SACRED HEART COLLEGE (AUTONOMOUS)

Department of Mathematics

M.Sc. Mathematics

Course plan

Academic Year 2018-19
Semester 2

PROGRAMME OUTCOMES

PO 1	Exercise their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	Effectively communicate the knowledge of their study and research in their respective disciplines to their stakeholders and to the society at large.
PO 3	Make choices based on the values upheld by the institution, and have the readiness and know-how to preserve the environment and work towards sustainable growth and development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending the provincial outlook.
PO5	Explore new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

PROGRAMME SPECIFIC OUTCOMES	
PSO1	Assimilate and analyse advanced concepts in Mathematics.
PSO2	Develop problem-solving skills and apply them independently to solve problems in pure and applied mathematics.
PSO3	Develop skills to mathematically model real-time problems and apply mathematical tools to solve them.
PSO4	Inculcate an aptitude for research.

COURSE PLAN- ABSTRACT ALGEBRA

PROGRAMME	Msc Mathematics	SEMESTER	2
COURSE CODE AND TITLE	16P2MATTO6:ABSTRACT ALGEBRA	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	90
FACULTY NAME	JEET KURIAN MATTAM		

COURSE OUTCOMES

C.O.	C.O. Statement	P.O./P.S.O.	CL	KC	$\begin{aligned} & \text { Class } \\ & \text { Hrs } \end{aligned}$	Lab Hrs.
CO1	Developing ideas of finitely genearted abelian groups, Sylow theorems and applications	P. 0 1/P.S.O 1	U	C	26	0
CO 2	Understanding the concept of rings of polynomials, facrorisation of polynomials and ideal structure	P. 0 1/P.S.O 1	U	C	33	0
CO 3	Asssimilating the idea of extension fields, algebraic extensions and geometric constructions.	P. 0 1/P.S.O 1	U	C	14	0
CO4	Developing ideas of automorphisms of fields, isomorphism extension theorem and Galois theory.	P. 0 1/P.S.O 1	U	C	17	0

CO -PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	2						2			
CO 2	2						1			
CO 3	2						2			
CO 4	2						2			

Mapping Strength
0 - No Mapping strength
1- Low
2- Medium
3- High

Text Book
1.A First Course in Abstract Algebra by John B Fraleigh $3^{\text {rd }}$ Edition

Additional references

1) Contemporary Abstract Algebra by Joseph Gallian
2) Topics in Algebra by I.N.Herstein
3) Algebra by Michael Artin
4) Abstract Algebra by David S Dummit and Richard M Foote.

Proofs of theorems to be avoided in bridge course. Only concept and examples required

Sessions	Topic	Method	C.O		
1	Bridge Course: Chapter 1 of text	Group Discussion followed by a Lecture session.	C.O1		
2	Bridge Course : Chapter 2 of text excluding direct products	Interactive including GD	session	C.O1	Bridge Course: chapter 4 of text.
:---					
3					

5	Bridge Course: Section 27.1-27.20	Lecture session	C. 01
5	Bridge Course: Section 27.1-27.20	Lecture session	C. 01
6 MODUL E I BEGINS	Definition 11.1, Theorem 11.2 and example 11.3	Lecture session	C. 01
7	Example 11.4, Theorem 11.5, Corollary 11.6 and example 11.7	Interactive session and Lecture	C. 01
8	Definition 11.8, Theorem 11.9, Example 11.10, Example 11.11	Lecture	C. 01
9	Theorem 11.12, Example 11.13, Definition 11.14, Theorem 11.15	Lecture	C. 01
10	Theorem 11.16, Theorem 11.17 and selected exercises of Exercise 11	Lecture	C. 01
11	Exercise 11 continued	Lecture	C. 01

12	Definition 16.1, Example 16.2, Theorem 16.3	Interactive session	C. 01
13	Examples 16.4-16.8	Assignment and seminar for the students.	C. 01
14	Example 16.11, Theorem 16.12, Definition 16.13 and Theorem 16.14	Lecture	CO1
15	Definition 16.15 and theorem 16.16 and example 16.17	Lecture	C. 01
16	Theorem 36.1, Definition 36.2	Lecture	C. 01
17	Theorem 36.3 and Corollary 36.4	Lecture	C. 01
18	Definition 36.5, Lemma 36.6 and Corollary 36.7	Lecture	C. 01
19	The three Sylow Theorems (Statements only) Example 36.12 and Example 36.13	Lecture	C. 01

