SACRED HEART COLLEGE (AUTONOMOUS)

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE IN APPLIED CHEMISTRY - PHARMACEUTICAL

Course plan Academic Year 2018 - 19 Semester 3

PROGRAMME	MSC APPLIED CHEMISTRY -	SEMESTER	3	
TROOMAININE	PHARMACEUTICAL	SEMESTER	J	
COURSE CODE AND	16P3CPHT09: PHARMACEUTICAL	CREDIT	4	
TITLE	CHEMISTRY - I	CREDIT	4	
HOURS/WEEK	4	HOURS/SEM	72	
FACULTY NAME	DR. JINU GEORGE, DR. GRACE THOMAS, DR. IGNATIOUS			
FACULITINAIVIE	ABRAHAM, DR. RAMAKRISHNAN S			

Course Objectives

To describe the Drug design, Pharmacology, mechanism of action of drugs

To interpret the receptor theories and bio-transformation of drugs.

To know the structure, synthesis, pharmacological and mechanism of action and SAR of Antiinfective agents.

To know the structure, synthesis, pharmacological and mechanism of action and SAR of Drugs acting on CVS

To know the structure, synthesis, pharmacological and mechanism of action and SAR of Chemotherapeutic agents

To know the structure, synthesis, pharmacological and mechanism of action and SAR of Antipyretics and NSAIDs

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I : Pharmacology	/ (12h)		
1	Drugs and Drug targets. Enzymes: active sites, mechanism of catalysis	РРТ	video	
2	Enzyme inhibitors, Enzyme selectivity, Receptors ligand gated ionic channels	PPT/Lecture		
3	G-Protein coupled receptors, Kinase linked receptors	PPT/Lecture		
4	Carrier Proteins, Structural Proteins, Nucleic acids, Lipids and carbohydrates and DNA as drug targets		e-resource	
5	Structure activity relationship, Binding interactions, Functional groups as binding	PPT/Lecture	Q & A Session	

	groups			
6	Concept and definition of pharmacophore Pharmacokinetic principles: absorption	PPT/Lecture		
7	Distribution, metabolism and excretion of drugs.	Lecture		
8	Dose of drugs and routes of administration. Drug dosing, drug half life, Steady state concentration, Drug tolerance, Bioavailability, Drug delivery	Lecture		
	First Internal Examinat	ion		
9	Pharmacodynamic principles : Examples of agonists, allosteric modulators, Antagonists, Partial agonists, Inverse agonists			
10	Desensitization and sensitization, Tolerance and dependence, Affinity, efficacy and potency.	Lecture		
11	Dose response relationships, unusual and adverse responses of drugs	PPT/Lecture		
12	Structurally specific and nonspecific drugs. Ferguson's principle.	PPT/Lecture	Q & A Session	
	Second Internal Examina	ation		
	MODULE II : Toxicology and Biotransfe	ormations (12	h)	
13	Receptor theories and receptor models- rate theory	PPT/Lecture		
14	Occupancy and induced fit theory	PPT/Lecture		
15	Activation-aggregation and molecular petrubation theories	PPT/Lecture		
16	General concepts of toxicity, Acute, subacute & chronic toxicity tests	Lecture	Q & A Session	
17	Teratogenicity & carcinogenicity,, LD50, ED50	Lecture		
18	MIC- anti infectives, habituation & addiction	Lecture		
19	Factors affecting biotransformation, site of biotransformations	Lecture		
20	Effect of biotransformation on the biological activity of drugs	PPT/Lecture		
	First Internal Examinat	ion		
21	Biotransformation-Oxidation, reduction,	PPT/Lecture		

