SACRED HEART COLLEGE (AUTONOMOUS)

Department of Mathematics

MSc Mathematics

Course Plan

2018 – 19

Semester 4

COURSE PLAN

PROGRAMME	M.Sc. MATEMATICS	SEMESTER	4
COURSE CODE AND TITLE	16P4MATT16EL : DIFFERENTIAL GEOMETRY	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	Dr. DIDIMOS K. V.		

Course Objectives

- Perceive ideas of Graphs and level sets, vector fields, the tangent space, surfaces, vector fields on surfaces, orientation
- > Understand the fundamentals of The Gauss map, geodesics, Parallel transport
- Assimilate the ideas of the Weingarten map, curvature of plane curves, Arc length and line integrals
- Developing skills related to Curvature of surfaces

Text Book

- 1 Tom Apostol, Mathematical Analysis (second edition), Narosa Publishing House.
- 2 Walter Rudin, Principles of Mathematical Analysis (Third edition), International Student Edition.

Sessions	Торіс	Method	Remarks
1	Graphs and level sets	Lecture, Group Discussion, Problem Solving Lecture	
2	Graphs and level sets	Lecture, Group Discussion, Problem Solving Lecture	
3	vector fields	Lecture, Group Discussion, Problem Solving Lecture	
4	vector fields	Lecture, Group Discussion, Problem Solving Lecture	
5	The tangent space	Lecture, Group Discussion, Problem Solving Lecture	
6	The tangent space	Lecture, Group Discussion, Problem Solving	
7	The tangent space	Lecture, Group Discussion, Problem Solving	
8	The tangent space	Lecture, Group Discussion, Problem Solving	
9	Surfaces	Lecture, Group Discussion, Problem Solving	
10	Surfaces	Lecture, Group Discussion, Problem Solving	
11	Surfaces	Lecture, Group Discussion, Problem Solving	
12	Surfaces	Lecture, Group Discussion, Problem Solving	
13	Surfaces	Lecture, Group Discussion, Problem Solving	
14	Surfaces	Lecture, Group Discussion, Problem Solving	
15	Vector fields on surfaces, orientation.	Lecture, Group Discussion, Problem Solving	
16	Vector fields on surfaces, orientation.	Lecture, Group Discussion, Problem Solving	
17	Vector fields on surfaces, orientation.	Lecture, Group Discussion,	

		Problem Solving		
18	Vector fields on surfaces, orientation.	Lecture, Group Problem Solving	Discussion,	
19	Vector fields on surfaces, orientation.	Lecture, Group Problem Solving	Discussion,	
20	Vector fields on surfaces, orientation.	Lecture, Group Problem Solving	Discussion,	
21	The Gauss map	Lecture, Group Problem Solving	Discussion,	
22	The Gauss map	Lecture, Group Problem Solving	Discussion,	
23	The Gauss map	Lecture, Group Problem Solving	Discussion,	
24	The Gauss map	Lecture, Group Problem Solving	Discussion,	
25	Geodesics	Lecture, Group Problem Solving	Discussion,	
26	Geodesics	Lecture, Group Problem Solving	Discussion,	
27	Geodesics	Lecture, Group Problem Solving	Discussion,	
28	Geodesics	Lecture, Group Problem Solving	Discussion,	
29	Geodesics	Lecture, Group Problem Solving	Discussion,	
30	Parallel transport	Lecture, Group Problem Solving	Discussion,	
31	Parallel transport	Lecture, Group Problem Solving	Discussion,	
32	Parallel transport	Lecture, Group Problem Solving	Discussion,	
33	Parallel transport	Lecture, Group Problem Solving	Discussion,	
34	Parallel transport	Lecture, Group	Discussion,	