20	Theorem 37.1 and definition 37.2 and example 37.3	Lecture	C. 01
21	Theorem 37.4, Lemma 37.5 and Theorem 37.6	Lecture	C. 01
22	Theorem 37.7 and Lemma 37.8	Lecture	C. 01
23	Example 37.9- Example 37.12	Lecture	C. 01
24	Example 37.13-Example 37.15	Lecture	C. 01
25	Examples continued and selected exercises of Exercise 37	Lecture	C. 01
26	FIRST CIA	Written Test; Descriptive.	
27 MODULE 2 BEGINS	Definition 22.1 and Theorem 22.2	Lecture	$\mathrm{CO2}$
28	Example 22.3, $\mathrm{R}[\mathrm{x}, \mathrm{y}]$, and theorem 22.4	Lecture	$\mathrm{CO2}$

29	Examples 22.6-22.10	Lecture	CO2
30	Theorem 22.11	Seminar	CO2
31	Selected Exercises of Exercise 22	Seminar	CO 2
32	Selected Exercises of Exercise 22	Seminar	CO2
33	Theorem 23.1		C02
34	Example 23.2 and Corollary 23.3	Lecture	CO 2
35	Example 23.4 and corollary 23.5	Lecture	CO 2
36	Corollary 23.6, Definition 23.7 and Example 23.8	Lecture	$\mathrm{CO2}$
37	Example 23.9, Theorem 23.10, Theorem 23.11 and Corollary 23.12	Lecture	$\mathrm{CO2}$
38	Example 23.13,23.14 and a similar problem in exercises	Lecture	CO 2

39	Theorem 23.15 and example 23.16	Lecture	C02
40	Corollary 23.17	Lecture	C02
41	Definition 27.21, Example $27.22,27.23$ and Theorem 27.24	Lecture	C02
42	Theorem 27.25 and example 27.26 Example 27.26 and theorem 27.27 and selected exercises of exercise 27	Lecture	Cecture

48	Example 29.4, 29.5, Definition 29.6,Examples 29.7-29.10.	Lecture	CO 2
49	Definition 29.11 and theorem 29.12, Theorem 29.13	Lecture	CO2
50	Definition 29.14, Example 29.15, Simple Extensions	Lecture	CO 2
51	Example 29.16, Definition 29.17 and Theorem 29.18		CO 2
52	Example 29.19 and selected exercises of Exercise 29	Lecture	CO2
53	selected exercises of Exercise 29	Seminar	CO2
54	$\begin{array}{\|lll\|} \hline \text { Theorem } & 30.23, & \text { Definition } \\ 31.1,31.2 & & \end{array}$	Lecture	C02
55	Theorem 31.3,31.4	Lecture	C02
56	$\begin{array}{\|lll} \text { Corollary } & 31.6,31.7, & \text { Examp;e } \\ 31.8,31.9 \end{array}$	Lecture	C02

57	Example 31.10, Theorem 31.11	Lecture	CO2
58	Theorem 31.12, Corollary 31.13, Definition 31.14 and Theorem 31.15	Lecture	CO2
59	Corollary 31.16, Theorem 31.17 and theorem 31.18	Lecture	CO 2
60	Selected exercises of Exercise 31		CO2
61MOD ULE III BEGINS	Theorem 32.1 and Corollary 32.5	Seminar	C03
62	Theorem 32.6	Lecture	C03
63	Corollary 32.8, Theorems 32.9- 32.11	Seminars	CO 3
64	Theorem 33.1, Corollary 33.2, Theorem 33.3	Lecture	CO 3
65	Definition 33.4, Theorem 33.5, Corollary 33.6 and Example 33.7	Lecture	C03

66	Lemma 33.8 and Lemma 33.9	Lecture	C03
67	Theorem 33.10, Corollary 33.11 and Theorem 33.12		CO 3
68	Definition 48.1, Example 48.2, Theorem 48.3	Lecture	C03
69	Corollary 48.5, Corollary 48.6 and Example 48.7	Lecture	CO 3
70	Definition 48.8, Example 48.9, 48.10, 48.11 and Definition 48.12	Lecture	CO 3
71	Example 48.13, Theorem 48.14, Theorem 48.15, Definition 48.16, Example 48.17		CO 3
72	Theorem 48.19, Selected Exercises of Exercise 48		CO 3
73	Theorem 49.3(Statement only) and Corollary 49.5		CO 3
74	SECOND CIA		CO 3

