SACRED HEART COLLEGE (AUTONOMOUS)

Department of Botany MASTER IN SCIENCE

Course plan
Academic Year 2018-19
Semester 2

COURSE PLAN (OBE) FOR MSc -SEMESTER 1

PROGRAMME	M. SC. BOTANY	SEMESTER	1	
COURSE CODE AND TITLE	BRYOLOGY AND PTERIDOLOGY (16P1BOTT05)	CREDIT	4	
HOURS/WEEK	4	HOURS/SEM	(THEORY 36 + 36 HRS; PRACTICAL 18 + 36 HRS)	
FACULTY NAME	LESLY AUGUSTINE			

PROGRAMME OUTCOMES

PO 1	Exercise their critical thinking in creating new knowledge leading to innovation,
	entrepreneurship and employability.
PO 2	Effectively communicate the knowledge of their study and research in their respective
PU 2	disciplines to their stakeholders and to the society at large.
	Make choices based on the values upheld by the institution, and have the readiness
PO 3	and knowhow to preserve the environment and work towards sustainable growth and
	development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending
PU 4	the provincial outlook.
PO 5	Explore new knowledge independently for the development of the nation and the
PU 5	world and are able to engage in a lifelong learning process.

PROGRAM SPECIFIC OUTCOMES

PSO 1	Encourage a clear, comprehensive and advanced mastery in the field of Botany.
PSO 2	Comprehend the basic principles of biological sciences with special reference to Botany and its applied branches.
PSO 3	Develop skills in students to explore the intricacies of life forms at cellular, molecular and nano level.
PSO 4	Fuel students' motivation and enthusiasm and to help them not only to appreciate the beauty of different life forms but also to inspire them in the dissemination of the concept of biodiversity conservation.

	Develop problem solving skills in students and encourage them to carry out innovative
PSO 5	research projects thereby enkindling in them the spirit of knowledge creation.

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Define the diversity of primitive land plants.	PO1, PO2, PO6,	U
		PSO2, PSO3	
CO 2	Explain the morphological and anatomical features of	PO1, PSO2, PSO3	Α
	Bryophytes and Pteridophytes.		
CO 3	Evaluate the main characteristics of Bryophytes and	PO1, PO2, PSO1	U
	Pteridophytes.		
CO 4	Examine the development of land adaptations in the	PO1, PO2, PSO1,	An
	Bryophytes and Pteridophytes.	PSO2,PSO4	
CO 5	Analyze various lifecycle events in Bbryophyte and	PO1, PO2, PO3,	U
	Pteridophytes.	PO4, PO5, PSO2,	
		PSO3	
CO 6	Define the evolutionary trends primitive plant groups.	PO1, PO2, PO3,	An
		PO4, PO5, PSO2,	
		PSO3	
CO 7	Develop capacity to identify various Bryophytes and	PO1, PO2, PO3,	E
	Pteridophytes in their habitats.	PO4, PO5, PSO2,	
		PSO3	

CL* Cognitive Level

BRYOLOGY (Theory 36 hrs; Practical 18 hrs)

SESSION	TOPIC	LEARNING	VALUE	COURSE
		RESOURCES	ADDITIONS	OUTCOME
	Introduction to Course			
	(a) General characters, Classification, evolution of bryophytes	PPT/Lecture	Seminar	CO 1
	(b) Morphology, anatomy and reproduction of Riccia, Marchantia & Anthoceros	PPT/Lecture	Seminar	CO 1
	(c) Importance of bryophytes	PPT/Lecture	Seminar	CO 1
MODULE I; General intro		luction (5 hrs)	•	•
1	Introduction to bryophytes, their fossil history and evolution.	PPT/Lecture		CO 1

2	Concept of algal and pteridophytic originof	PPT/Lecture		CO 1
	bryophytes. General characters of bryophytes.			
3	History of classification of bryophytes. Modern trends in classification of bryophytes.	PPT/Lecture		CO 1
4	DNA barcoding of bryophytes.	PPT/Lecture		CO 1
_ 5	Systematic way of collection, preservation and	PPT/Lecture	Article	
3	identification of bryophytes with special	111/Lecture	reading	
	reference to mosses. Conservation biology of		reading	CO 1
	bryophytes.			
	MODULE II, Ecology and Economic importan	ı ce of bryonhy	tes (5 hrs)	
6	Bryophyte habitats.	PPT/Lecture		CO 1
7	Water relations - absorption and conduction,	PPT/Lecture	video	CO 1
,	xerophytic adaptations	rri/Lecture	Video	CO 2
8	Water relations – drought tolerance,	PPT/Lecture		
8	desiccation and rehydration, ectohydric,	r r r/Lecture		CO 2
	endohydric and myxohydric bryophytes			002
9	Ecological significance of bryophytes - role as	PPT/Lecture	video	
,	pollution indicators.	I i i / Lecture	Video	CO 2
10	Economic importance of bryophytes; i)	PPT/Lecture	video	CO 2
10	Sphagnum as 'Peat Moss'ii) Medicinal Usesiii) as	•	Video	002
	source of foodiv) as pollution indicators v) in			
	experimental studies vi) Horticultural uses.			
	Module 3: Thallus structure	(26 hrs)	<u> </u>	
11	Comparative structural organization of	PPT/Lecture		CO 2
	gametophytes and sporophytes in an	,		
	evolutionary perspective. Asexual and sexual			
	reproductive structures, spore dispersal			
	mechanisms and germination of thefollowing			
	groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary). (a) Hepaticopsida (Sphaerocarpales,			
	Marchantiales, Metzgeriales, Jungermanniales			
	and Calobryales).			
12	Comparative structural organization of	PPT/Lecture		CO 2
	gametophytes and sporophytes in an			
	evolutionary perspective. Asexual and sexual			
	reproductive structures, spore dispersal			
	mechanisms and germination of thefollowing			
	groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary). (a) Hepaticopsida (Sphaerocarpales,			
	Marchantiales, Metzgeriales, Jungermanniales			
	and Calobryales).			

13	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2
14	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2
15	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2
16	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2
17	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal	PPT/Lecture	CO 2

	T	1]
	mechanisms and germination of thefollowing groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary). (a) Hepaticopsida (Sphaerocarpales,			
	Marchantiales, Metzgeriales, Jungermanniales			
	and Calobryales).			
18	Comparative structural organization of	PPT/Lecture		CO 2
	gametophytes and sporophytes in an	.,		
	evolutionary perspective. Asexual and sexual			
	reproductive structures, spore dispersal			
	mechanisms and germination of thefollowing			
	groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary). (a) Hepaticopsida (Sphaerocarpales,			
	Marchantiales, Metzgeriales, Jungermanniales			
	and Calobryales).			
19	Comparative structural organization of	PPT/Lecture	video	CO 2
	gametophytes and sporophytes in an			
	evolutionary perspective. Asexual and sexual			
	reproductive structures, spore dispersal			
	mechanisms and germination of thefollowing			
	groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary).			
	(b) Anthocerotopsida (Anthocerotales).			
20	Comparative structural organization of	PPT/Lecture	video	CO 2
	gametophytes and sporophytes in an			
	evolutionary perspective. Asexual and sexual			
	reproductive structures, spore dispersal			
	mechanisms and germination of thefollowing			
	groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary).			
	(b) Anthocerotopsida (Anthocerotales).			
21	Comparative structural organization of	PPT/Lecture		CO 2
	gametophytes and sporophytes in an			
	evolutionary perspective. Asexual and sexual			
	reproductive structures, spore dispersal			
	mechanisms and germination of thefollowing			
	groups with reference to the types mentioned			
	in the practical (development of sex organs not			
	necessary).			
	(b) Anthocerotopsida (Anthocerotales).			