		Problem Solving	
35	Parallel transport	Lecture, Group Discussion, Problem Solving	
36	The Weingarten map	Lecture, Group Discussion, Problem Solving	
37	The Weingarten map	Lecture, Group Discussion, Problem Solving	
38	The Weingarten map	Lecture, Group Discussion, Problem Solving	
39	The Weingarten map	Lecture, Group Discussion, Problem Solving	
40	The Weingarten map	Lecture, Group Discussion, Problem Solving	
41	The Weingarten map	Lecture, Group Discussion, Problem Solving	
42	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
43	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
44	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
45	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
46	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
47	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
48	Curvature of plane curves	Lecture, Group Discussion, Problem Solving	
49	Arc length and line integrals	Lecture, Group Discussion, Problem Solving	
50	Arc length and line integrals	Lecture, Group Discussion, Problem Solving	
51	Arc length and line integrals	Lecture, Group Discussion,	

		Problem Solving	
52	Arc length and line integrals	Lecture, Group Discus Problem Solving	ssion,
53	Arc length and line integrals	Lecture, Group Discus Problem Solving	sion,
54	Arc length and line integrals	Lecture, Group Discus Problem Solving	sion,
55	Arc length and line integrals	Lecture, Group Discus Problem Solving	ssion,
56	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
57	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
58	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
59	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
60	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
61	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
62	Curvature of surfaces	Lecture, Group Discus Problem Solving	ssion,
63	Parametrized surfaces	Lecture, Group Discus Problem Solving	ssion,
64	Parametrized surfaces	Lecture, Group Discus Problem Solving	ssion,
65	Parametrized surfaces	Lecture, Group Discus Problem Solving	ssion,
66	Parametrized surfaces	Lecture, Group Discus Problem Solving	ssion,
67	Parametrized surfaces	Lecture, Group Discus Problem Solving	ssion,
68	Parametrized surfaces	Lecture, Group Discus	sion,

		Problem Solving	
69	Parametrized surfaces	Lecture, Group Discussion, Problem Solving	
70	local equivalence of surfaces and Parametrized surfaces	Lecture, Group Discussion, Problem Solving	
71	local equivalence of surfaces and Parametrized surfaces	Lecture, Group Discussion, Problem Solving	
72	local equivalence of surfaces and Parametrized surfaces	Lecture, Group Discussion, Problem Solving	
73	local equivalence of surfaces and Parametrized surfaces	Lecture, Group Discussion, Problem Solving	
74	local equivalence of surfaces and Parametrized surfaces	Lecture, Group Discussion, Problem Solving	
75	local equivalence of surfaces and Parametrized surfaces	Lecture, Group Discussion, Problem Solving	

1 ASSIGNMENTS/EXERCISES – Details & Guidelines

	Date of submission/completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1.	12 March 2019	Problems on Differential Geometry

2. References:-

- 1. Serge Lang, Differential Manifolds
- 2. I.M. Siger, J.A Thorpe, Lecture notes on Elementary topology and Geometry, Springer (1967)
- 3. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, 1964.
- 4. M. DoCarmo, Differential Geometry of curves and surfaces.
- 5. Goursat, Mathematical Analysis, Vol 1(last two chapters)

COURSE PLAN

PROGRAMME	MSc Mathematics	SEMESTER	4
COURSE CODE AND TITLE	16P4MATT17EL MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	90
FACULTY NAME	SANIL JOSE		

Course Objectives

- > To Explain Weirstras theorem, otherforms of Fourierseries, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.
- To Analyze Multivariable Differential Calculus The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of complex- valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.
- To Interpret Implicit functions and extremum problems, the mean value theorem for differentiable functions, a sufficient condition for differentiability.
- To Explain Integration of Differential Forms, primitive mappings, partitions of unity, change of variables, differential forms, Stokes theorem.