75 MODUL E IV BEGINS	Definition 50.1, Example 50.2, Theorem 50.3	Lecture	CO4
76	Definition 50.4, Example 50.5, Corollary 50.6, 50.7	Lecture	$\mathrm{CO4}$
77	Example 50.8 and 50.9. Selected Exercises of Exercise 50.	Lecture	$\mathrm{CO4}$
78	Definition 51.1, Theorem 51.2, Corollary 51.3.	Lecture	$\mathrm{CO4}$
79	Example 51.4, Theorem 51.6, Definition 51.7 and Example 51.8	Lecture	CO4
80	Theorem 51.9 and Corollary 51.10	LECTURE	C04
81	Lemma 51.11, Definition 51.12 and Theorem 51.13	LECTURE	$\mathrm{CO4}$
82	Theorem 51.14	LECTURE	CO4
83	Theorem 51.15	LECTURE	C04

84	Definition 53.1, Theorem 53.2	LECTURE	C04
85	Example 53.3, Definition 53.5	LECTURE	C04
86	Theorem 53.6	LECTURE	C04
87	Theorem 53.6 (Continued)	LECTURE	C04
88	Theorem 53.7 and Example 53.8	LECTURE	C04
89	REVISION		
90	REVISION		

COURSE PLAN- ADVANCED TOPOLOGY

PROGRAMME	Msc Mathematics	SEMESTER	1
COURSE CODE AND TITLE	16P2MATTO7: ADVANCED TOPOLOGY	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	JEENU KURIAN		

CO	CO Statement	PO/PSO	CL	KC	Class Hrs.
CO1	Understand Urysohn Characterization of Normality, ,Tietze Characterization of Normality, Products and co-products.	PO1/PSO 1	U	C	21
CO2	Analyze embedding and Metrisation, Evaluation Functions in to Products, embedding Lemma and Tychnoff Embedding, The Urysohn Metrisation Theorem.	PO1/PSO 1	U	P	12
CO3	Develop the idea of convergence and related properties of nets and filters.	PO1/PSO 1	U	C	21
CO4	Understand compactness, variations of compactness.	PO1/PSO 1	U	C	21

CO -PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	2						2			
CO 2	2						1			
CO 3	2						2			
CO 4	2						2			
CO 5	2						2			

Mapping Strength

0 - No Mapping strength
1- Low
2- Medium
3- High

Sessions	Topic	Method	Course Outcome
1.	Introductory Session - separation axioms	Lecture	CO1
2.	Urysohn characterisation of normality	Lecture	CO1
3.	Definition and proposition	Lecture	CO1
4.	Urysohn's Lemma	Lecture,	CO1
5.	Theorem and Lemma	Lecture,	CO1
6.	Theorems and Lemma	Lecture,	CO1
7.	Tietz characterisation of normality: proposition	Lecture,	CO1

	Proposition	Lecture,		CO1
9.	Definition and proposition	Lecture,		CO1
10.	Proposition	Lecture		CO1
11.	Theorem and proposition	Lecture,		CO1
12.	Products and co products Cartesian products of family of sets: Basic definitions	Lecture		CO1
13.	Proposition	Lecture,		CO1
14.	Proposition	Lecture,		CO1
15.	Theorem	Lecture,		CO1
16.	Theorem	Lecture,		CO1
17.	Definition and Theorem	Lecture,		CO1
18.	Product topology - Basic definitions	Lecture, Discussion, Solving	Group Problem	CO1
19.	Theorems	Lecture,		CO1

42	Theorems and proposition	Lecture,	CO3
43.	Topology and convergence of nets - Basic definitions	Lecture,	CO3
44.	Theorems and corollaries	Lecture,	CO3
45.	Theorems and corollaries	Lecture,	CO3
46.	Theorems and Propositions	Lecture,	CO3
47.	Theorems and propositions	Lecture,	CO3
48.	Filters and their convergence Basic definitions	Lecture,	CO3
49.	Theorems and corollaries	Lecture,	CO3
50.	Theorems and Propositions	Lecture,	CO3
51.	Theorems and Propositions	Lecture,	CO3
52.	Ultrafilter and compactness	Lecture,	CO3
53.	Ultrafilter and compactness	Lecture,	CO3
54.	Theorems and propositions	Lecture,	CO3
55.	Problems	Lecture,	CO3

56.	Module 4 - Introduction	Lecture	CO4
57.	Variation of compactness - Basic definitions	Lecture,	CO4
58.	Theorems, corollaries and propositions	Lecture,	CO4
59.	Theorems, corollaries and propositions	Lecture,	CO4
60.	Theorems, corollaries and propositions	Lecture,	CO4
61.	Theorems, corollaries and propositions	Lecture,	CO4
62.	Theorems, corollaries and propositions	Lecture,	CO4
63.	Local compactness - Definitions	Lecture,	CO4
64.	Propositions and corollaries	Lecture,	CO4
65.	Propositions and corollaries	Lecture,	CO4
66.	Propositions and corollaries	Lecture,	CO4
67.	Compactification- Basic definitions	Lecture,	CO4