	hydroxylation, hydrolysis			
22	Reactions and mechanism with specific drug	PPT/Lecture		
	molecules			
23	PhaseII biotransformations -gluconideration,	PPT/Lecture		
	sulfation, conjugation with glutathione			
	acetylation methylation- illustrate with suitable			
	drug molecules			
24	Chemical and pharmacological roles of Phase I	Lecture	Q & A	
	& phase II transformations.		Session	
	Second Internal Examina	ation		
	MODULE III : Anti-Infective ag	ents (12h)		
25	Sulphonamides- structure, chemistry, SAR and	Lecture		
25	mechanism of action Sulfadiazine	Lecture		
	Sulfamethoxole, sulfones,			
26	cotrimoxazole(sufamethoxole+ trimethoprim.)	Lecture		
	Zwitter ion.			
27	Sulfonamides: Synthesis of: Sufadiazine,	Lecture		
/	sufamethoxole			
28	Synthesis of pyrimethamine, Dapsone	Lecture		
29	Antifungal agents: study of Amphotrcine B,	PPT/Lecture		
	grisofulvin physical and chemical properties			
30	Study of nystatin, ketoconazole, clotrimazole,	PPT/Lecture		
	flucoconozole, 5-flucytosine	-		
	Antiprotozoal agents: Chemistry, mechanism of			
31	action and therapeutic uses of Anti Amoebic	PPT/Lecture		
	and Antihelmintics			
32	Antiviral drugs- mode of action and therapeutic	PPT/Lecture		
	uses			
	First Internal Examination			
33	Chemistry and mechanism of action of	PPT/Lecture	Q & A	
	amatidine, Ribavirin.		Session	
34	Chemistry and mechanism of action of	PPT/Lecture		
	Abacavir, acyclovir, ositamvir, vidarabin	-		
-	Chemistry and mechanism of action of			
35	Ganciclovir, fosfonet, combivir. Synthesis of –,	PPT/Lecture		
	Sulphanilamide, Dapsone, Grisofulvin			

36	Synthesis of 5-flucytosine, acyclovir, Adefovir, Combivir, Didanisine, ganciclovir	Lecture	Quiz				
	Second Internal Examina	ation					
	MODULE IV : Drugs Acting on CVS (12 h)						
37	Pharmacology and SAR of Cardiotonic drugs: cardiac glycosides chemistry of digoxin and digitoxin		Q & A Session				
38	Synthesis of Dobutamide, milrinone Antiarrhythmic drugs:quinidine, disopyramide, lidocaine, phenytoin and procainamide						
39	β-blockers-propranolol. Calcium channel blockers-verapamil synthesis of lidocaine , phenetoin, bretilium. Neurone blockers - bretilium	PPT/Lecture					
40	Antihypertensive Drugs: peripheral antiadrenergics-prazosin and terazosin. Reserpine, clonidine and methyldopa. β- atenolol and labetalol	PPT/Lecture					
41	Calcium channel blockers-nifedipine and amlodipine. ACE inhibitors-captopril	PPT/Lecture					
42	Angiotensin receptor blockers-losartan. Diuretics-thiazide diuretics	Lecture					
43	Synthesis of: captopril, methyl DOPA, amlodepine. Antianginal drugs: vasodilators- nitrites and nitrates, β-blockers-propranolol	PPT/Lecture					
44	Calcium channel blockers-verapamil and nifedipine. Miscellaneous-dipyridamoland aspirin	PPT/Lecture					
	First Internal Examinati	ion					
45	Synthesis : verapamil. Anticoagulants: heparin	PPT/Lecture					
46	Coumarin derivatives and indanedione derivatives	PPT/Lecture					
47	Antilipidemic agents: Statins- lovastatin,simvastatin, fluvastatin	PPT/Lecture	Quiz				
48	Synthesis of fluvastatin. Fibrates-clofibrate, and cholestyramine resin.	PPT/Lecture					

Second Internal Examination						
	MODULE V : Chemotherapeutic Agents (12 h)					
49	Antibiotics- Classification, mechanism of action	PPT/Lecture				
49	and therapeutic uses penicillin	FF I/Lecture				
50	Cephalpsporins, Quinolones, Aminoglycosides,	PPT/Lecture				
	Carbapenems, macrolide and others					
51	Antibiotic resistance mechanism and	PPT/Lecture				
	implications in therapeutics Synthetic studies of :Penicillin V, Cefotaxim,					
	Meropenem, Streptomycin, Ciprofloxacin,	PPT/Lecture	Video			
	Trimethoprim		VIGCO			
	Chemotherapy of Tuberculosis: First line Drugs					
53	and second line drugs- chemistry	PPT/Lecture				
	Pharmacology					
54	The problem of MDR tuberculosis. Recent	PPT/Lecture				
i	innovations. Synthesis of isoniazid	,				
55	Synthesis of pyrazinamide, ethionamide,	PPT/Lecture				
	paraaminosalicylic acid.					
	Antimalerials : Chemotherapy of Malaria, mode of action of the various classes of drugs	Lecture				
	used, Chemistry, SAR and Drug resistance	Lecture				
	Study of the following drugs in the treatment ,					
57	efficacy , problem of side effects of	PPT/Lecture	Quiz			
	Quninesulphate, Chloroquine, primaquine					
58	Mephloquine, quinacrine ,proguanil, plaquenil	PPT/Lecture				
	Second Internal Examina	ition				
	Drug combinations in the therapy of Malarial	_				
	parasite. Treatment of drug resistant malaria,	PPT/Lecture				
	recent progress					
60	Synthetic studies of chloroquine, primaquine,	PPT/Lecture				
	CIA-II					
	MODULE VI : Analgesics, Antipyretics & Anti	infammatory	drugs (12h)			
Mechnism of action and SAR of: Different						
61	types of analgesia	PPT/Lecture				
62	Narcotic analgesics - morphine and codeine,	PPT/Lecture				