SESSION	ΤΟΡΙΟ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS	
	MODULE 1				
1	INTRODUCTION	Lecture			
2	THE WEIRSTRASS THEOREM	Lecture			
		Lecture,			
		Problem			
3	OTHER FORMS OF FOURIER SERIES	Solving			
		Lecture,			
		Problem			
		Solving			
4	THE FOURIER INTEGRAL THEOREM				
5	THE EXPONENTIAL FORM OF FORIER SERIES	Lecture,			
		Lecture Problem			
6	INTEGRAL TRANSFORMS	Solving			
		Lecture,			
		Problem			
7	CONVOLUTION	Solving			
		Lecture,			
		Problem			
8	SEMINAR	Solving			
		Lecture,			
		Problem			
9	SEMINAR	Solving			
		Lecture,			
		Problem			
10		Solving			
10		Lecture.			
		Problem			
		Solving			
11	PROBLEMS				
		Lecture			
10					
12		Lecture			
13	SEMINAR	Problem			

		Solving	
		~ 0	
		Lecture	
		Problem	
		Solving	
		Solving	
1.4			
14	QUESTION PAPER REVISION		
		Drohlore	
		Problem	
		Solving	
	THE DIRECTIONAL		
15	DERIVATIVE		
		Lecture,	
		Problem	
		Solving	
16	CONTINUITY		
		Lecture,	
		Problem	
		Solving	
		U	
17	TOTAL DERIVATIVE		
		Lecture.	
		Problem	
		Solving	
		Sorving	
19			
10	PARTIAL DERIVATIVES	Lecture	
		Problem	
	TOTAL DERIVATIVE AS	Solving	
19	PARTIAL DERIVATIVES	SUIVINg	
	APPLICATION TO COMPLEX	Test	
20	NUMBERS		
		Lecture,	
		Problem	
01	APPLICATION TO COMPLEX	Solving	
21	NUMBERS	Lastura	
		Lecture,	
		Problem	
22	MATRIX FORM	Solving	
		Lecture,	
		Problem	
		Solving	
23	MATRIX FORM	Solving	
		CIA 1	

		Lecture,	
		Problem	
24	JACOBIAN MATRIX	Solving	
		Lecture,	
		Problem	
25	CHAIN RULE MATRIX FORM	Solving	
		Lecture,	
		Problem	
26		Solving	
20		Lecture.	
		Problem	
27		Solving	
27	SEMINAR	Lactura	
		Problem	
		Solving	
28	SEMINAR	Sorting	
29	PROBLEMS		
		Lecture,	
		Problem	
30	PROBLEMS	Solving	
		Lecture,	
		Problem	
31	TUTORIAI	Solving	
		Lecture,	
		Problem	
37		Solving	
52		Lecture.	
		Problem	
22		Solving	
		Intro de ation	
34	DIFFERENTIABILITY	miroduction	
		Lecture,	
		Problem	
35	DIFFERENTIABILITY	Solving	
		Lecture,	
		Problem	
36	THEOREM	Solving	
		Lecture,	
		Problem	
37	THEOREM	Solving	
38	IMPLICIT FUNCTION	Lecture,	

	THEOREM	Problem	
		Solving	
	EXTREMA OF REAL VALUED		
39	FUNCTIONS		
		Lecture,	
		Problem	
40	FUNCTIONS	Solving	
		Lecture,	
		Problem	
41	SEMINAR	Solving	
		Lecture,	
		Problem	
12		Solving	
42	SEMINAR	Lecture	
		Problem	
		Solving	
43	PROBLEMS	borting	
		Lecture,	
		Problem	
44	PROBLEMS	Solving	
		Lecture,	
		Problem	
45	TUTORIAI	Solving	
		Lecture,	
		Problem	
46	SEMINAR	Solving	
		Lecture.	
		Problem	
		Solving	
47	SEMINAR	T (
		Lecture,	
		Problem	
48	SEMINAR	Solving	
		Lecture,	
		Problem	
49	SEMINAR	Solving	
		Lecture,	
		Problem	
50	SEMINAR	Solving	
50		Lecture,	
		Problem	
		Solving	
51	SEMINAR	-	