68.	Theorems and proposition	Lecture,	CO4
69.	Propositions and corollaries	Lecture,	CO4
70.	Theorems	Lecture,	CO4
71.	Theorems	Lecture,	CO4
72.	Propositions	Lecture,	CO4
73.	Propositions	Lecture,	CO4
74.	Problems	Group discussion	CO4
75.	Problems	Group discussion	CO4
76.	Problems	Group discussion	CO4
77.	Problems	Group discussion	CO4
78.	Problems	Group discussion	CO4

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)	Course Outcome
1	$10^{\text {th }}$ Jan 2019	Assisgnment product topology, Nets and Filters	CO1, CO3

References:

1. Munkers J.R, Topology - A first course, Prentice Hall of India Pvt.Ltd., New Delhi,2000.
2. J.L.Kelly, General Topology.Van Nostrand, Reinhold Co.,NewYork,1995.
3. Stephen Willard, General Topology,Addison - Wesley.
4. Dugundji, Topology, Universal Book Stall, New Delhi.
5. George F Simmons, introduction to Topology and Modern Analysis, Mc Graw-Hill Book Company,1963.

PROGRAMME	MSC MATHEMATICS	SEMESTER	2
COURSE CODE AND TITLE	16P2MATTO8: ADVANCED COMPLEX ANALYSIS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	72
FACULTY NAME	PROF. SANIL JOSE		

Course Prerequisites:

Calculus, Analysis
Guidelines/Suggestions for Teaching Methods and Student Learning Activities:
This course is taught as a lecture course with student participation and use of computers

COURSE OUTCOMES		PO /PSO
CO 1	Understand the concepts of power series to expand a complex function as Taylors and Laurantz series	PO1, PSO1
CO 2	Perceive entire functions, Jensen's formula, the genus and order of an entire function, Hadamard Factorization theorem.	PO1, PSO1
CO 3	Interpret Harmonic functions, Basic properties of harmonic functions and Harmonic functions on the disk and discuss Reiman Mapping theorem	PO1, PSO1
CO 4	Analysis Elliptic functions and Weistrass function	PO1, PSO1

CO -PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	2						2			
CO 2	2						1			
CO 3	2						2			
CO 4	2						2			
CO 5	2						2			

Mapping Strength

0 - No Mapping strength
1- Low
2- Medium
3- High

Basic Reference

1. AHLFORS V. LARS, COMPLEX ANALYSIS, McGRAW- HILL INTERNATIONAL EDITIONS, $3^{\text {RD }}$ EDITION Hour wise planning

Sessions	Topic	Method	VALUE ADDITIONS
1	INTRODUCTION		
2	ELEMENTARY THEORY OF POWER SERIES		CO 1
3	SEQUENCE AND SERIES		CO 1
4	UNIFORM CONVERGANCE		CO 1
5	POWER SERIES 1		
6	ABEL'S LIMIT THEOREM		CO 1

7	POWER SERIES EXPNSION	CO 1
8	WEISTRASS THEOREM	CO 1
9	TAYLOR'S THEOREM	CO 1
10	LAURENT'S THEOREM	CO 1
11	PARTIAL FRACTIONS	CO 1
12	INFINITE PRODUCTS	CO 1
13	CANNONICAL PRODUCTS	CO 1
14	GAMMA FUNCTION	CO 1
15	GAMMA FUNCTION	CO 1
16	SEMINAR	CO 1
17	SEMINAR/ PROBLEM DISCUSSION	CO 1
18	SEMINAR/ PROBLEM DISCUSSION	CO 1
19	SEMINAR/ PROBLEM DISCUSSION	CO 1
20	SEMINAR/ PROBLEM	CO 1

	DISCUSSION	
21	JENSON'S FORMULA	CO 2
22	HADAMARD'S THEOREM	CO 2
23	THE REIMANN ZETAFUNCTION	CO 2
24	EXTENSION TO THE ENTIRE PLANE	CO 2
25	FUNCTIONLA EQUATION	CO 2
26	THE ZEROS OF ZETA FUNCTION	CO 2
27	THE ZEROS OF ZETA FUNCTION	CO 2
28	THE ZEROS OF ZETA FUNCTION	CO 2
29	ARZELA'S THEOREM	CO 2
30	ARZELA'S THEOREM	CO 2
31	SEMINAR	CO 2
32	SEMINAR/ PROBLEM DISCUSSION	CO 2
33	SEMINAR/ PROBLEM DISCUSSION	CO 2