	Phenyl(ethyl) piperidines,		
	Diphenylheptanones, fentanyl analogues,		
	nalfurafine		
63	Antipyretics and NSAIDs: Basic idea of COX I &	Lecture	Demo
05	II linhibitors	Lecture	video
64	Salicylates - aspirin, p-aminophenol	Lecture	
04	derivatives-paracetamol, phenacetin	Lecture	
66	Pyrazolidinediones – Phenylbutazone,	Lecture	
00	Anthranilicacid derivatives – Flufenamicacid	Lecture	
	Indoleacetic acid derivatives-indomethacin,		
67	Arylacetic/ Propionicacid derivatives –	PPT/Lecture	
	ibuprofen and Ketoprofen)		
68	Arylacetic/ Propionicacid derivatives	PPT/Lecture	
00	flubiprofen and diclofenac		
69	Oxicams – tenoxicam, Drugs used for gout -	PPT/Lecture	
00	allopurinol, Colchicine, Pegloticase		
	Antiinflammatory: Sulindac, Naproxen, Novel		
70	Analgesics: Funapide, Raxatrigine (Structure	Lecture	Quiz
	only).		
	Second Internal Examina	ition	
	Synthesis of the following drugs-levorphanol,		
71	pethidine, methadone, phenyl butazone,	PPT/Lecture	
	flufenamic acid		
72	Synthesis of Diclofenac, tenoxicam, allopurinol	PPT/Lecture	
, 2	and Codeine, Ketoprofen, Naproxen		

ſ			Topic of Assignment & Nature of
		Date of	assignment (Individual/Group –
		completion	Written/Presentation – Graded or Non-
			graded etc)
Ī	1	08/10/2018	Synthesis of Anti-infective agents
Ī	2	07/11/2018	SAR of drugs used as antipyretics

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of assignment (Individual/Group –		
	completion	Written/Presentation – Graded or Non-	
		graded etc)	
1	06/11/2018	Previous CSIR questions (Group activity)	

References

01. G. Patrick, Medicinal Chemistry, BIOS. 2001.

02. T. Nogrady, D.F. Weaver, Medicinal Chemistry, Oxford University Press, 2005.

03. W.O. Foye, T.L. Lemke, D.A. Williams, Principles of Medicinal Chemistry, 4thEdn., Williams & Wilkins, 1995.

04. J.P. Remington, Remington's Pharmaceutical Sciences, Vol.13, , 19th Edn., Mack, 1990.

05. D. Sriram , P. Yogeswari, Medicinal Chemistry, Pearson Education India, 2010.

06. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edn., Jaypee, 2008

07. L.S. Goodman, A. Gillman, The Pharmacological Basis of Therapeutics, 10thEdn., McGraw Hill, 2001.

08. S.S. Kadam, Principles of Medicinal Chemistry, Vol.I& II, Pragati Books, 2008.

09. A. Kar, Medicinal Chemistry, New Age International, 2007.

10. C.O. Wilson, J.M. Beale, J.H. Block, Textbook of Organic Medicinal and

Pharmaceutical Chemistry, 12th Edn., Lippincott Williams and Wilkins, 2010

PROGRAMME	MSC APPLIED CHEMISTRY - PHARMACEUTICAL	SEMESTER	3
COURSE CODE AND TITLE	16P3CPHT10 and ORGANIC SYNTHESES	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	DR. JOSEPH T MOOLAYIL, DR. V.S SEBASTIAN, DR.		
	FRANKLIN J, DR.GRACE THOMAS		

Course Objectives

To describe the applications of oxidation and reduction techniques in organic syntheses.