		Lecture,	
		Problem	
50		Solving	
32	SEIVIINAK	Lecture	
		Problem	
		Solving	
53	SEMINAR	Solving	
		Lecture,	
		Problem	
54	SEMINAR	Solving	
		MODULE 4	
		Lecture,	
		Problem	
		Solving	
55	PRIMITIVE MAPPING	Lecture	
		Lecture,	
		Problem	
56	PARTITION OF UNITY	Solving	
		Lecture,	
		Problem	
57		Solving	
57		Lecture	
		Problem	
		Solving	
58	CHANGE OF VARIABLES	Sorting	
		Lecture,	
		Problem	
59	DIFFERENTIAL FORMS	Solving	
		Lecture,	
		Problem	
		Solving	
60	STOKES THEOREM	Lecture	
		Lecture,	
		Solving	
61	STOKES THEOREM	Solving	
		Lecture,	
		Problem	
62	STOKES THEOREM	Solving	
52		Lecture.	
		Problem	
		Solving	
63	SEMINAR		
		Lecture,	
64	SEMINAR	Problem	

		Solving
		Lecture, Problem
65	SEMINAR	Solving
66	SEMINAR	Lecture, Problem Solving
		Lecture, Problem Solving
67	SEMINAR	Solving
68	SEMINAR	Lecture, Group Discussion
69	SEMINAR	Lecture, Group Discussion
70	SEMINAR	Lecture, Group Discussion
71	SEMINAR	Lecture, Group Discussion
72 - 90	SEMINAR	Lecture, Group Discussion

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	4/1/2019	Problems from module 1 and 2
2	28/1/2019	Problems from module 4

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

Date of	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation –		
completion	Graded or Non-graded etc)		
2/2/2019	PROBLEMS IN MODULE 3		

RECOMMENDED BOOKS:

1. Rudin, W., Principles of Mathematical Analysis, 3rd Edition. New Delhi: McGraw-Hill Inc., 2013.

2. Royden, H.L. and Fitzpatrick, P.M., Real Analysis, 4th Edition. New Delhi: Pearson, 2010.

3. Carothers, N. L., Real Analysis, Cambridge University Press, 2000.

4. Apostol, T.M., Mathematical Analysis – A modern approach to Advanced Calculus. New Delhi: Narosa Publishing House, 1957.

5. Bartle, Robert G. and Sherbert, Donald R., Introduction to Real Analysis, 3rd Edition. Wiley, 1999. 6. Hugh, C.C., Real Mathematical Analysis. Springer, 2003.

7. Abbott, S., Understanding Analysis, 2nd Edition. Springer, 2016

8. Avner Friedman, "Foundations of Modern Analysis", Hold Rinehart Winston, 1970.

9 . Rana I. K., "An Introduction to Measure and Integration", Narosa Publishing House Pvt. Ltd., Second Edition, 2007.

PROGRAMME	MASTER OF SCIENCE MATHEMATICS	SEMESTER	4
COURSE CODE AND TITLE	16P4MATT18EL- COMBINATORICS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	MARIA SEBASTIAN		

COURSE PLAN

Course Objectives

- > To Analyze permutations and combinations & its applications.
- > To Explain Pigeonhole principle and Ramsey numbers and its applications.
- > To Apply generating functions and its implications.
- > To Analyze recurrence relation and methods to solve that.

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I			
1	Two basic counting principles	PPT		
2	Problems	Problem solving		
3	Problems, Permutations	Lecture		
4	Problems	Problem solving		
5	Circular permutations and Principle of complementation and problems	Lecture		
6	Problems, Combinations	Problem solving		
7	Problems, S(n, r)	Lecture		
8	Problems, Injection and bijection principle	Lecture		
9	Problems	Lecture		
10	Arrangements and problems	Lecture/Problem solving		