34	SEMINAR/ PROBLEM DISCUSSION	CO 2
35	SEMINAR/ PROBLEM DISCUSSION	CO 2
36	SEMINAR/ PROBLEM DISCUSSION	CO 2
37	SEMINAR/ PROBLEM DISCUSSION	CO 2
38	SEMINAR/ PROBLEM DISCUSSION	CO 2
39	SEMINAR/ PROBLEM DISCUSSION	CO 2
40	THEREIMANN MAPPING THEOREM	CO 3
41	THEREIMANN MAPPING THEOREM	CO 3
42	THEREIMANN MAPPING THEOREM	CO 3
43	BOUNDARY BEHAVIOUR	CO 3
44	USE OF REFLECTION PRINCIPLE	CO 3
45	ANALYTIC ARCS	CO 3

46	CONFORMAL MAPPING OF POLYGONS	CO 3
47	SCHWARZ CHRISTOFFEL FORMULA	CO 3
48	MEAN VALUE PROPERTY	CO 3
49	MEAN VALUE PROPERTY	CO 3
50	HARNACK'S PRINCIPLE	CO 3
51	HARNACK'S PRINCIPLE	CO 3
52	HARNACK'S PRINCIPLE	CO 3
53	SUBHARMONIC FUNCTIONS	CO 3
54	SUBHARMONIC FUNCTIONS	CO 3
55	SEMINAR/ PROBLEM DISCUSSION	CO 3
56	SEMINAR/ PROBLEM DISCUSSION	CO 3
57	SEMINAR/ PROBLEM DISCUSSION	CO 3
58	SEMINAR/ PROBLEM DISCUSSION	CO 3

59	SEMINAR/ PROBLEM DISCUSSION	CO 3
60	SEMINAR/ PROBLEM DISCUSSION	CO 3
61	SIMPLY PERIODIC FUNCTIONS	CO 4
62	DOUBLY PERIODIC FUNCTIONS	CO 4
63	THE FOURIER DEVELOPMENT	CO 4
64	THE PERIOD MODULE	CO 4
65	UNIMODULAR TRANSFORMATIONS	CO 4
66	CANNONICAL BASIS	CO 4
67	WEISTRASS FUNCTION	CO 4
68	WEISTRASS FUNCTION	CO 4
69	WEISTRASS FUNCTION	CO 4
70	WEISTRASS FUNCTION	CO 4
71	SEMINAR/ PROBLEM DISCUSSION	CO 4

72	SEMINAR/ PROBLEM DISCUSSION		CO 4
73	SEMINAR/ PROBLEM DISCUSSION	CO 4	
74	SEMINAR/ PROBLEM DISCUSSION		CO 4
75	SEMISCUSSION		CO 4
76	SEMINAR/ PROBLEM DISCUSSION		CO 4
77	REVISION		CO 4
78	REVISION		CO 4

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)	Course Outcome
1	$4 / 1 / 2019$	PROBLEMS ON POWER SERIES	CO 1
2	$28 / 1 / 2019$	PROBLEMS IN HARMONIC FUNCTIONS	CO 3

GROUP ASSIGNMENTS/ACTIVITES - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)	Course Outcome
$\mathbf{1}$	$2 / 2 / 2019$	PROBLEMS IN ELLIPTIC FUNCTIONS	CO 4
$\mathbf{2}$	$9 / 2 / 2019$	PROBLEMS IN MODULE 2	CO 2

References:

1. John. B. Conway, Functions of Complex Variables, SpringerVerlag, New York, 1973. (Indian Edition: Narosa)
2. S. Lang, Complex Analysis, McGraw Hill (1998).
3. S. Ponnusamy \& H. Silverman, Complex Variables with Applications, Birkhauser
4. A. Priestley, Introduction to Complex Analysis, Oxford University Press Tristan Needham, Visual Complex Analysis, Oxford University Press(1999)
5. V. Karunakaran, Complex Analysis, Narosa Publishing House,

Course	FUNCTIONAL ANALYSIS
Course code	16P2MATTO9
Semester	2
Total hours	75
Credits	4
Faculty	Prof. M P Sebastian

Course Outcomes

CO1	Understand the basics of Functional analysis	PO1, PSO1
CO2	Apply Functional analysis in the other disciplines.	PO1, PSO1
CO3	Understand theory of Operators and Functionals using Linear Algebra.	PO1, PSO1
CO4	Discover the link of Functional analysis with geometry, differential equations etc.	PO1, PSO1

CO -PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	2						2			
CO 2	2						1			
CO 3	2						2			
CO 4	2						2			
CO 5	2						2			

Mapping Strength

0 - No Mapping strength
1- Low
2- Medium
3- High

SI.No	No. of Session s/hrs	Topics to be taught	Method of teaching	co	Value addition
1	1	Fundamentals of Linear Algebra and Metric spaces.	Lecture, Seminar, Assignment	CO3,CO1	
2.	3	Normed space and Banachspace, examples and their properties, problems.	Lecture, assignment	CO1,CO3	
3	2	Finite dimensional normed spaces and their sub spaces, problems.	Lecture	CO1,CO3	
4	2	Compactness and finite dimension, problems.	Lecture	CO1,CO3	
5	2	Linear operators, examples and their properties, problems.	Lecture, assignment	CO1, CO2,CO3	
6		Test paper.			