To illustrate modern synthetic methods and applications of reagents.

To explain different methods for the construction of carbocyclic and heterocyclic ring systems.

To understand the principles and applications of protecting groups in chemistry.

To apply retrosynthetic analysis to design the synthesis of a target molecule.

To understand the concept of molecular recognition and supramolecular chemistry

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	Unit 1 : Organic Synthesis via Oxidation an	d Reduction (18 hours)	
1	Survey of organic reagents and reactions in organic chemistry with special reference to oxidation and reduction.	РРТ	video	
2	Metal based and non-metal based oxidations of alcohols to carbonyls (Chromium, Manganese)	PPT/Lecture		
3	Metal based and non-metal based oxidations of alcohols to carbonyls(aluminium and DMSO based reagents)	PPT/Lecture		
4	Alkenes to epoxides (peroxides/per acids based)-	PPT/Lecture	Assignment	
5	Sharpless asymmetric epoxidation.	PPT/Lecture		
6	Jacobsen epoxidation, Shi epoxidation	PPT/Lecture		

7	Alkenes to diols (Manganese and Osmium based)-	Lecture		
8	Prevost reaction	Lecture		
9	Woodward modification	Lecture		
10	Alkenes to carbonyls with bond cleavage (Manganese and lead based, ozonolysis)	Lecture		
11	Alkenes to alcohols/carbonyls without bond cleavage	PPT/Lecture		
12	Hydroboration-oxidation, Wacker oxidation, selenium/chromium based allylic oxidation.	PPT/Lecture	Quiz	
13	Ketones to ester/lactones- Baeyer-Villiger oxidation	Lecture		
14	Catalytic hydrogenation (Heterogeneous: Palladium/Platinum/Rhodium and Nickel. Homogeneous: Wilkinson).	Lecture		
15	Metal based reductions- Birch reduction, pinacol formation, acyloin formation	Lecture		
16	Hydride transfer reagents from Group III and Group IV in reductions - LiAIH4,.	Lecture		
17	DIBAL-H, Red-Al, NaBH4 and NaCNBH3, selectrides	PPT/Lecture		
18	Trialkylsilanes and trialkylstannane. Meerwein- Pondorff-Verley reduction. Baker's yeast	PPT/Lecture		
	Unit 2 : Modern Synthetic Methods and	Reagents (15	Hours)	
19	Baylis-Hillman reaction.	PPT/Lecture		
20	Henry reaction, Nef reaction	PPT/Lecture		
21	Kulinkovich reaction, Ritter reaction	PPT/Lecture		
	First Internal Examinat	ion	•	
22	Sakurai reaction, Tishchenko reaction, Ugi	PPT/Lecture		

PT/Lecture PT/Lecture PT/Lecture PT/Lecture PT/Lecture PT/Lecture	Assignment	
PT/Lecture PT/Lecture PT/Lecture	Assignment	
PT/Lecture PT/Lecture		
PT/Lecture		
-		
PT/Lecture		
PT/Lecture		
PT/Lecture		
ecture		
ecture		
ecture		
ic Ring Syste	ems (12 Hou	rs)
ecture		
PT/Lecture		
PT/Lecture		
PT/Lecture		
PT/Lecture		
	/Lecture /Lecture ture ture Ring Syste ture /Lecture /Lecture	/Lecture /Lecture ture ture ture ture Ring Systems (12 Hou) ture /Lecture //Lecture //Lecture //Lecture //Lecture //Lecture

41	Reformatsky reaction. Construction of Macrocyclic rings-ring closing metathesis.	PPT/Lecture		
42	Formation of heterocyclic rings: 5-membered ring heterocyclic compounds with one or more than one hetero atom like N, S	-		
43	Formation of heterocyclic rings: 5-membered ring heterocyclic compounds with one or more than one hetero atom like O -	Lecture	Quiz	
44	Pyrrole, furan, thiophene,	PPT/Lecture		
45	Imidazole, thiazole and oxazole	PPT/Lecture		
	Unit 4: Protecting group Chemis	try (9 Hours)	II	
46	Protection and deprotection of hydroxy, carboxyl	PPT/Lecture		
47	Carbonyl, and amino groups. Chemo and regio selective protection and deprotection.	PPT/Lecture		
48	Illustration of protection and deprotection in synthesis.	Lecture		
49	Protection and deprotection in peptide synthesis.	PPT/Lecture		
50	common protecting groups used in peptide synthesis	PPT/Lecture		
51	protecting groups used in solution phase	PPT/Lecture		
52	solid phase peptide synthesis (SPPS).	PPT/Lecture		
53	Functional equivalence and reactivity Umpolung.	PPT/Lecture		
54	Role of trimethyl silyl group in organic synthesis	PPT/Lecture		
	Unit 5: Retrosynthetic Analysi	s(9 Hours)	<u> </u>	
55	Basic principles and terminology of reterosynthesis: method.	PPT/Lecture		

