method, Curve fitting).	Lecture	CO 2
26	Algebraic method (Fitting of strait line through regression Equation)	Lecture	CO 2
27	Probit Analysis (Brief account only).	Lecture	
28	Sampling, Methods and Errors	Lecture	CO 3
29	Tests of significance (For large and small samples – Critical Ratio and P value). Z Test (Problem for small Samples)	Lecture	CO 3
30	Chi- Square Test	Lecture	CO 3
31	Student's 't' test (Problem for small samples comparing mean of two variable	Lecture	CO3
32	F-test and Analysis of Variance (ANOVA - One way)	Lecture	CO 3
33	Non-parametric tests: Mc Nemar and Mann Whitney U test	Lecture	CO 3
34	Introduction, uses, records and system of classification of vital statistics.	Lecture	·
35	Sample registration system, Sample design, Survey of causes of death and Age classification	Lecture	CO 3
36	Measures of Vital Statistics and Measures of Population	Lecture	CO 3
37	Scientific temper, Empiricism, Rationalism	ICT Enabled (ppt); discussion	CO6
38	Basic concepts of research -Meaning, Objectives, Motivation and Approaches.	ICT Enabled (ppt); discussion	CO6
39	Types of Research (Descriptive/Analytical Applied/ Fundamental, Quantitative/ Conceptual/ Empirical	ICT Enabled (ppt); discussion	CO6

40	Research methods versus Methodology, Research and scientific method. Research Process.	ICT Enabled (ppt); discussion	CO6
41	Research formulation -Observation and Facts, Prediction and explanation, Induction, Deduction	ICT Enabled (ppt); discussion	CO7
42	Defining and formulating the research problem, Selecting the problem and necessity of defining the problem.	ICT Enabled (ppt); discussion	CO7
43	Literature review -Importance of literature reviewing in defining a problem, Critical literature review, Identifying gap areas from literature review	ICT Enabled (ppt); discussion	CO7
44	Hypothesis -Null and alternate hypothesis and testing of hypothesis	ICT Enabled (ppt); discussion	CO7
45	Research Design -Basic principles, Meaning, Need and features of good design, Important concepts. Types of research designs.	ICT Enabled (ppt); discussion	CO7
46	Development of a research plan -Exploration, Description, Diagnosis, Experimentation, determining experimental and sample designs.	ICT Enabled (ppt); discussion	CO7
47	Data collection techniques.	ICT Enabled (ppt); discussion	CO7
	CIA 2		
48	Project proposal writing, Research report writing (Thesis and dissertations, Research articles, Oral communications).	ICT Enabled (ppt); discussion	CO8
49	Impact factor, Citation index,H- index Presentation techniques - Assignment, Seminar, Debate, Workshop, Colloquium, Conference.	ICT Enabled (ppt); discussion	CO8
50	Sources of Information -Primary and secondary sources. Library - books, journals, periodicals, reference sources, abstracting and indexing sources, Reviews, Treatise, Monographs, Patents. Internet -Search engines and software, Online libraries, digital libraries, e-Books, e-Encyclopedia, TED Talk, Institutional Websites.	ICT Enabled (ppt); discussion	CO8
51	Intellectual Property Rights - Copy right, Designs, Patents, Trademarks, Geographical indications. Safety and precaution - ISO standards for safety, Lab protocols, Lab animal use, care and welfare, <u>animal</u> houses, radiation hazards	ICT Enabled (ppt); discussion	CO8