		1		
22	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture	video	CO 2
	1CIA	•	•	•
23	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture		
24	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture		CO 2
25	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture		CO 2

26	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture	
27	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2
28	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO2
29	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2

30	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2
31	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2
32	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2
33	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 3

34	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	video	CO 3
35	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	videos	CO 3
36	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of the following groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	video	CO 4
	Practical 18 hrs			
Detail	ed study of the structure of gametophytes and spo bryophytes by suitable micro p		he following	genera of
38	Riccia	Hands-on Session	video	CO 4
39	Targionia	Hands-on Session	video	CO 4
40	Cyathodium	Hands-on Session	video	CO 4

	Marchantia	Hands-on		CO 4
41		Session	video	
	Lunularia	Hands-on	video	CO 4
42		Session		
	Dumortiera	Hands-on	video	CO 4
43		Session		
	Reboulia	Hands-on	video	CO 4
44		Session		
	Pallavicinia	Hands-on	video	CO 4
45		Session		
	Fossombronia	Hands-on	video	CO 4
46		Session		
	Porella	Hands-on	video	CO 4
47		Session		
	Anthoceros	Hands-on	video	CO 4
48		Session		
	Sphagnum	Hands-on	video	CO 4
49		Session		
	Pogonatum	Hands-on	video	CO 4
50		Session		
	Bryum	Hands-on	video	CO 4
51		Session		
	Fissidens	Hands-on		CO 4
52		Session		
	Hyophila	Hands-on		CO 4
53		Session		
	Students are expected to submit 5 bryophyte	Experiential		CO 4
	specimen's herbarium and also a report of field	learning		
	trip to bryophyte's natural habitats to			
54	familiarize with the diversity of bryophytes.			

- 1. Kashyap S R (1932). Liverworts of Western Himalayas and the Punjab plains (Vol. I & II). Research Co. Publications.
- 2. Chopra R N, P K Kumar (1988). Biology of Bryophytes. Wiley Eastern Ltd.
- 3. Chopra R S, S S Kumar (1981). Mosses of Western Himalayas and adjacent plains. Chronica Botanica.

- 4. Kumar S S (1984). An approach towards phylogenetic classification of Mosses. Jour. Hattori Bot. Lab. Nichinan, Japan.
- 5. Rashid A (1981). An Introduction to Bryophyta. Vikas publishing house Pvt. Ltd.
- 6. Richardson D H S (1981). Biology of Mosses. Blackwell Scientific publications, Oxford.
- 7. Shefield W B (1983 '84). Introduction to Bryology (Vol. 1, 2). Jour. Hattori Bot. Lab, Nichinan, Japan.
- 8. Vashishta B R, A K Sinha, A Kumar (2003). Bryophyta. S Chand & Co. Ltd.
- 9. Udak R (1976). Bryology in India. ChronicaBotanica Co.
- 10. Pandey B P (1994). Bryophyta. S Chand and Co. Ltd.
- 11. Goffinet B, A J Shaw (2009). Bryophytic Biology (II Edn). Cambridge University Press.
- 12. Dyer A F, J G Duckett (Eds) (1984). The experimental Biology of Bryophytes. Academic Press.
- 13. Bonver F O (1935). Primitive land plants. MacMillan & Co. Ltd.
- 14. Campbell, Ditt (1940). The evolution of land plants. Stanford University Press.
- 15. Srivastava S N (1992). Bryophyta. Pradeep Publications.
- 16. Watson E V, P Ricards (1963). British Mosses and Liverworts. Cambridge University Press.
- 17. Nair M C, Rajesh K P, Madhusoodanan P V (2005). Bryophytes of Wayanad in Western Ghats. Malabar Natural History Society.

PTERIDOLOGY (Theory 36 hrs; Practical 36 hrs)

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME	
Introduction to Course					
	Introduction to the Course	PPT/Lecture	video	CO 1	
	(a) Introduction, general characters, classification and evolution of pteridophytes		Seminar/ videos	CO 1	
	(b) Structural organization of sporophyte and gametophyte of pteridophytes with special reference to stellar structure, heterospory and seed habit.		Seminar/ videos	CO 1	
	Module 1: General introduction a	and classificat	ion (4 hrs)		
1	Introduction, origin, general characteristics	PPT/Lecture	vedio	CO 1	
2	History of the classification of pteridophytes.	PPT/Lecture	vedio	CO 1	
3	Brief account on Smith's classification (2006).	PPT/Lecture		CO 1	
4	DNA barcoding of pteridophytes.	PPT/Lecture		CO 1	
	Module 2: Structure of the	plant body (26	6 hrs)		
mechani	ion, habitat, range, external and interr sm of spore dispersal, gametophytic general f Pteridophytes with reference to the gener ssary):	tion, sexuality,	, embryogen	y of the following	
5	(a) Psilopsida (i) Rhyniales; Rhynia	PPT/Lecture		CO 2	
6	(b) Psilotopsida (i) Psilotales; Psilotum	PPT/Lecture		CO 2	
7	(b) Psilotopsida (i) Psilotales; Psilotum	PPT/Lecture		CO 2	
8	(c) Lycopsida (i) Protolepidodendrales; Protolepidodendron	PPT/Lecture		CO 2	
9	(ii) Lycopodiales; Lycopodium	PPT/Lecture		CO 2	
10	(ii) Lycopodiales; Lycopodium	PPT/Lecture		CO 2	
11	(iii) Isoetales; Isoetes	PPT/Lecture		CO 2	
12	(iii) Isoetales; Isoetes	PPT/Lecture		CO 2	
13	(iv) Selaginellales; Selaginella.	PPT/Lecture		CO 2	
14	(iv) Selaginellales; Selaginella.	PPT/Lecture		CO 2	
15	(iv) Selaginellales; Selaginella.	PPT/Lecture		CO 2	

1.0	(d) Sphanonsida (i) Hearislas (ii)	DDT /I o ot · · · o	ı	
16	(d) Sphenopsida (i) Hyeniales (ii) Sphenophyllales; Sphenophyllum	PPT/Lecture		
17	(iii) Calamitales; Calamites	PPT/Lecture		CO 2
18	(iv) Equisetales; Equisetum	PPT/Lecture		CO 2
19	(iv) Equisetales; Equisetum	PPT/Lecture		CO 2
20	(e) Pteropsida (A) Primofilices: (i)	PPT/Lecture		CO 2
	Cladoxylales; Cladoxylon (ii)	, 2000010		55 Z
	Coenopteridales			
21	(B) Eusporangiatae: (i) Marattiales;	PPT/Lecture		CO 2
	Angiopteris			
22	(ii) Ophioglossales; Ophioglossum	PPT/Lecture		CO 2
23	(C) Osmundales; Osmunda.	PPT/Lecture		CO 2
24	(C) Osmundales; Osmunda.			CO 2
25	(D) Leptosporangiatae: (i) Marsileales;	PPT/Lecture		CO 2
	Marsilea			
26	(ii) Salviniales; Salvinia	PPT/Lecture		CO2
27	(ii) Salviniales; Azolla	PPT/Lecture		CO 5
28	(ii) Filicales; Pteris,	PPT/Lecture		CO 5
29	(ii) Filicales; Lygodium, Acrostichum,	PPT/Lecture		CO 5
30	(ii) Filicales; Gleichenia, Adiantum.	PPT/Lecture		CO 5
	Module 3: Comparative study of	of Pteridophytes (4	hrs)	
	Stelar organization, soral and sporangial	PPT/Lecture		CO 5
31	characters			
	Gametophytes and sporophytes of	Hands-on		CO 5
	Pteridophytes in an evolutionary	Session		
32	perspective	<u> </u>		
	Gametophytes and sporophytes of	PPT/Lecture		CO 5
22	Pteridophytes in an evolutionary			
33	perspective	DDT /La attorna		CO F
24	An account on DNA barcoding of	PPT/Lecture		CO 5
34	pteridophytes Madula 4: Feelegy and Feener	 		
	Module 4: Ecology and Econor	PPT/Lecture	irs)	CO 5
35	Ecological and economic significance of Pteridophytes.	rri/Lecture		CO 3
	Ecological and economic significance of	PPT/Lecture		CO 5
36	Pteridophytes.	I I / Lecture		
		tical		
Studv	of morphology and anatomy of vegetative a		gans using (lear whole
,	mounts/sections of the f		- 3	
	Psilotum	Hands-on		CO 4
38		Session		