7	2	Bounded and continuous linear operators and examples.	Lecture	$\begin{aligned} & \mathrm{CO} 1, \mathrm{CO} 2, \\ & \mathrm{CO} 4 \end{aligned}$
8	2	Problems based on bounded linear operators.	Lecture	$\begin{aligned} & \mathrm{CO} 1, \mathrm{CO} 3, \\ & \mathrm{CO} 4 \end{aligned}$
9	1	Linear functionals, examples.	Lecture	CO1, CO3
10		First internal		
11	2	Bounded linear Functionals and their properties, problems.	Lecture	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO3,CO4} \end{aligned}$
12	2	Linear Operators andFunctionals on a finite dimensional normed space, problems.	Lecture, assignment	$\begin{aligned} & \mathrm{CO} 1, \mathrm{CO} 2 \\ & \text {,CO3 } \end{aligned}$
13	2	Normed space of Operators and Functionals.	Lecture, assignment	$\begin{aligned} & \text { CO1, CO2 } \\ & \text {,CO3 } \end{aligned}$
14	2	Examples of dual spaces.	Lecture	$\begin{aligned} & \mathrm{CO} 1, \mathrm{CO} 2, \\ & \mathrm{CO} 3 \end{aligned}$
15		Test paper on module 2		
16	2	Inner product spaces and Hilbert spaces, examples, problems.	Lecture	$\begin{aligned} & \mathrm{CO} 2, \mathrm{CO} 3, \\ & \mathrm{CO} 4 \end{aligned}$
17	2	Further properties of inner product spaces.	Lecture , seminar	CO2, CO4
18	2	Orthogonal complement and direct	Lecture	CO2, CO3

		sum, problems.			
19	2	Orthogonal sets and sequences.	seminar	$\begin{aligned} & \mathrm{CO}, \mathrm{CO} 3, \\ & \mathrm{CO} 4 \end{aligned}$	
20	2	Bessel inequality, Gram- Schmidt process for ortho normalisation.	Lecture, seminar	$\mathrm{CO} 2, \mathrm{CO} 3$	
21	2	Total ortho normal sets and sequences , problems.	Lecture, seminar, assignment	$\begin{aligned} & \mathrm{CO} 2, \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$	
22	2	Rieszs theorem.	seminar	CO2, CO3	
23	2	Sesqui linear functional and Riesz representation theorem.	Lecture, seminar	CO2, CO3	
24	3	Problems based on Riesz theorem and Riesz representation theorem.	Lecture	$\mathrm{CO} 2, \mathrm{CO} 3$	
25	3	Hilbert adjoint and its properties.	Lecture, seminar	$\begin{aligned} & \mathrm{CO} 2, \mathrm{CO} 3 \\ & \text {,CO4 } \end{aligned}$	
2	3	Problems based on Hilbert adjoint operators.	Lecture, assignment , seminar	$\begin{aligned} & \mathrm{CO}, \mathrm{CO} 3, \\ & \mathrm{CO} 4 \end{aligned}$	
27	3	Self adjoint, normal and unitary operators, problems.	Lecture, assignment	CO1, CO2	
28		Test paper on module 3.			

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 29 & 2 & \text { Zorns Lemma and its applications. } & \text { Lecture } & \text { CO1, CO3 } & \\ \hline 30 & 2 & \begin{array}{l}\text { Hahn Banach theorem for real vector } \\ \text { space. }\end{array} & \text { Lecture } & \text { CO1, CO2, } \\ \text { CO3 }\end{array}\right]$.

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)	Course Outcome
1	$2 / 1 / 2019$	PROBLEMS FROM MODULE 1	CO 1
2	$29 / 1 / 2019$	PROBLEMS FROM MODULE 2	CO 2

GROUP ASSIGNMENTS/ACTIVITES - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)	Course Outcome
$\mathbf{1}$	$5 / 2 / 2019$	PROBLEMS FROM MODULE-4	CO 3

Text book : Introductory Functional Analysis with applications
AUTHOR: ERWIN KREYSZIG, Wiley Classic Library Edition Published 1989
REFERENCES: i) DAY M M , normed linear spaces $3^{\text {rd }}$ edn
ii) TAYLOR A E, introduction to functional analysis

COURSE PLAN-REAL ANALYSIS

PROGRAMME	M.Sc. MATEMATICS	SEMESTER	2
COURSE CODE AND TITLE	16P2MATT10: REAL ANALYSIS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	Dr. DIDIMOS K. V.		