11	Selection with repetitions	Lecture
12	Problems	Lecture/Problem
		solving
13	Distribution problems-different cases	Lecture/Problem
	-	solving
14	Problems	Lecture
15	Extra problems from exercise	Lecture/Problem
	-	solving
16	Extra problems from exercise	Lecture
17	Introduction to binomial coefficients	Lecture/Problem
		solving
	MODULE II	
18	Introduction to pigeonhole principle	PPT/Lecture
19	Basic problems based on PP	Lecture
20	More examples on PP	
21	Problems	Lecture
22	Ramsey type problems	Lecture
23	More problems and	Lecture/Problem
	Ramsey numbers	solving
24	Problems, Generalised Pigeonhole Principle	Lecture/Problem
		solving
25	Theorems on Bounds for Ramsey numbers	Lecture/Problem
		solving
26	Theorems on Bounds for Ramsey numbers	Lecture/Problem
		solving
27	Theorems on Bounds for Ramsey numbers	Lecture/Problem
		solving
28	Problems	Lecture/Problem
	D 11	solving
29	Problems	Lecture/Problem
20	Extra problems from exercise	Solving
30	Extra problems from exercise	solving
	CIA-1	Solving
31	Basic Inclusion and Exclusion principle	Lecture
22	Principle of inclusion and exclusion (PIE) and	Lecture / Problem
52	its proof	solving
33	Problems	Lecture/Problem
33		solving
34	Generalisation of PIE and problems	Lecture/Problem
		solving
35	Generalised Principle of inclusion and	Lecture
	exclusion(GPIE) and proof	
36	Problems	Lecture/Problem
		solving
	MODULE III	
	Generalised Principle of inclusion and	Lecture/Problem
37	exclusion(GPIE)	solving
38	Problems	Lecture/Problem

		solving
	Extra problems from exercise	Lecture/Problem
39	1	solving
	Shortest route problem	Lecture/Problem
40		solving
	Integer solutions for an equation	Lecture/Problem
41		solving
	More problems	Lecture/Problem
42		solving
	Surjective mannings	Lecture/Problem
43		solving
	Sterling numbers of second kind	Lecture/Problem
44		solving
	Derangements and problems	Lecture/Problem
45	Derangements and problems	solving
	Generalisation of Derangements	Lecture/Problem
46	Seneralisation of Derangements	solving
	Problems	Lecture/Problem
47		solving
	Test	Lecture/Problem
48		solving
10	Ordinary generating functions Cauchy	Lecture/Problem
19	product	solving
45	Examples	Lecture/Problem
50	Examples	solving
50	Generating functions for different sequences	Lecture/Problem
51	Generating functions for unrefent sequences	solving
51	Problems	Lecture/Problem
52		solving
52	Some modeling problems	Lecture/Problem
53	Some modering problems	solving
	Examples	Lecture/Problem
54	Examples	solving
	I Module-IV	Southing
	Partitions of integers	Lecture/Problem
55	i artitions of integers	solving
33	Theorems based on partitions	Lecture/Problem
56	Theorem's based on partitions	solving
50	Ferrers Diagram and problems	Lecture/Problem
57	refiers Diagram and problems	solving
57	Theorems and problems	Lecture/Problem
58	Theorems and problems	solving
50	Exponential generating functions and	Lecture/Problem
50	examples	solving
55	Examples	Locture / Droblom
60	permutations and examples	solving
00	More examples	Locture (Droblem
61	iviore examples	
01	Distribution problems	Locture / Droblem
62	Distribution problems	
62		SOIVING

	Problems from exercise	Lecture/Problem	
63		solving	
	Introduction to recurrence relations	Lecture/Problem	
64		solving	
	CIA - II		
	Tower of Hanoi problem	Lecture/Problem	
65		solving	
	Finding number of parallelograms in the nth	Lecture/Problem	
66	sub-division of an equilateral triangle	solving	
	Method to solve Linear homogenous	Lecture/Problem	
67	recurrence relations	solving	
	Method to solve General Linear recurrence	Problem solving	
68	relations		
	Number of ways of colouring a circle with n	Problem solving	
69	sectors using k colours with certain conditions		
70	problems	Problem solving	
	Finding the determinant of a special type	Problem solving	
71	matrix using recurrence relation		
72 - 75	Extra problems	Problem solving	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	21/12/2018	PROBLEMS BASED ON MODULE 1
2	15/1/2019	PROBLEMS BASED ON MODULE 2

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment		
		(Individual/Group – Written/Presentation –		
		Graded or Non-graded etc)		
1	20/2/2019	Recurrence relations		

Textbook

CHEN CHUAN-CHONG ,KOH KHEE MENG,PRINCIPLES AND TECHNIQUES IN COMBINATORICS,WORLD SCIENTIFIC,1999.