	Psilotum	Hands-on	CO 4
39		Session	
	Lycopodium	Hands-on	CO 4
40		Session	
	Lycopodium	Hands-on	CO 4
41		Session	
	Selaginella	Hands-on	CO 4
42		Session	
	Selaginella	Hands-on	CO 4
43		Session	
	Equisetum	Hands-on	CO 4
44		Session	
	Equisetum	Hands-on	CO 4
45		Session	
	Angiopteris	Hands-on	CO 4
46		Session	
	Angiopteris	Hands-on	CO 4
47		Session	
	Ophioglossum	Hands-on	CO 4
48		Session	
	Marsilea	Hands-on	CO 4
49		Session	
	Marsilea	Hands-on	CO 4
50		Session	
	Salvinia	Hands-on	CO 4
51		Session	
	Azolla	Hands-on	CO 4
52		Session	
	Azolla	Hands-on	CO 4
53		Session	
	Lygodium	Hands-on	CO 4
54		Session	
	Lygodium	Hands-on	CO 4
55		Session	
	Acrostichum	Hands-on	CO 4
56		Session	
	Acrostichum	Hands-on	CO 4
57		Session	
	Gleichenia	Hands-on	CO 4
58		Session	
	Gleichenia	Hands-on	CO 4
59		Session	

	Pteris	Hands-on	CO 4
60		Session	
	Pteris	Hands-on	CO 4
61		Session	
	Adiantum	Hands-on	CO 4
62		Session	
	Adiantum	Hands-on	CO 4
63		Session	
	Polypodium	Hands-on	CO 4
64		Session	
	Polypodium	Hands-on	CO 4
65		Session	
	Study of fossil Pteridophytes with the help of	Hands-on	CO 4
66	specimens and permanent slides.	Session	
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
67	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
68	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
69	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
70	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
71	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
72	submit the report along with the recorded.		

- 1. Agashe S N (1995). Palaeobotany. Oxford and IBH publishing House.
- 2. Arnold C R (1977). Introduction to Palaeobotany. McGraw Hill Book Com.

- 3. Chandra S, Srivastava M (Eds) (2003). Pteridology in the New Millennium. Khuwar Acad. Publishers.
- 4. Beddome C R H (1970). Ferns of south India. Today & Tommorrows Publ.
- 5. Dyer A F (1979). The experimental biology of ferns. Academic Press.
- 6. Gifford E M, A S Foster (1989). Morphology and evolution of Vascular plants (III Edn). W H Freeman & Co.
- 7. Khullar S P (2000). An illustrated fern flora of West Himalayas (Vol I, II). International Book Distributers.
- 8. Kubitzki K (1976). The families and Genera of Vascular plants: Vol. I Pteridophytes. Vikas publishing house.
- 9. Rashid A (1976). An introduction to Pteridophytes. Vikas Publishing House.
- 10. Sporne K R (1982). Morphology of Pteridophytes. Hutchinson university Press.
- 11. Surange K R (1964). Indian Fossil Pteridophytes. CSIR.
- 12. Louis J D (1977). Evolutionary patterns and processes in ferns: Advances in Botanical Research.
- 13. Scott. Studies in Fossil Botany. Haffner publications.
- 14. Smith, Gilbert (1972). Cryptogamic Botany (Vol. II). Tata McGraw Hill publications.
- 15. Nayar B K, S Kaur (1971). Gametophytes of homosporous ferns. Bot. Rev.

COURSE PLAN

PROGRAMME	M.Sc. BOTANY	SEMESTER	2
COURSE CODE AND TITLE	16P2BOTT06: MOLECULAR BIOLOGY AND IMMUNOLOGY	CREDIT	4
HOURS/WEEK	2	HOURS/SEM	Theory 18 hrs; Practical 18 hrs
FACULTY NAME	PRINCY MOL A. P.		

	PROGRAMME OUTCOMES
PO 1	Exercise their critical thinking in creating new knowledge leading to innovation,
PO 1	entrepreneurship and employability.
PO 2	Effectively communicate the knowledge of their study and research in their respective
PU 2	disciplines to their stakeholders and to the society at large.
	Make choices based on the values upheld by the institution, and have the readiness and
PO 3	knowhow to preserve the environment and work towards sustainable growth and
	development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending the
PU 4	provincial outlook.
PO 5	Explore new knowledge independently for the development of the nation and the world
PU 5	and are able to engage in a lifelong learning process.

M.Sc. BOTANY

	PROGRAM SPECIFIC OUTCOMES				
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.				
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.				
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.				
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.				
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation.				

	COURSE OUTCOMES	PO/ PSO	CL
	Define the basic properties, structure and functions of genetic	PO1, PO4, PO5,	U
CO 1	materials.	PSO1, PSO3,	
	inateriais.	PSO5	
		PO1, PO4, PO5,	U, A,
CO 2	Explain the central dogma of molecular biology.	PSO1, PSO3,	An
		PSO5	
		PO1, PO4, PO5,	U, A,
CO 3	Examine gene expression mechanisms.	PSO1, PSO2,	An
		PSO3, PSO5	
		PO1, PO4, PO5,	U, A,
CO 4	Explain the mechanism of DNA repair systems	PSO1, PSO3,	An
		PSO5	
		PO1, PO4, PO5,	R, U
CO 5	Evaluate the alternate forms of DNA and its significance	PSO1, PSO3,	
		PSO5	
CO 6	Develop strategies to distinguish diverse RNA molecules and its	PO1, PO4, PO5,	R, U,
600	functions in biological systems.	PSO1, PSO3	Α

CL* Cognitive Level

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE
	MODULE I	RESOURCES	ADDITIONS	OUTCOIVIL
1	a. Innate and acquired immunity. Cells and molecules involved in innate and acquired immunity	Lecture/ Interaction/ PPT		CO1
2	a. Humoral and cellular immunity, Antigens, Epitopes	Lecture/ Interaction/ PPT		CO1
3	b. Structure, function and types of antibody molecules. Antigen-antibody interactions.	Lecture/ Interaction/ PPT	e-resource	CO1
4	b. Antigen processing and presentation.	Lecture/ Interaction/ PPT		CO1
5	c. Activation and differentiation of B cells – formation, role.	Lecture/ Interaction/ PPT	Video, e- resource	CO1
6	c. T cells – types, roles, T cell receptors.	Lecture/ Interaction/	Video, e- resource	CO1

		PPT/ Audio visual		
		learning/		
		Practical		
7	+		0 400011400	
7		Lecture/	e-resource	
		Interaction/		
	d Driver and secondary increases and delication	PPT/Audio		601
	d. Primary and secondary immune modulation	visual learning		CO1
8		Lecture/	e-resource	
		Interaction/		
	d. complement system, pattern recognition	PPT/Audio		
	receptors – toll-like receptors.	visual learning		CO1
9		Lecture/	e-resource	
		Interaction/		
	d. MHC molecules. Cell-mediated effector	PPT/Audio		
	functions, inflammation	visual learning		CO1
10		Lecture/		
		Interaction/		
	Hypersensitivity and autoimmunity, congenital and	PPT/Audio		
	acquired immunodeficiencies.	visual learning		CO1
	CIA I			
	MODULE II	_		
11	a. Generation of antibody diversity.		e-resource	
		PPT		CO1
12		Lecture/		
		Interaction/		
		PPT/		
	b. Production and uses of monoclonal antibodies	Assignment		CO1
13		Lecture/		
		Interaction/		
		PPT/		
	Antibody engineering.	Assignment		CO1
	MODULE III			
		Lecture/		
	a. Vaccines: Basic strategies, inactivated and live	Interaction/		
14	attenuated pathogens,	PPT		CO1
		Lecture/	e-resource	
		Interaction/		
	b. subunit vaccines	PPT		CO1
15	b. Sabarne vaccines			
15	b. Suburne vaccines	Lecture/		
15	D. Suburne vaccines	Lecture/ Interaction/		
13	a. Generation of antibody diversity. b. Production and uses of monoclonal antibodies Antibody engineering. MODULE III a. Vaccines: Basic strategies, inactivated and live attenuated pathogens,	Interaction/ PPT/ Assignment Lecture/ Interaction/ PPT/ Assignment Lecture/ Interaction/ PPT Lecture/ Interaction/ Interaction/ Interaction/		CO1

		Lecture/	e-resource		
	DNA vaccines	Interaction/			
17		PPT		CO1	
		Lecture/			
	b. Modern approaches to vaccine development -	Interaction/			
18	edible vaccines.	PPT		CO1	
	PRACTICAL				
		Computer			
	Virtual lab experiments	based			
19		practical		CO1	
CIA - II					

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of	Topic of Assignment & Nature of	Nature of	Course Outcome	
	completion assignment (Individual – Graded)		Assignment	Course Outcome	
1	10/01/2019	Vaccines: Basic strategies, inactivated and live		CO1	
ı	10/01/2019	attenuated pathogens,	Review report on	CO1	
2	10/01/2019	Subunit vaccines, recombinant vaccines (e.g.,	recent research	CO1	
2 10/01/2019		Hepatitis B vaccine)	works in the		
3	10/01/2019	Modern approaches to vaccine development -	respective fields	CO1	
3	10/01/2019	edible vaccines.			