CO	CO Statement	PO/PSO	CL	KC	Class Hrs.	Lab Hrs.
CO1	Studying functions of bounded variations, rectifiable curves, paths and equivalence of paths.	PO1/PSO 1	U	C	12	0
CO2	Developing the ideas of Riemann-Stieljes integral and studying integration and differentiation.	PO1/PSO 1	U	C	25	0
CO3	Assimilating the ideas of uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation.	PO1/PSO 1	U	C	15	0
CO4	Analysing power series, exponential and trigonometric functions.	PO1/PSO 1	U C	23	0	

CO -PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	2						2			
CO 2	2						1			
CO 3	2						2			
CO 4	2						2			
CO 5	2						2			

Mapping Strength
0 - No Mapping strength
1- Low
2- Medium
3- High

No of Hours	Topic	Method	Course Outcome
1	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture, Group Discussion, Problem Solving Lecture	$\begin{aligned} & \mathrm{CO} / \mathrm{l} \\ & \mathrm{CO} / \\ & \mathrm{CO} / \\ & \mathrm{CO} 4 \end{aligned}$
2	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture, Group Discussion, Problem Solving Lecture	$\begin{aligned} & \mathrm{CO} / \mathrm{l} \\ & \mathrm{CO} / \mathrm{I} \\ & \mathrm{CO} / \\ & \mathrm{CO} 4 \end{aligned}$
3	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture, Group Discussion, Problem Solving Lecture	$\begin{aligned} & \mathrm{CO} / \mathrm{l} \\ & \mathrm{CO} / \\ & \mathrm{CO} / \\ & \mathrm{CO} 4 \end{aligned}$

4	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture, Group Discussion, Problem Solving Lecture	$\begin{aligned} & \mathrm{CO} / \mathrm{l} \\ & \mathrm{CO} / 2 \\ & \mathrm{CO} / \\ & \mathrm{CO} / \end{aligned}$
5	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture, Group Discussion, Problem Solving Lecture	$\begin{aligned} & \mathrm{CO} / \mathrm{l} \\ & \mathrm{CO} / \mathrm{I} \\ & \mathrm{CO} / \\ & \mathrm{CO} 4 \end{aligned}$
6	Introduction properties of monotonic functions	Lecture, Group Discussion, Problem Solving	CO1
7	Introduction properties of monotonic functions	Lecture, Group Discussion, Problem Solving	CO1
8	functions of bounded variation	Lecture, Group Discussion, Problem Solving	CO1
9	functions of bounded variation	Lecture, Group Discussion, Problem Solving	CO1
10	total variation	Lecture, Group Discussion, Problem Solving	CO1
11	total variation	Lecture, Group Discussion, Problem Solving	CO1
12	additive property of total variation	Lecture, Group Discussion, Problem Solving	CO1

13	additive property of total variation	Lecture, Group Problem Solving	Discussion,	CO1
14	total variation on (a, x) as a functions of x	Lecture, Group Problem Solving	Discussion,	CO1
15	total variation on (a, x) as a functions of x	Lecture, Group Problem Solving	Discussion,	CO1
16	functions of bounded variation expressed as the difference of increasing functions	Lecture, Group Problem Solving	Discussion,	CO1
17	functions of bounded variation expressed as the difference of increasing functions	Lecture, Group Problem Solving	Discussion,	CO1
18	continuous functions of bounded variation	Lecture, Group Problem Solving	Discussion,	CO1
19	continuous functions of bounded variation	Lecture, Group Problem Solving	Discussion,	CO1
20	curves and paths	Lecture, Group Problem Solving	Discussion,	CO1
21	curves and paths	Lecture, Group Problem Solving	Discussion,	CO1
22	rectifiable path and arc length	Lecture, Group Problem Solving	Discussion,	CO1

23	rectifiable path and arc length	Lecture, Group Problem Solving	Discussion,	CO1
24	additive and continuity properties of arc length	Lecture, Group Problem Solving	Discussion,	CO1
25	equivalence of paths	Lecture, Group Problem Solving	Discussion,	CO1
26	Definition and existence of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
27	Definition and existence of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
28	Definition and existence of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
29	Definition and existence of the integral	Lecture, Group Problem Solving	Discussion,	CO2
30	Definition and existence of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
31	properties of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
32	properties of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
33	properties of the integral	Lecture, Group Problem Solving	Discussion,	CO 2