References

Applied Combinatorics

Mitchel T. Keller, Washington and Lee University

William T. Trotter, Georgia Institute of Technology

Web resource references:

https://nptel.ac.in/courses/106/108/106108051/

COURSE PLAN

PROGRAMME	MASTER OF SCIENCE MATHEMATICS	SEMESTER	4
COURSE CODE AND TITLE	16P4MATT19EL- THEORY OF WAVELETS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	M P SEBASTIAN		

Course Objectives

- ➤ Analyze the basics of Wavelet theory.
- Analyze various applications of wavelets
- > Apply wavelet theory in Linear algebra.
- Summarize the scope of wavelet theory in the field of medical science.
- > Explain the concepts of Haar measure

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I			
1	Fundamentals of vector spaces and metric spaces	PPT		
2	Linear transformations and its matrix representations	Problem solving		
3	l^2 (N) and l^2 (Z _N)	Lecture		
4	$ \begin{array}{l} \mbox{Introduction of the orthonormal basis} & \{ \mbox{ $E_{1,}$} \\ \mbox{ E_{2}, E_{3},,$$E_{N-1} } \} \end{array} $	Problem solving		
5	The properties of the above basis	Lecture		
6	Introduction of the fourier basis F	Problem solving		
7	Introduction of discrete fourier transform	Lecture		
8	Matrix representation of the discrete fourier transform	Lecture		
9	Inverse discrete Fourier transform and its matrix representation	Lecture		
10	Translation by k operator and its Fourier transform	Lecture/Problem solving		
11	Conjugate of a vector and its Fourier transform	Lecture		
12	Translation invariant linear transformation	Lecture/Problem solving		
13	The result saying that a translation invariant linear transformation is diagonalizable	Lecture/Problem solving		
14	Convolution of two vectors in I^2 (Z _N)	Lecture		
15	Convolution operator and the lemma showing that a convolution operator is translation invarient	Lecture/Problem solving		

16	The Dirac delta function and its properties	Lecture		
17	The DFT of convolution	Lecture/Problem		
		solving		
	MODULE II			
18	Spatially localized and frequency localised bases of $I^2(7,)$	PPT/Lecture		
19	Conjugate reflection and its DFT	Lecture		
20	Components of a convolution in terms of inner	Looture		
20	products			
21	The necessary and sufficient condition for { B, w }	Lecture		
21	$_{\rm k=0}^{\rm N-1}$ to be an orthonormal basis for 1^2 (7 _N)	Looture		
22	Introduction of first stage wavelet basis for $1^2(7_{\rm H})$	Lecture		
23	Introduction of 7^* and its DFT	Lecture/Problem		
23		solving		
24	The necessary and sufficient condition for { B, w }	Lecture/Problem		
21	$^{M-1}$ to be an orthonormal set with M elements	solving		
25	Introduction of the system matrix $A(n)$ of two	Lecture/Problem		
	vectors u and v	solving		
26	The necessary and sufficient condition for two	Lecture/Problem		
	vectors u and v to generate a first stage wavelet	solving		
	basis for I^2 (Z _N)	U		
27	Some examples of first stage wavelet basis	Lecture/Problem		
		solving		
28	Description of first Shannon basis and first stage	Lecture/Problem		
	real Shannon basis	solving		
29	Introduction with sufficient explanations of first	Lecture/Problem		
	stage Haar basis	solving		
30	Lemma 3.12	Lecture/Problem		
		solving		
	CIA-1			
31	Up sampling and down sampling operators and their properties	Lecture		
32	Introduction of filter bank diagram , its analysis	Lecture/Problem		
	phase and synthesis phase , perfect reconstruction	solving		
	in the filter bank			
33	Lemma 3.15	Lecture/Problem		
		solving		
34	The iteration steps in the construction of filter bank	Lecture/Problem		
	diagram	solving		
35	Introduction of p ^m stage wavelet filter sequence	Lecture		
36	The derivation of the output of the p " stage filter	Lecture/Problem		
	bank using down sampling operators	solving		
MODULE III				-
	The theory used for the reconstruction of the filter	Lecture/Problem		
27	pank, the diagram representing the reconstruction	solving		
3/	phase using up sampling operators	Leetune (Darch Le		
20	Lemma3.18	Lecture/Problem		
38	Definition of D and U Corollary 2.10	SUIVING		
20	Demition of D and U Corollary 3.19	Lecture/Problem		
53		SOIVING		