1	Goldsby, R. A., Kindt, T. J., Osborne, B. A. and Kuby, J. (2003). Kuby Immunology (5th edition). W H Freeman and Company.
2	Roitt, I. M. and Delves, P. J. (2001). Roitt's Essential Immunology (10th edition). Blackwell Publishing
3	Krebs, J. E., Goldstein, E. S. and Kilpatrick, S. T. (2014) Lewin's Genes XI. Jones & Bartlett learning
4	Talaro, K. P. and Chess, B (2012). Foundations in Microbiology (8th edition). Mc Graw Hill
5	Abbas, A. K. and Lichtman, A. H. (2004) Basic Immunology – Functions and Disorders of the Immune System (2 nd edition). Saunders - Elsevier
6	Rabson, A., Roitt, I. M. and Delves, P. J. (2005) Really Essential Medical Immunology (2nd edition). blackwell publishing

COURSE PLAN

PROGRAMME	M.SC. BOTANY	SEMESTER	1
COURSE CODE AND TITLE	16P2BOTT07: PLANT ANATOMY, PRINCIPLES OF ANGIOSPERMS SYSTEMATICS & MORPHOLOGY	CREDIT	4
HOURS/WEEK	6	HOURS/SEM	THEORY 72 HRS; PRACTICAL 54 HRS
FACULTY NAME JOSE JOHN, LESLY AUGUSTINE & EBIN P.J.			

	PROGRAMME OUTCOMES
PO 1	The students are capable of exercising their critical thinking in creating new
PO 1	knowledge leading to innovation, entrepreneurship and employability
PO 2	Effectively communicate the knowledge of their study and research in their respective
PU 2	disciplines to their stakeholders and to the society at large.
	Make choices based on the values upheld by the institution, and have the readiness
PO 3	and knowhow to preserve the environment and work towards sustainable growth and
	development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending
PU 4	the provincial outlook.
PO 5	Explore new knowledge independently for the development of the nation and the
PU 5	world and are able to engage in a lifelong learning process.

M.Sc. BOTANY

	PROGRAM SPECIFIC OUTCOMES				
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.				
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.				
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.				
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.				
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation.				

	COURSE OUTCOMES	PO/ PSO	CL
		PO1, PO4, PO5,	U
CO 1	Understand the plant cell structure in a detailed manner	PSO1, PSO3,	
		PSO4	
		PO1, PO4, PO5,	U, A,
CO 2	Understand the tissue level organization in plant system	PSO1, PSO3,	An
		PSO4	
		PO1, PO3, PO4,	U, A,
CO 3	Define the morphological features of angiosperms	PO5, PSO1,	An
		PSO3, PSO4	
		PO1, PO3, PO4,	U, A,
CO 4	Develop capacity in plant anatomical specimen preparations	PO5, PSO1,	An
		PSO3, PSO4	
	Explain the details of wood anatomy, plant fibres and secretory tissues	PO1, PO3, PO4,	R, U
CO 5		PO5, PSO1,	
		PSO3, PSO4	
	Explain different inflorescence and fruit types in plant kingdom	PO1, PO4, PO5,	U, A,
CO 6		PSO1, PSO3,	An
	Kiliguolii	PSO4	
	Evaluate different wood types looking into anatomical	PO1, PO4, PO5,	U, A,
CO 7	peculiarities	PSO1, PSO3,	An, C
	peculianties	PSO4	
		PO1, PO4, PO5,	U, A,
CO 8	Define floral, nodal and reproductive anatomy of plants	PSO1, PSO3,	An
		PSO4	
	Explain various underlying principles of angiosperm	PO1, PO4, PO5,	U, A,
CO 9	systematics	PSO1, PSO3,	An
	Systematics	PSO4	
	Develop confidence in using correct systematic terms in	PO1, PO4, PO5,	U, A,
CO 10	publishing validly	PSO1, PSO3,	An
	publishing validly	PSO4	

CL* Cognitive Level

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME	
	INTRODUCTION TO THE COURSE & Anatomy - MODULE I				
1		Lecture/			
	Scope and significance of plant	Interaction/			
	anatomy, interdisciplinary relations	PPT		CO1, PSO1	
Anatomy - MODULE II Meristems					

2	MERISTEMS - Apical organization:			
	Stages of development of primary			
	meristem and theories of apical	Lecture/		CO1, CO2, CO3,
	organization, origin of branches and	Interaction/		CO4 and, CO5;
	lateral roots.	PPT		PSO2, PSO4
3	MERISTEMS - Apical organization:			
	Stages of development of primary			604 603 603
	meristem and theories of apical	Lecture/		CO1, CO2, CO3,
	organization, origin of branches and	Interaction/		CO4 and, CO5;
	lateral roots.	PPT		PSO2, PSO4
4	MERISTEMS - Apical organization:			
	Stages of development of primary			
	meristem and theories of apical	Lecture/		CO1, CO2, CO3,
	organization, origin of branches and	Interaction/		CO4 and, CO5;
	lateral roots.	PPT		PSO2, PSO4
5	Primary thickening meristem (PTM) in	Lecture/		CO1, CO2, CO3,
	monocots. Reproductive apex in	Interaction/		CO4 and, CO5;
	angiosperms	PPT		PSO2, PSO4
6	Secretory tissues in plants: Structure			
	and distribution of secretory			
	trichomes (Drocera, Nepenthes), salt	Lecture/		CO1, CO2, CO3,
	glands, colleters, nectaries, resin	Interaction/		CO4 and, CO5;
	ducts and laticifers.	PPT		PSO2, PSO4
7	Secretory tissues in plants: Structure			
	and distribution of secretory			
	trichomes (Drocera, Nepenthes), salt	Lecture/		CO1, CO2, CO3,
	glands, colleters, nectaries, resin	Interaction/		CO4 and, CO5;
	ducts and laticifers.	PPT		PSO2, PSO4
8			Scientific	
			research	
	Structure of bark and distribution		paper by	
	pattern of laticifers in Hevea	Lecture/	C.P.Raghu –	CO1, CO2, CO3,
	brasiliensis.	Interaction/	additional	CO4 and, CO5;
		PPT	reading	PSO2, PSO4
	Anatomy - MODULE II			, , , -
10	Vascular cambium and cork cambium:	,		CO1, CO2, CO3,
	Structure and function, factors			CO4 and, CO5;
	affecting cambial activity.	PPT/ Lecturing		PSO4, PSO5
11	Secondary xylem and phloem:			CO1, CO2, CO3,
	Ontogeny, structure and function.			CO4 and, CO5;
	Lignification patterns of xylem.	PPT/ Lecturing		PSO4, PSO5
	1 0	, ======	I.	,