56	Synthesis of aromatic compounds, one group	PPT/Lecture	
57	two group C-X disconnections, one group C-C and two group C-C disconnections.	PPT/Lecture	
58	Amine and alkene synthesis: important strategies of retrosynthesis,	PPT/Lecture	Video
59	Functional group transposition, important functional group interconversions.	PPT/Lecture	
60	Important functional group interconversions,	PPT/Lecture	
61	Enantioselective synthesis of Corey lactone	PPT/Lecture	
62	longifolene and luciferin.	PPT/Lecture	
63	Umpolung equivalent – Peterson olefination, enolate formation, Ireland	Lecture	
	Second Internal examination	ation	
	Unit 6: Molecular Recognition and Supramole	cular Chemist	ry(9 Hours)
64	Concept of molecular recognition- host-guest complex formation-	PPT/Lecture	
65	Forces involved in molecular recognition. Molecular receptors:	Lecture	Quiz
66	Cyclodextrins, crown ethers, cryptands, spherands	PPT/Lecture	
67	Tweezers, carcerands	PPT/Lecture	
68	cyclophanes, calixarenes.	PPT/Lecture	
69	Importance of molecular recognition in nucleic acids and protein.	PPT/Lecture	
70	Applications of supramolecular complexes in medicine-	PPT/Lecture	
71	targeted drug delivery	PPT/Lecture	
72	Revision	Lecture	

		Topic of Assignment & Nature of	
	Date of	assignment (Individual/Group –	
	completion	Written/Presentation – Graded or Non-	
		graded etc)	
1	2/10/2018	Retrosynthetic analysis- problems	
2	28/10/2018	Seminar on Reagents	

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Data of	Topic of Assignment & Nature of	
	Date of	assignment (Individual/Group –	
	completion	Written/Presentation – Graded or Non-	
		graded etc)	
1	05/11/2018	Protecting groups (Group Discussion)	

References

- M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.
- F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007.
- W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004.
- J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001.
- R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.

PROGRAMME	MSC APPLIED CHEMISTRY - PHARMACEUTICAL	SEMESTER	3
COURSE CODE AND TITLE	16P3CPHT11: Physical Chemistry III	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME Dr. K B Jose, Dr. Thommachan Xavier, Dr Jorphin Joseph, Dr Jinu George			

COURSE OBJECTIVES
To apply the principles of chemical kinetics in different types of reactions.
To apply the principles of chemical kinetics in different types of solutions and enzyme catalysis.
To analyze the theories of electrochemistry with its applications in measurements.
To describe the chemistry of surfaces and its applications in colloids and macromolecules
To explain the chemistry of light

To explain the chemistry of light

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I : CHEMICAL KINET	ICS I (14h)		
1.	Theories of reaction rates: Collision theory- steric factor, potential energy surfaces.	РРТ	video	
2.	Conventional transition state theory-Eyring equation, Comparison of the two theories.	PPT/Lecture		
3.	Thermodynamic formulation of the two theories, Thermodynamicformulation of the reaction rates.	PPT/Lecture		
4.	Significance of ΔG*, ΔH* andΔS*.Volume of activation. Effect of pressure and volume on velocity of gas reactions.	PPT/Lecture	e-resource	