34	properties of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
35	properties of the integral	Lecture, Group Problem Solving	Discussion,	CO 2
36	Integration and differentiation	Lecture, Group Problem Solving	Discussion,	CO 2
37	Integration and differentiation	Lecture, Group Problem Solving	Discussion,	CO 2
38	Integration and differentiation	Lecture, Group Problem Solving	Discussion,	CO 2
39	Integration and differentiation	Lecture, Group Problem Solving	Discussion,	CO 2
40	Integration and differentiation	Lecture, Group Problem Solving	Discussion,	CO 2
41	integration of vector valued functions	Lecture, Group Problem Solving	Discussion,	CO 2
42	integration of vector valued functions	Lecture, Group Problem Solving	Discussion,	CO 2
43	integration of vector valued functions	Lecture, Group Problem Solving	Discussion,	CO 2
44	integration of vector valued functions	Lecture, Group Problem Solving	Discussion,	CO 2

45	integration of vector valued functions	Lecture, Group Problem Solving	Discussion,	CO 2
46	Discussion of main problem	Lecture, Group Problem Solving	Discussion,	CO 3
47	Discussion of main problem	Lecture, Group Problem Solving	Discussion,	CO 3
48	uniform convergence	Lecture, Group Problem Solving	Discussion,	CO 3
49	uniform convergence	Lecture, Group Problem Solving	Discussion,	CO 3
50	uniform convergence	Lecture, Group Problem Solving	Discussion,	CO 3
51	uniform convergence	Lecture, Group Problem Solving	Discussion,	CO 3
52	uniform convergence	Lecture, Group Problem Solving	Discussion,	CO 3
53	uniform convergence	Lecture, Group Problem Solving	Discussion,	CO 3
54	uniform convergence and continuity	Lecture, Group Problem Solving	Discussion,	CO 3
55	uniform convergence and continuity	Lecture, Group Problem Solving	Discussion,	CO 3

56	uniform convergence and continuity	Lecture, Group Problem Solving	Discussion,	CO3
57	uniform convergence and continuity	Lecture, Group Problem Solving	Discussion,	CO 3
58	uniform convergence and continuity	Lecture, Group Problem Solving	Discussion,	CO3
59	uniform convergence and integration	Lecture, Group Problem Solving	Discussion,	CO 3
60	uniform convergence and integration	Lecture, Group Problem Solving	Discussion,	CO 3
61	uniform convergence and integration	Lecture, Group Problem Solving	Discussion,	CO 3
62	uniform convergence and differentiation	Lecture, Group Problem Solving	Discussion,	CO 3
63	uniform convergence and differentiation	Lecture, Group Problem Solving	Discussion,	CO 3
64	uniform convergence and differentiation	Lecture, Group Problem Solving	Discussion,	CO 3
65	uniform convergence and differentiation	Lecture, Group Problem Solving	Discussion,	CO 3
66	the Stone-Weierstrass theorem (without proof)	Lecture, Group Problem Solving	Discussion,	CO 3

67	Power series	Lecture, Group Problem Solving	Discussion,	CO 4
68	the exponential and logarithmic functions	Lecture, Group Problem Solving	Discussion,	CO 4
69	the exponential and logarithmic functions	Lecture, Group Problem Solving	Discussion,	CO 4
70	the trigonometric functions	Lecture, Group Problem Solving	Discussion,	CO 4
71	the algebraic completeness of complex field	Lecture, Group Problem Solving	Discussion,	CO 4
72	Fourier series.	Lecture, Group Problem Solving	Discussion,	CO 4
73	Revision	Group Discussion		
74	Revision	Group Discussion		
75	Revision	Group Discussion		

ASSIGNMENTS/EXERCISES - Details \& Guidelines

	Date of submission/completion	Topic of Assignment \& Nature of assignment (Individual/Group Written/Presentation Graded or Non-graded etc)	Course Outcome
1.	12 March 2019	Problems on Real analysis	CO2/CO3

Text Books:

1. Tom Apostol, Mathematical Analysis (second edition), Narosa Publishing House.
2. Walter Rudin, Principles of Mathematical Analysis (Third edition), International Student Edition.

Additional Reading List

1.Royden H.L, Real Analysis, 2nd edition, Macmillan, New York.
2. Bartle R.G, The Elements of Real Analysis, John Wiley and Sons.
3. S.C. Malik, Savitha Arora, Mathematical Analysis, New Age International Ltd.
4. Edwin Hewitt, Karl Stromberg, Real and Abstract Analysis, Springer International, 1978.