12	Reaction wood: Compression wood			CO1, CO2, CO3,
	and tension wood. Factors affecting			CO4 and, CO5;
	_	PPT/ Lecturing		PSO4, PSO5
13			Musical	CO1, CO2, CO3,
			Instruments	CO4 and, CO5;
	Wood: Physical, chemical and		Flute and	CO7, PSO4,
	mechanical properties	PPT/ Lecturing	Guitar	PSO5
14				CO1, CO2, CO3,
				CO4 and, CO5;
	Wood: Physical, chemical and			CO7, PSO4,
	mechanical properties	PPT/ Lecturing		PSO5
15			Articles made	CO1, CO2, CO3,
	Plant fibers: Distribution, structure		with various	CO4 and, CO5;
	and commercial importance of coir,		plant fibres	CO7, PSO4,
	jute, and cotton.	PPT/ Lecturing		PSO5
	Anatomy - MODULE	IV Leaf and Noc	le	
16	Leaf: Initiation, plastochronic changes,			
	ontogeny and structure of leaf.			CO1, CO2, CO3,
	Structure, development and	Lecture/		CO4 and, CO6;
	classification of stomata and	Interaction/		CO8, PSO4,
	trichomes.	PPT		PSO5
17	Krantz anatomy, anatomical			CO1, CO2, CO3,
	Krantz anatomy, anatomical	Lecture/		CO4 and, CO6;
	peculiarities in CAM plants. Leaf	Interaction/		CO8, PSO4,
	abscission.	PPT		PSO5
18	Nodal anatomy Unilacunar trilacunar			CO1, CO2, CO3,
	Nodal anatomy: Unilacunar, trilacunar and multilacunar nodes, nodal	Lecture/		CO4 and, CO6;
	evolution.	Interaction/		CO8, PSO4,
	evolution.	PPT		PSO5
19		Lecture/		CO1, CO2, CO3,
	Root-stem transition in angiosperms.	Interaction/		CO4 and, CO5;
		PPT/		PSO4, PSO5
	Anatomy - MODULE V R	Reproductive Ana	atomy	
	Floral Anatomy: Anatomy of floral			
	parts - sepal, petal, stamen and	Lecture/		CO1, CO2, CO3,
	carpel; Floral vasculature (Aquilegia	Interaction/		CO4 and, CO5;
20	and Pyrola).	PPT		PSO4, PSO5
	Floral Anatomy: Anatomy of floral			CO1, CO2, CO3,
	parts - sepal, petal, stamen and carpel;	Lecture/		CO4 and, CO6;
	Floral vasculature (Aquilegia and	Interaction/		CO8, PSO4,
21	Pyrola).	PPT		PSO5

	T			
				CO1, CO2, CO3,
	Vascular anatomy. Development of	Lecture/		CO4 and, CO6;
	epigynous ovary - appendicular and	Interaction/		CO8, PSO4,
22	receptacular theory.	PPT		PSO5
	Fruit and sood anatomy, Anatomy, of			CO1, CO2, CO3,
	Fruit and seed anatomy: Anatomy of	II ecture/		CO4 and, CO6;
	fleshy and dry fruits - follicle, legume,	Interaction/		CO8, PSO4,
23	berry. Dehiscence of fruits	PPT		PSO5
				CO1, CO2, CO3,
	Structure of seeds. Anatomical factors	Lecture/		CO4 and, CO6;
	responsible for seed dormancy and	Interaction/		CO8, PSO4,
24	drought resistance	PPT		PSO5
2-7	Anatomy - MODULE V		omy	1 303
	Morphological and structural	. Leological Allat	.01119	CO1, CO2, CO3,
	adaptations in different ecological	Lecture/		CO4 and, CO6;
25		Interaction		PSO4, PSO5
	groups - hydrophytes, xerophytes			· · · · · · · · · · · · · · · · · · ·
	Morphological and structural			CO1, CO2, CO3,
	adaptations in different ecological			CO4 and, CO6;
26	groups - hydrophytes, xerophytes	Interaction		PSO4, PSO5
	Morphological and structural			CO1, CO2, CO3,
	adaptations in different ecological	Lecture/		CO4 and, CO6;
27	groups - epiphytes and halophytes	Interaction		PSO4, PSO5
	Morphological and structural			CO1, CO2, CO3,
	adaptations in different ecological	Lecture/		CO4 and, CO6;
28	groups - epiphytes and halophytes	Interaction		PSO4, PSO5
	Anatomy - MODULE \	VII Applied Anato	omy	
	Applications of anatomy in systematics			CO1, CO2; PSO2,
	(histotaxonomy) and Pharmacognosy.			PSO3, PSO4,
29		PPT/ Lecturing		PSO5
	Applications of anatomy in systematics			CO1, CO2; PSO2,
	(histotaxonomy) and Pharmacognosy.			PSO3, PSO4,
30	, , , , , , , , , , , , , , , , , , ,	PPT/ Lecturing		PSO5
31	Assessment Test	MCQ	Class Test	
	Angiosperm Systematics – MODULE I			nomy
	Historical background of classification -	Scope and signif	icanice of Taxo	CO1, CO2, CO9,
	Artificial, natural and phylogenetic			CO10; PSO2,
36	. , .	PPT/ Lecturing		PSO4, PSO5
Angiosperm Systematics – MODULE II Concepts of Taxonomic hierarchy				
	Species/Genus/Family and other	-		ii Cii y
	categories; species concept and			CO1, CO2, CO9,
27	intraspecific categories - subspecies,	rei/ Lecturing		CO10; PSO2,
37	varieties and forms			PSO4, PSO5

	Angiosperm Systematics – MODL	JLE III Phylogeny	of Angiosperms
38	Important phylogenetic terms and concepts: Plesiomorphic and Apomorphic characters;	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
39	Homology and Analogy; Parallelism and Convergence;	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
40	Monophyly, Paraphyly and Polyphyly.	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
41	Phylogenetic tree - Cladogram and Phenogram.	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
	Angiosperm Systematics – MODL	JLE IV Data source	es of Taxonomy
42	Concepts of character; Sources of taxonomic characters - Anatomy, Cytology	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
43	Sources of taxonomic characters - Phytochemistry and molecular taxonomy.	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
Angio	osperm Systematics – MODULE V Conce	ept and principles	
44	Phenetic - Numerical Taxonomy - principles and methods	PPT/ Lecturing/ Computer	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
45	Cladistic - Principles and methods	PPT/ Lecturing/ Computer	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
	Angiosperm Systematics – MOD	ULE VI Botanical	nomenclature
46	History of ICN	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
47	Aims and principles	PPT/ Lecturing	CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
48	Rules and recommendations: rule of priority, typification, author citation, retention, rejection and changing of names, effective and valid publication		CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5

49	Rule of priority, typification, author citation, retention, rejection and changing of names, effective and valid publication	PPT/ Lecturing		CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
50	Rule of priority, typification, author citation, retention, rejection and changing of names, effective and valid publication			CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
51	Effective and valid publication	PPT/ Lecturing		CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
Angiosper	m Systematics – MODULE VII Synthetic	approaches to t	he systematic	s of Angiosperms
52	Chemotaxonomy	PPT/ Lecturing		CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
53	Basic concepts of genome analysis	PPT/ Lecturing/ICT		CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
54	DNA bar coding.	PPT/ Lecturing/ ICT		CO1, CO2, CO9, CO10; PSO2, PSO4, PSO5
	Morphology of	Angiosperms		
55	Habitat and habit	PPT/ Lecturing/Demo	Field visit	CO1, CO3, CO6, CO8; PSO1, PSO2, PSO4, PSO5
56	Morphology of root	PPT/ Lecturing/Demo		CO1, CO3, CO6, CO8; PSO1, PSO2, PSO4, PSO5
57	Morphology of stem	PPT/ Lecturing/Demo		CO1, CO3, CO6, CO8; PSO1, PSO2, PSO4, PSO5
58	Morphology of leaf, bract and bracteoles			CO1, CO3, CO6, CO8; PSO1, PSO2, PSO4, PSO5
59	Morphology of inflorescence	PPT/ Lecturing/Demo		CO1, CO3, CO6, CO8; PSO1, PSO2, PSO4, PSO5