5.	Introduction to Molecular Reaction Dynamics	PPT/Lecture		
6.	Various types of reaction theories	PPT/Lecture		
7.	Lindemann-Hinshelwood mechanism	Lecture		
8.	Qualitative idea of RRKM theory	Lecture		
9.	Fast reactions: relaxation,Flow and Shock methods,Flash photolysis.			
10.	NMR and ESR a methods of studying fast reactions.	Lecture		
11.	Chain reactions, free radical and chain reactions, Steady state treatment,	PPT/Lecture		
12.	kinetics of H_2 -Cl ₂ and H_2 -Br ₂ reactions	PPT/Lecture		
13.	Rice –Herzfeld mechanism, Branching chains H ₂ -O ₂ , Semenov-Hinshelwood mechanism of explosive reactions.	PPT/Lecture		
14.	Kinetics of polymerization: mechanism of step growth Ionic and addition polymerization Kinetics of anionic and cationic polymerization.	Lecture		
	REVISION			
	MODULE II: CHEMICAL KINETI	CS II (14h)	I	
15.	Reactions in solution: factors determining reaction rates in solutions	РРТ	video	
16.	effect of dielectric constant and ionic strength	PPT/Lecture		
17.	cage effect, Bronsted-Bjerrum equation, primary and secondary kinetic salt effect,	PPT/Lecture		
18.	Influence of solvent on reaction rates, significance of volume of activation linear free energy relationship	PPT/Lecture	e-resource	
19.	kinetic isotope effect	PPT/Lecture		

	Homogenous catalysis -Acid-base catalysis:	PPT/Lecture	
20.	van't Hoff and Arrhenius intermediates for		
20.	prototropic and protolytic mechanisms with		
	examples specific and general catalysis.		
21.	Skrabal diagram, Bronsted catalysis law	Lecture	
22.	Acidity function.	Lecture	
23.	Enzyme catalysis and its mechanism		
24.	Michelis-Menten equation	Lecture	
25.	Effect of pH and temperature on enzyme catalysis.	PPT/Lecture	
		PPT/Lecture	
26.	unimolecular and bimolecular surface reactions,		
	Langmuir-Hinshelwood and Langmuir-Rideal		
	mechanism-		
27.	ARRT of surface reactions-mechanisms of catalyzed reactions like ammonia synthesis,	PPT/Lecture	
28.	hydrogenation of ethylene and catalytic cracking of hydrocarbons and related reactions.	Lecture	
	REVISION		
	MODULE III : ELECTROCHEMIS	TRY I (12h)	
29.	Theories of ions in solution, Ion activity, Ion-ion and ion-solvent interaction	Lecture	
30.	Born's model, Debye-Huckel theory, Ionic atmosphere.	Lecture	
31.	The Debye-Huckel-Onsager conductance equation-its derivation and experimental	Lecture	
J1.	verification		
32.	Validity of DHO equation for aqueous and non- aqueous solutions.	Lecture	
33.	Deviations from DHO conductance equation.	Lecture	
L			

34.	Extension of DHO equation to ion solvent interactions.	PPT/Lecture		
35.	Derivation of Debye-Huckel limiting law.	PPT/Lecture		
36.	Conductance measurements Results of conductance measurements Factors affecting conductance	PPT/Lecture		
37.	Debye Falkenhagen and Wein effects,	PPT/Lecture		
38.	Walden rule, abnormal ionic conductance.	PPT/Lecture		
39.	Electro kinetic effects - electrophoresis, electro osmosis, streaming potential	Lecture		
40.	sedimentation potential – Donnan membrane equilibrium.	Lecture		
	REVISION			
		ND COLLOIDS (18h)	
41.	Gas adsorption at solid surface - influencing factors	PPT/Lecture		
42.	Bonding of adsorbate to solid – adsorption isotherms –	PPT/Lecture		
43.	Langmuir (derivation)	PPT/Lecture		
44.	BET (derivation) Determination of surface area.	Lecture	Quiz	
45.	Spectroscopic techniques for probing solid surfaces	Lecture	Q &Ans Session	
46.	Temperature programmed desorption (TPD)	PPT/Lecture		
47.	Reflection absorption infrared spectroscopy (RAIRS)	PPT/Lecture		
48.	High resolution electron energy loss spectroscopy (HREELS).	PPT/Lecture		
49.	Surface films -Introduction film pressure	PPT/Lecture		