	Introduction of f ₁ , g ₁ Definition 3.20	Lecture/Problem	
40		solving	
	Lemma 3.21	Lecture/Problem	
41		solving	
	Lemma 3.22	Lecture/Problem	
42		solving	
	Introduction of p th stage wavelet basis for I	Lecture/Problem	
43	² (Z _N)	solving	
	Lemma3.24	Lecture/Problem	
44		solving	
	Orthogonal direct sum of two subspaces of an	Lecture/Problem	
45	inner product space and a problem from exercise	solving	
	Lemma 3.26	Lecture/Problem	
46		solving	
	The theorem saying that a p th stage wavelet filter	Lecture/Problem	
	sequence can produce a p th stage wavelet basis .	solving	
47	Theorem 3.27		
	A new symbolic representation of the p th stage	Lecture/Problem	
48	wavelet basis	solving	
	The folding lemma	Lecture/Problem	
49		solving	
	Corollary 3.31	Lecture/Problem	
50		solving	
	The p th stage Haar system	Lecture/Problem	
51		solving	
	The p th stage Shannon wavelet basis for	Lecture/Problem	
52	I ² (Z _N)	solving	
	The p th stage real Shannon wavelet basis	Lecture/Problem	
53		solving	
	Daubechies's D6 wavelets on Z _N	Lecture/Problem	
54		solving	
	Module-IV		
	Definition of Cauchy sequence, Complete inner	Lecture/Problem	
	product space, Hilbert space , symmetric partial	solving	
	sum , the convergence of the series in the form		
55	∑ _{n®Z} w (n)		
	Definition of S_A and $P_S(f)$	Lecture/Problem	
56		solving	
	Lemma 4.14	Lecture/Problem	
57	2	solving	
	The Hilbert space $L^2([-\pi,\pi))$, Cauchy –	Lecture/Problem	
58	Schwarz inequality and triangle inequality	solving	
	[Introduction of $L^{1}([-\pi,\pi))$,	Lecture/Problem	
	$L^2([-\pi,\pi))$ is a proper subset of $L^2($	solving	
59	[[-π,π])		
	Introduction of the trigonometric system, and	Lecture/Problem	
60	proving that it is an orthonormal set	solving	
	The trigonometric system is complete	Lecture/Problem	
61		solving	
62	Definition 4.23 and corollary 4.24	Lecture/Problem	

		solving
63	Bounded linear transformation between Hilbert spaces and lemma 4.26	Lecture/Problem solving
64	Introduction of translation operator and translation invariant linear transformation	Lecture/Problem solving
CIA - II		
65	problems	Lecture/Problem solving
66	Theorem 4.28	Lecture/Problem solving
67	FOURIER TRANSFORM , INVERSE FOURIER TRANSFORM and convolution on $1^{2}(Z)$	Lecture/Problem solving
68	Lemma 4.31	Lecture/Problem solving
69	Definition of summable sequences and the normed space I ¹ (Z)	Lecture/Problem solving
70	The translation operator R _k and translation invariant linear transformation on I ² (Z), example 4.37	Lecture/Problem solving
71	The delta function and lemma 4.39	Lecture/Problem solving
72 - 75	Problems from exercises	Lecture/Problem solving

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	14/12/2018	PROBLEMS BASED ON MODULE 1
2	14/1/2019	PROBLEMS BASED ON MODULE 2

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	12/2/2019	PROBLEMS ON MODULE 4