		_	ı	1
				CO1, CO3, CO6, CO8; PSO1,
	Morphology of flowers	PPT/		PSO2, PSO4,
60		•		PSO5
60		Lecturing/Demo		
				CO1, CO3, CO6,
	Morphology of fruits	,		CO8; PSO1,
	- p	PPT/		PSO2, PSO4,
61		Lecturing/Demo		PSO5
				CO1, CO3, CO6,
	Morphology of seeds			CO8; PSO1,
	Wild phology of seeds	PPT/		PSO2, PSO4,
62		Lecturing/Demo		PSO5
	Assessment Test	MCQ/ Quiz	Class Test	
				CO1, CO3, CO6,
	De tata e a del citi e i de citi			CO8; PSO1,
	Revision and Clarification Discussions	Group		PSO2, PSO4,
63		Discussion		PSO5
				CO1, CO3, CO6,
				CO8; PSO1,
	Revision and Clarification Discussions	Group		PSO2, PSO4,
64		Discussion		PSO5
04		Discussion		CO1, CO3, CO6,
				CO8; PSO1,
	Revision and Clarification Discussions	Croup		
65		Group		PSO2, PSO4,
05		Discussion		PSO5
				CO1, CO3, CO6,
	Revision and Clarification Discussions			CO8; PSO1,
		Group		PSO2, PSO4,
66		Discussion		PSO5
				CO1, CO3, CO6,
	Revision and Clarification Discussions			CO8; PSO1,
	The vision and claimeation biscussions	Group		PSO2, PSO4,
67		Discussion		PSO5
				CO1, CO3, CO6,
	Devision and Clarification Discussion			CO8; PSO1,
	Revision and Clarification Discussions	Group		PSO2, PSO4,
68		Discussion		PSO5
				CO1, CO3, CO6,
				CO8; PSO1,
	Revision and Clarification Discussions	Group		PSO2, PSO4,
69		Discussion		PSO5
		Group		CO1, CO3, CO6,
70	Revision and Clarification Discussions	Discussion		CO1, CO3, CO0,
		Piacassion		COO, 1 3O1,

			PSO2, PSO4,
			PSO5
			CO1, CO3, CO6,
	De tata e e d'Ola d'Escalta e Disconstante		CO8; PSO1,
	Revision and Clarification Discussions	Group	PSO2, PSO4,
71		Discussion	PSO5
			CO1, CO3, CO6,
	De late and Chaiffealta Diagram		CO8; PSO1,
	Revision and Clarification Discussions	Group	PSO2, PSO4,
72		Discussion	PSO5
	PRAC	ΤΙζΔΙ	
	T NAC	I	CO1,CO2,CO4,
	Study of cambia - non storied and	Lab work	CO5,CO7;
1	storied	Lab Work	PSO3,PSO4,PSO5
	<u> </u>		CO1,CO2,CO4,
	Study of the anomalous primary and		CO5,CO7;
2	secondary features in <i>Amaranthus</i>	Lab work	PSO3,PSO4,PSO5
		Edd Work	CO1,CO2,CO4,
	Study of the anomalous primary and		CO5,CO7;
3	secondary features in <i>Boerhaavia</i>	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the anomalous primary and		CO5,CO7;
4	secondary features in <i>Mirabilis</i>	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the anomalous primary and		CO5,CO7;
5	secondary features in <i>Nyctanthes</i>	Lab work	PSO3,PSO4,PSO5
	,		CO1,CO2,CO4,
	Study of the anomalous primary and		CO5,CO7;
6	secondary features <i>Piper</i>	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the anomalous primary and		CO5,CO7;
7	secondary features in Strychnos	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of stomata, Determination of		CO5,CO7;
8	stomatal index.	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
9	Study of trichomes	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
10	Study of laticifers	Lab work	PSO3,PSO4,PSO5

		•	,
			CO1,CO2,CO4,
	Study of the anatomical peculiarities		CO5,CO7;
11	of C4 and CAM plants (Leaf)	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the anatomical peculiarities		CO5,CO7;
12	of C4 and CAM plants (Leaf)	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the anatomical peculiarities		CO5,CO7;
13	of C4 and CAM plants (Stem)	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the anatomical peculiarities		CO5,CO7;
14	of C4 and CAM plants (Stem)	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
15	Study of nodal patterns - Unilacunar	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
16	Study of nodal patterns - Trilacunar	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
17	Study of nodal patterns - Multilacunar	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
18	Preparation of a histotaxonomic key	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the pericarp anatomy of a		CO5,CO7;
19	berry	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the pericarp anatomy of a		CO5,CO7;
20	legume	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
	Study of the pericarp anatomy of a		CO5,CO7;
21	follicle	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
22	Identification of wood - soft wood	Lab work	PSO3,PSO4,PSO5
			CO1,CO2,CO4,
			CO5,CO7;
23	Identification of wood - hard wood	Lab work	PSO3,PSO4,PSO5
	Morphology of leaf: Leaf attachment,		
	Stipules, Patterns of leaf, Phyllotaxy,		
	Shapes of leaf lamina, bases, margins	Field Visit & Lab	CO3,CO6,CO8;
24-26	and tips, Venation.	work	PSO3,PSO4,PSO5

27-30	Inflorescence: Racemose - Simple raceme, Compound raceme, Spike, Spikelet, Catkin, Spadix, Corymb, Simple umbel, Compound umbel, Panicle, Capitulum. Cymose - Solitary cyme, Mono-, Di-and polychasial cyme. Special types - Cyathium, Verticillaster, Hypanthodium, Coenanthium.	Field Visit & Lab work	CO3,CO6,CO8; PSO3,PSO4,PSO5
31-33	Morphology of stamens: Mono-, Di- and Polyadelphous; Epipetalous, Syngenesious, Synandrous, Polyandrous, Didynamous, Tetradynamous, Basifixed, Dorsifixed, Versatile.	Field Visit & Lab work	CO3,CO6,CO8; PSO3,PSO4,PSO5
34-36	Morphology of carpels: Apocarpous, Syncarpous, Gynostegium. Placentation - Marginal, Parietal, Axile, Free central, Basal and Pendulous.	Lab work	CO3,CO6,CO8; PSO3,PSO4,PSO5
37-40	Morphology of fruits: Berry, Drupe, Hesperidium, Pepo, Balausta, Amphisarca, Achene, Follicle, Capsule, Legume, Lomentum, Nut, Caryopsis, Cypsela, Samara, Cremocarp, Siliqua, Carcerule, Regma.	Field Visit & Lab work	CO3,CO6,CO8; PSO3,PSO4,PSO5
41	Aggregate fruits; Composite fruits - Sorosis and Syconus; Pome.	Field Visit & Lab work	CO3,CO6,CO8; PSO3,PSO4,PSO5
42-44	Draw the L.S and floral diagram of at least 10 flowers having different ovary positions - hypogyny, perigyny and epigyny.	Lab work	CO3,CO6,CO8; PSO3,PSO4,PSO5
45	Workout nomenclatural problems regarding priority and author citations.	Lab Work	CO9,CO10; PSO3,PSO4,PSO5

CIA – Model					
46	Revision				
47	Revision				
48	Revision				

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines - Anatomy & Systematics

		Topic of Assignment & Nature of		
	Date of	assignment (Individual/Group -	Nature of	Course
	completion	Written/Presentation – Graded or Non-graded	Assignment	Outcome
		etc)		
1	15/1/2019	Compare and contrast the anomalous secondary	Review	CO1, CO3 &
1	15/1/2019	thickening in Nyctanthes, Piper and Strychnos stem	report on	CO4
2	15/1/2019	Compare and contrast the anomalous secondary	recent	CO4
	15/1/2019	thickening in Amaranthes, Mirabilis and Boerhavia	research	
3	15/1/2019	Recent understanding on Vascular Cambiua and	works in the	CO1 8 CO4
3	15/1/2019	their ontogeny	respective	CO1 & CO4
4	15/1/2019	Plant Fibres: their distribution and structure;	fields of	CO1, CO3 &
4	15/1/2019	special reference to Coir, Jute and Cotton	Plant	CO4
5	15/1/2019	Modern trends in angiosperm systematics: role of	Anatomy	CO1 & CO4
)	13/1/2019	molecular taxonomy in solving problems	and	CO1 & CO4
6	15/1/2019	Mophology v/s Molecular data – merits and	Angiosperm	
0	15/1/2019	demerits with respect to taxonomy	Systematics	CO3 & CO4

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines - Morphology

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Nongraded etc)	Nature of Assignment	Course Outcome
1	1 15/7/7019	Collect and prepare a well-documented herbarium on different phyllotaxy	materials,	CO1, CO3 & CO4; PSO1, PSO4, PSO5
2	1 15/7/7019	Make an exhibition on various types of dry fruits with amble description and uses		CO1, CO3 & CO4; PSO1, PSO4, PSO5