50.	criteria for spreading of one liquid on another	Lecture		
51.	Adsorption from solutions	PPT/Lecture		
52.	Electrostatic adsorption, Gibbs adsorption isotherm (derivation) - verifications.	PPT/Lecture		
53.	Colloids & Micellar systems Types of colloids, Electrical properties of colloids	PPT/Lecture		
54.	Electrical double layer, zeta potential	PPT/Lecture		
55.	Miscelles, and miscellisation	PPT/Lecture		
56.	Structure of miscelles - ionic miscelles.	PPT/Lecture		
57.	Adsorption from solutions - electrostatic adsorption	PPT/Lecture		
58.	Gibbs adsorption isotherm (derivation) - verifications.	PPT/Lecture		
	REVISION			
	MODULE V : PHOTOCHEMIS	TRY (14h)	1	
59.	Laws of Photochemistry	PPT/Lecture		
60.	Grothus –Draper Law, Stark-Einstein's Law, Laws of light absorption, Quantum yield. Chemical actinometry	PPT/Lecture		
61.	Excimers and exciplexes, photosensitization	PPT/Lecture	Video	
62.	chemiluminescence, bioluminescence, thermo luminescence	PPT/Lecture		
63.	Applications in daily life	PPT/Lecture		
64.	pulse radiolysis, hydrated electrons			
65.	photo stationary state, dimerization of anthracene.	Lecture	Debate	
66.	Photo physical processes in electronically excited molecules	PPT/Lecture		

67.	67. Jablonsky diagram Fluorescence and Phosphorescence.			
68.	Quenching of fluorescence and its kinetics	PPT/Lecture		
69.	Stern-Volmer equation, static and dynamic quenching pulse radiolysis, hydrated electrons, photo stationary state, dimerization of anthracene	PPT/Lecture		
70.	Concentration quenching, E-type and P-type. Effect of temperature on emissions,	PPT/Lecture		
71.	Two photon absorption spectroscopies Principle of utilization of solar energy	Lecture	video	
72.	Solar cells and their working. Photochemistry of vision. delayed fluorescence	Lecture		
	Revision			

ſ			Topic of Assignment & Nature of	
		Date of	ate of assignment (Individual/Group –	
		completion	Written/Presentation – Graded or Non-	
			graded etc)	
ſ	1	I CIA	Imaging in medicine	
	2	II CIA	Surface studies relevance in current research	

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of assignment (Individual/Group –		
	completion Written/Presentation – Graded or Non-		
		graded etc)	
1	I INT	Chemistry of vision (Group Discussion)	
2	II INT	Adsorption in industry	

References

- 1. J. Rajaram, J.C. Kuriakose, Kinetics and Mechanisms of Chemical Transformations, Macmillan India, 2000.
- 2. K.J. Laidler, Chemical kinetics, 3rdEdn. Harper & Row, 1987.
- 3. C. Kalidas, Chemical Kinetic Methods: Principles of Fast Reaction Techniques and

Applications, New Age International, 2005.

- 4. J.W. Moore, R.G. Pearson, Kinetics and Mechanisms, John Wiley & Sons, 1981.
- 5. P.W. Atkins, Physical Chemistry, ELBS, 1994.
- 6. D.A. McQuarrie, J.D. Simon, Physiacl chemistry: A Molecular Approach, University Science Books,1997
- 8. K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, 2ndEdn. New Age International, 1986.
- 9. G. Aruldhas, Molecular structure and Spectroscopy, PHI Learning, 2007.
- 10. M.R Wright, An Introduction to Chemical Kinetics, John Interscience-2007
- 11. A.W &Sons, Adamson, A.P. Gast, Physical chemistry of sufaces,6thEdn,John Wiley, 1997
- 12. D.O. Cowan , R.L. Drisko , Elements of Organic Photochemistry, Plenum Press, 1976

PROGRAMME	MSC APPLIED CHEMISTRY -	SEMESTER	2	
PROGRAIVIIVIE	PHARMACEUTICAL	SEIVIESTER	5	
COURSE CODE	16P3CPHT12- SPECTROSCOPIC METHODS	CREDIT	2	
AND TITLE	IN CHEMISTRY	CREDIT	5	
HOURS/WEEK	3	HOURS/SEM	54	
FACULTY NAME DR. JOSEPH T MOOLAYIL, Dr. JUNE CYRIAC				

COURSE OBJECTIVES

To describe the principles of UV-visible, Chiro-optical, IR, NMR and Mass spectroscopic techniques.

To ilustrate various spectroscopic techniques using simple problems.

To elucidate the structure of an unknown organic compound using data from various spectroscopic techniques.