	Extension: Lab to Field, Extension communication,		
52	Extension tools. Bioethics: Laws in India, Working with man and animals, Consent, Animal Ethical Committees and Constitution. Revision & Evaluation of the course	ICT Enabled (ppt); discussion	CO4
53	Scientific temper, Empiricism, Rationalism	ICT Enabled (ppt); discussion	CO4
54	Module II. Concepts of Research	ICT Enabled (ppt); discussion	CO4
55	Basic concepts of research -Meaning, Objectives, Motivation and Approaches.	ICT Enabled (ppt); discussion	CO4
56	Types of Research (Descriptive/Analytical, Applied/ Fundamental, Quantitative/Qualitative, Conceptual/ Empirical	ICT Enabled (ppt); discussion	CO4
57	Research methods versus Methodology, Research and scientific method. Research Process	ICT Enabled (ppt); discussion	CO4
58	Research formulation -Observation and Facts, Prediction and explanation, Induction, Deduction	ICT Enabled (ppt); discussion	CO4
59	Defining and formulating the research problem, Selecting the problem and necessity of defining the problem.,	ICT Enabled (ppt); discussion	CO5
60	Literature review -Importance of literature reviewing in defining a problem, Critical literature review, Identifying gap areas from literature review	ICT Enabled (ppt); discussion	CO5
61	Hypothesis -Null and alternate hypothesis and testing of hypothesis		CO5
62	Research Design -Basic principles, Meaning, Need and features of good design, Important concepts. Types of research designs.	ICT Enabled (ppt); discussion	CO5
63	Development of a research plan -Exploration, Description, Diagnosis, Experimentation, determining experimental and sample designs.	ICT Enabled (ppt); discussion	CO5
64	Data collection techniques.	ICT Enabled (ppt); discussion	CO5
65	Project proposal writing, Research report writing (Thesis and dissertations, Research articles, Oral communications).	ICT Enabled (ppt); discussion	CO5

66	Impact factor, Citation index,H- index Presentation techniques - Assignment, Seminar, Debate, Workshop, Colloquium, Conference	ICT Enabled (ppt); discussion	CO5
67	Sources of Information -Primary and secondary sources. Library - books, journals, periodicals, reference sources, abstracting and indexing sources, Reviews, Treatise, Monographs, Patents. Internet -Search engines and software, Online libraries, digital libraries, e-Books, e-Encyclopedia, TED Talk, Institutional Websites.	ICT Enabled (ppt); discussion	CO5
68	Intellectual Property Rights - Copy right, Designs, Patents, Trademarks, Geographical indications. Safety and precaution - ISO standards for safety, Lab protocols, Lab animal use, care and welfare, animal houses, radiation hazards	ICT Enabled (ppt); discussion	CO8
69	Extension: Lab to Field, Extension communication, Extension tools. Bioethics: Laws in India, Working with man and animals, Consent, Animal Ethical Committees and Constitution. Revision & Evaluation of the course	ICT Enabled	CO8

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Couse Outcome
1	1 Harmonic mean		CO 2
2		Research process	CO 5

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Couse Outcome
1		Generation of computers	CO 6
2			

References

Web resource references:

Ahuja, V.K. 2010. Law of Copy Rights and Neighbouring Rights: National and International

Perspectives..Lexis Nexis- Butterworths Wadhwa, Nagpur

Ahuja, V.K. 2007. Law Relating to Intellectual Property Rights. Lexis Nexis-Butterworths Wadhwa, Nagpur.

Anitha Goel.2010. Computer Fundamentals. Pearson Education India.

Bailey, N.T.J. 1994. Statistical Methods in Biology (3rdedn). Cambridge University Press.

Bright Wilson. 1990. An Introduction to Scientific Research. Dover Publications. NY.

Chap T.Le.2003.Introductory Biostatistics. John Wiley &Sons, NJ, USA.

Clough, P. and C. Nutbrown. 2002. A Student's Guide to Methodology: Justifying Enquiry. Sage, London.

Daniel, W.W. 2006. Biostatistics: A Foundation for Analysis in the Health Sciences (7th edn). John Wiley & Sons, New York.

Dharmapalan, Biju. 2012. Scientific Research Methodology. Narosa Publishing House, New Delhi

Finney ,D.J. 1980. Statistics for Biologists. Chapman and Hall, London

Frank, Harry and Steven C. Althoen, 1995. Statistics: Concepts and Applications. Cambridge University Press

Glenn McGee.2003. Pragmatic Bioethics. The MIT Press, MA, USA

Jeremy R. Garret.2012. The Ethics of Animal Research. The MIT Press, MA. USA

Kothari C.R., 2009. Research Methodology: Methods and Techniques (2ndedn.). NewAge

International Publishers, New Delhi.

Pagano, M and K.Gauvreau. 2000. Principles of Biostatistics. Brooks/Cole, CA, USA