		Prepare a virtual tour on various types of		CO1, CO3 &
3	15/2/2019	inflorescences with help of original videos and		CO4; PSO1,
		photographs.		PSO4, PSO5
		Conduct a digital photo exhibition on various	web resources	CO1, CO3 &
4 15/2/20	15/2/2010	types of flowers and vegetative structures that		CO4; PSO1,
	15/2/2019	are curious to the eyes. Add some additions with		PSO4, PSO5
		rare flowers and fleshy fruits		

1	Eames A J, McDaniel (1976). An introduction to plant Anatomy. Tata McGraw-Hill, New Delhi
2	Edred John, Henry Corner (1976). The seeds of dicotyledons (Vol. I, II). Cambridge University Press.
3	Ella Werker (1997). Seed Anatomy. Borntreager. University of Michigan
4	Elizabeth G Cutter (1978). Plant Anatomy Part I & II. Clive and Arnald Ltd.
5	Elizabeth G Cutter (1978). Applied Plant Anatomy. Clive and Arnald Ltd.
6	Esau K (1965). Vascular differentiation in plants. Rirehant and Winston, Inc.
7	Esau K (1977). Anatomy of seed plants. Wiley and sons.
8	Fahn A. (1997). Plant anatomy. Aditya Publishers. New Delhi
9	Metcalf C R, Chalk L (1983). Anatomy of the dicotyledons: Wood structure and conclusion of the general introduction. Oxford University press
10	Wardrop A B (1961). The structure and formation of reaction wood in Angiosperm: Problems of tree physiology. Recent advances in Botany (Vol II). University of Toronto press.
11	Wardrop A B (1964). Reaction wood Anatomy in Arborescent angiosperms. Formation of
12	Lawrence George H M (1951). Taxonomy of vascular plants. Oxford and IBH Publ. Co. Pvt. Ltd.
13	Jeffrey C (1968). An Introduction to principles of Plant Taxonomy.
14	Cole A J (1969). Numerical Taxonomy. Academic Press.
15	Davis P H, Heywood V M (1973). Principles of Angiosperm Taxonomy. Robert E Kereiger Publ
16	Harrison H J (1971). New Concepts in Flowering Plant Taxonomy. Heiman Educational Books Ltd.
17	Cronquist A (1981). An Integrated system of classifications of flowering plants. Columbia University Press
13 14 15 16	Ltd. Jeffrey C (1968). An Introduction to principles of Plant Taxonomy. Cole A J (1969). Numerical Taxonomy. Academic Press. Davis P H, Heywood V M (1973). Principles of Angiosperm Taxonomy. Robert E Kereig Publ Harrison H J (1971). New Concepts in Flowering Plant Taxonomy. Heiman Educationa Books Ltd. Cronquist A (1981). An Integrated system of classifications of flowering plants. Column

18	Heywood V H, D M Moore (Eds) (1984). Current concept in Plant Taxonomy
19	Naik V V (1984). Taxonomy of Angiosperms. Tata McGraw Hill Publ. Co. Ltd
20	Davis P H, V H Heywood (1991). Principles of Angiosperm Taxonomy. Today and Tomorrow Publications.
21	Stace C A (1989). Plant Taxonomy and Biosystematics. Etwaed Arnold
22	Sivarajan V V (1991). Introduction to Principles of Plant Taxonomy. Oxford IBH.
23	Taylor D V, L J Hickey (1997). Flowering plants: Origin, evolution and phylogeny. CBS Publishers & Distributors.
24	International Code of Botanical Nomenclature (latest)
25	Henry A N, Chandrabose M (1980). An aid to the International Code of Botanical Nomenclature.
26	Gurcharan Singh (2004). Plant Systematics: Theory and practice. Oxford and IBH Publishing.

COURSE PLAN

PROGRAMME	MASTER OF SCIENCE BOTANY	SEMESTER	2
COURSE CODE AND TITLE	16P2BOTT08: GENETICS AND BIOCHEMISTRY	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME			

	PROGRAMME OUTCOMES
PO 1	Exercise their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	Effectively communicate the knowledge of their study and research in their respective disciplines to their stakeholders and to the society at large

PO 3	Make choices based on the values upheld by the institution, and have the readiness and knowhow to preserve the environment and work towards sustainable growth and development.
PO 4	Environment and Sustainability: Understand the issues of environmental contexts and sustainable development.
PO5	Develop an ethical view of life and have a broader (global) perspective transcending the provincial outlook.
PO 6	Explore new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

SESSION	N I TOPIC I I I I I I I I I I I I I I I I I I		COURSE OUTCOME	
	MODULE I			
1.	Genetics- general introduction- Transmission genetics, Molecular genetics and Population genetics	PPT		CO 1
2.	Mendelism –basic principles	PPT/Lecture		CO 1
3.	Extensions of Mendelism	PPT/Lecture		CO 1
4.	Penetrance and expressivity of genes	PPT/Lecture		CO 1
5.	Nonmendelian inheritance – cytoplasmic inheritance	PPT/Lecture		CO 1
6.	Sex determination in animals and plants	PPT/Lecture		CO 1
	MODULE II			
7.	Linkage and Crossing over - Stern's hypothesis, Creighton and McClintock's experiments	Lecture		CO 3
8.	Single cross over, multiple cross over, two- point cross, three-point cross, map distances, gene order, interference and co efficient of coincidence	Lecture		CO 3
9.	Haploid mapping (Neurospora)	Lecture		CO 3
10.	Mapping in bacteria and bacteriophages	PPT/Lecture		CO 3
11.	Inheritance of traits in humans; pedigree analysis, determination of human genetic diseases by pedigree analysis	PPT/Lecture		CO 3
	MODULE II	l		
12.	Polygenic inheritance, QTL			CO 1
13.	Effect of environmental factors and artificial selection on polygenic inheritance.	PPT/Lecture		CO 1

	MODULE IV	I			
14.	Gene pool, allele and genotype frequency	Lecture	CO 2		
15.	Hardy-Weinberg law and its applications	Lecture	CO 2		
16.	Estimation of allele and genotype frequency of dominant genes, codominant genes, sex-linked genes and multiple alleles	Lecture	CO 2		
17.	Genetic equilibrium, genetic polymorphism	PPT/Lecture CO 2			
18.	Factors that alter allelic frequencies- mutation, genetic drift, migration, selection, nonrandom mating PPT/Lecture CO 2				
	Practicals				
19.	Problems related to linkage, crossing over and gene mapping	Hands on session	CO3		
20.	Problems related to linkage, crossing over and gene mapping	Hands on session	CO3		
21.	Problems related to linkage, crossing over and gene mapping	Hands on session	CO3		
22.	Problems related to linkage, crossing over	Hands on	CO 1		
22.	and gene mapping	session			
23.	Problems related to pedigree analysis	Hands on session	CO 1		
24.	Problems related to pedigree analysis	Hands on session	CO 1		
25.	Problems related to pedigree analysis	Hands on session	CO 1		
26.	Problems related to pedigree analysis	Hands on session	CO 1		
27.	Problems related to pedigree analysis	Hands on session	CO 1		
	Problems in population genetics - gene	Hands on	CO 2		
28.	and genotype frequency	session			
	Problems in population genetics - gene	Hands on	CO 2		
29.	and genotype frequency	session			
	Problems in population genetics - gene	Hands on	CO 2		
30.	and genotype frequency	session			
	Problems in population genetics - gene	Hands on	CO 2		
31.	and genotype frequency	session			
•	Problems in population genetics - gene	Hands on	CO 2		
32.	and genotype frequency	session			

	T	T	
	Problems in population genetics - Hardy	Hands on	CO 2
33.	Wienberg equilibrium	session	
	Problems in population genetics - Hardy	Hands on	CO 2
34.	Wienberg equilibrium	session	
	Problems in population genetics - Hardy	Hands on	CO 2
35.	Wienberg equilibrium	session	
	Problems in population genetics - Hardy	Hands on	CO 2
36.	Wienberg equilibrium	session	
	BIOCHEMISTRY MO	ODULE I	
	Acids and bases, strength of acids – strong	PPT/Lecture	CO 4
	acids, weak acids. Ionization of water –		
	Kw, pH. Dissociation of acids – pKa,		
37.	Henderson-Hasselbalch equation.		
	Buffers-definition, chemical composition,	PPT/Lecture	CO 4
	requirements for a good buffer, buffer		
38.	action, buffer capacity.		
		PPT/Lecture	CO 4
	Measurement of pH – colorimetric		
39.	methods and electrometric methods.		
		PPT/Lecture	CO 4
	Preparation of questions by students		
	itself, within the class room & its		
40.	discussion.		
41.	Exam- Module 1		
	MODULE II		
	Carbohydrates: Structure and Biological	PPT/Lecture	CO 4
	Functions. Monosaccharides:		
42.	Classification, structure		
	Oligosaccharides: Structure, formation;	PPT/Lecture	CO 4
	common examples – sucrose, lactose.		
	Polysaccharides: Classification, functions		
	 structure of cellulose, starch and 		
43.	glycogen.		
	Carbohydrates	PPT/Lecture	CO 4
	Sugar derivatives: Glycoproteins,		
44.	proteoglycans, mucoproteins. Lectins.		
	MODULE II		
	Lipids: Classification, properties,	PPT/Lecture	CO 4
	functions. Structure of fatty acids,		
	essential fatty acids. Storage lipids –		
45.	triglycerols.		
	Structural lipids – membrane lipids. Lipid	PPT/Lecture	CO 4
46.	biosynthesis, fat breakdown – β oxidation		
·			•

47.	Exam Module 2 & 3					
MODULE IV						
	Structure and classification of amino	Lecture	CO 4			
48.	acids.					
49.	Biosynthesis of amino acids	PPT/Lecture	CO 4			
50.	Exam Module 4					
MODULE V						
	Classification of proteins based on	PPT/Lecture	CO 4			
	structure and function. Oligo- and					
51.	polypeptides.					
	Primary structure – peptide bond.	PPT/Lecture	CO 4			
	Secondary structure – Ramachandran					
52.	plots, α-helix, β sheet					
	Tertiary structure – forces that stabilize	PPT/Lecture	CO 4			
53.	tertiary structure.					
	Quaternary structure, domains, motif and	Lecture	CO 4			
54.	folds.					
	Protein sequencing – Edman method.	Lecture	CO 4			
55.	Functions of proteins.					
	MODULE V	<u> </u>				
	Protein turnover and amino acid	Lecture	CO 4			
	catabolism					
	Degradation of proteins to amino acids,					
56.	Protein turnover and its tight regulation					
57.	steps involved in amino acid degradation.	PPT/Lecture	CO 4			
58.	Revision- Module 5	PPT/Lecture	CO 4			
59.	Revision- Module 6	PPT/Lecture	CO 4			
	MODULE VI	I				
	Principles of catalysis: Activation energy	PPT/Lecture	CO 5			
	of a reaction. General characters of					
	enzymes -specificity, catalytic power,					
60.	regulation.					
		PPT/Lecture	CO 5			
	IUB system of enzyme classification and					
61.	naming.					
	Mechanism of enzyme activity: Formation	PPT/Lecture	CO 5			
	of ES complex, acid-base catalysis,					
62.	covalent catalysis, metal ion catalysis					
	proximity and orientation effect, strain	PPT/Lecture	CO 5			
	and distortion theory. Factors affecting					
63.	enzyme activity.					

	T		
	Enzyme Kinetics: Michaelis-Menton	PPT/Lecture	CO 5
64.	kinetics, Lineweaver-Burk plot.		
	Mechanism of multi substrate reaction –	PPT/Lecture	CO 5
65.	Ping Pong, Bi-Bi mechanism.		
	Regulation of enzyme activity: Allosteric	PPT/Lecture	CO 5
66.	effect, control proteins,		
	reversible covalent modification,	PPT/Lecture	CO 5
67.	proteolytic activation.		
	Enzyme inhibition – reversible and	PPT/Lecture	CO 5
	irreversible inhibition, competitive,		
	noncompetitive, uncompetitive		
68.	inhibition, dixon plot		
	Cofactors and coenzymes: Essential ions,	PPT/Lecture	CO 5
	Coenzymes; structure and role of		
69.	metabolite coenzymes – ATP		
	structure and role of vitamin derived	PPT/Lecture	CO 5
	coenzymes – NAD+, NADP+, FAD, FMN,		
70.	TPP, PLP,		
71.	Biotin. Isozymes	PPT/Lecture	CO 5
	MODULE VI	ll .	
	nucleotide biosynthesis by de novo	PPT/Lecture	CO 5,6
72.	pathway	'	
	nucleotide biosynthesis by salvage	PPT/Lecture	CO 5, 6
73.	pathways	·	,
	MODULE IX	(•
	Secondary metabolites, Classification,	PPT/Lecture	CO 5
74.	biosynthesis, and functions of terpenoids	,	
	Classification, biosynthesis, and functions	PPT/Lecture	CO 5
75.	of alkaloids.	,	
	Classification, biosynthesis, and functions	PPT/Lecture	CO 5
76.	of flavonoids	,	
70.	PRACTICAL		
	Preparation of buffers of various strength	Hands on	CO 4,5,7
	and pH	session	30 4,3,1
77.		36331011	
— , , , .	Differentiating sugars based on osazone	Hands on	CO 4,5,7
78.	formation.	session	
70.	Separation and analysis of lipids and	Hands on	CO 4,5,7
79.	amino acids by TLC.	session	CO 4,3,7
13.	Quantitative estimation of protein by	Hands on	CO 4,5,7
80.	Lowry's method.	session	CO 4,5,7
٥٥.	Lowry 5 memou.	36331011	

	Estimation of purity of DNA (By DNA	Hands on	CO 4,5,7		
81.	protein ratio).	session			
	Estimation of catalase activity.	Hands on	CO 4,5,7		
82.		session			
	Isolation and assay of amylase enzyme	Hands on	CO 4,5,7		
	from germinating Pea seeds/appropriate	session			
83.	plant material				
	PROGRAM SPEC	IFIC OUTCOMES			
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.				
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches				
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.				
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.				
PSO5	Develop problem solving skills and carry out innovative research projects, thereby fostering pirit of knowledge creation.				

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Explain the Mendelian and Non-Mendelian modes of	PO1,PO2, PO6,	U
	inheritance that governs passage of genetic traits across generation.	PSO2, PSO3	
CO 2	Define the Hardy-Weinberg equilibrium.	PO1, PSO2, PSO3	Α
CO 3	Explain linkage and crossing over mechanisms	PO1, PO2, PSO1	U
CO 4	Evaluate structure and functions of biomolecules.	PO1, PO2, PSO1, PSO2,PSO4	Α
CO 5	Explain enzymology, nucleotide metabolism and secondary metabolites.	PO1, PO2, PO3, PO4, PO5, PSO2, PSO3	U
CO 6	Evaluate map distance, gene order, coefficient of coincidence and interference.	PO1, PO2, PSO1, PSO2,PSO4	S
CO 7	Develop capacity the structure and function of various biomolecules in living systems	PO1, PO2, PO3, PO4, PO5, PSO2, PSO3	A

CL* Cognitive Level

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Couse Outcome
1	4/1/2018	Ramachandran plot	CO 4
2	28/1/2018	Recent trends in Genetic mapping	CO 6

References

1.David T). Lehninger Principles of biochemistry (V Edn).

W H Freeman and company.

- 5. Donald Voet, Judith G Voet (2011). Biochemistry (IV Edn). John Wiley & Sons Inc.
- 6. Carl Branden, John Tooze (1999). *Introduction to protein structure* (II Edn). Garland Publishing.
- 7. Reginald H Garrett, Charles M Grisham (2005). Biochemistry. Thomson Brooks/Cole.
- 8. Robert K Murray, David A Bender, Kathleen M Botham, Peter J Kennelly, Victor W Rodwell, P Anthony Weil (2009). *Harper's Illustrated Biochemistry* (XXVIII Edn). Mc Graw Hill.
- 9. H Robert Horton, Laurence A Moran, Raymond S Ochr, J David Rawn, K Gray Scrimgeour (2002). *Principles of Biochemistry* (III Edn). Prentice Hall.
- 10. Bob B Buchanan, Wilhelm Gruissem, Russel L Jones (2000). *Biochemistry and molecular biology*

of plants. L K International Pvt. Ltd.

11. S Sadasivam, A Manickam (1996). *Biochemical methods* (II Edn). New age international Publishers.