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I : Ultraviolet-Visible and Chirop	tical Spectroso	copy (9h)	
1	Energy levels and selection rules	РРТ	video	
2	Woodward-Fieser Rule	PPT/Lecture		
3	Fieser-Kuhn Rule	PPT/Lecture		
4	Solvent effect, Stereochemical effect-non- conjugated interactions.	PPT/Lecture	e-resource	

5	Applications, Chiroptical properties- ORD	PPT/Lecture		
6	CD, octant rule	PPT/Lecture		
7	Chiroptical properties- ORD	Lecture		
8	Axial haloketone rule, Cotton effect.	Lecture		
9	Problems based on the above topics.	Lecture		
	MODULE II : Infrared Spectro	scopy (9h)		
10	Fundamental vibrations	PPT/Lecture		
11	Characteristic regions of the spectrum	PPT/Lecture		
12	Continued	PPT/Lecture		
13	Influence of substituents, ringsize, hydrogen bonding, vibrational coupling and field effect on frequency.	PPT/Lecture		
14	Continued	PPT/Lecture		
15	Determination of stereochemistry by IR technique.	Lecture		
16	IR spectra of olefins and arenes, - C=C bonds and C=O bonds.	Lecture		
17	Problems-spectral interpretation with xamples.	Lecture		
18	Continued			
CIA-1				
MODULE III: Nuclear Magnetic Resonance Spectroscopy (18h)				
19	A comparison of the NMR phenomena of ¹ H and ¹³ C nuclei.	Lecture		
20	Factors affecting chemical shift -	PPT/Lecture		
21	Relaxation processes, chemical and magnetic	PPT/Lecture		

	non-equivalence		
22	local diamagnetic shielding and magnetic	PPT/Lecture	
	anisotropy.	,	
23	Proton and ¹³ C NMR scales	PPT/Lecture	
24	Spin-spin splitting:AX, AX ₂	Lecture	
25	Scheduling criteria, Scheduling Algorithms AX ₃ , A ₂ X ₃ , AB, ABC, AMX type coupling	Lecture	
26	First order and non-first order spectra - Pascal's triangle	Lecture	
27	Coupling constant - mechanism of coupling,heteronuclear couplings-Karplus curve	Lecture	
28	Quadrupole broadening and decoupling - diastereomeric protons - virtual coupling	PPT/Lecture	
29	Long range coupling-epi, peri, bay effects. NOE - NOE and cross polarization.	PPT/Lecture	
30	Simplification non-first order spectra: shift reagents-mechanism	PPT/Lecture	
31	Spin decoupling-double resonance and off resonance decoupling.	PPT/Lecture	
32	2D NMR, HOMOCOSY and HETEROCOSY	PPT/Lecture	
33	Continued	PPT/Lecture	
34	Polarization transfer.	PPT/Lecture	
35	Problems-Spectral interpretation with examples.	Lecture	Quiz
36	Problems-Spectral interpretation with examples.	Lecture	Q &Ans Session
	MODULE IV : Mass Spectron	netry (9h)	II
37	Molecular ion: ion production methods (EI).	PPT/Lecture	
38	Soft ionization methods: SIMS, FAB, CI, MALDI, Electrospray ionization.	PPT/Lecture	

39	Mass Analysis- Magnetic and electric fields, Quadrupole	PPT/Lecture		
40	TOF and ion trap mass analysers	Lecture		
41	Fragmentation patterns in EI MS	PPT/Lecture		
42	Continued	PPT/Lecture		
43	Nitrogen and ring rules- McLafferty rearrangement - applications.	PPT/Lecture		
44	HRMS, MS-MS, MIKES,CAD, FTMS,LC-MS, GC-MS.	PPT/Lecture		
45	Problems-Spectral interpretation with examples.	PPT/Lecture		
	MODULE V : Structural Elucidation Using Spec	troscopic Tech	nniques (9h)	
46	46 Identification of structures of unknown organic molecules based on the data from IR, ¹ HNMR and ¹³ CNMR spectroscopy and mass spectroscopy			
47	47 Identification of structures of unknown organic molecules based on the data from IR, ¹ HNMR and ¹³ CNMR spectroscopy and mass spectroscopy			
48	Identification of structures of unknown organic molecules based on the data from IR, ¹ HNMR and ¹³ CNMR spectroscopy and mass spectroscopy	PPT/Lecture		
49	Identification of structures of unknown organic molecules based on the data from IR, ¹ HNMR and ¹³ CNMR spectroscopy and mass spectroscopy	PPT/Lecture	Video	
50	Interpretation of the given UV-Vis, IR NMR and mass spectra.	PPT/Lecture		
51	Interpretation of the given UV-Vis, IR NMR and mass spectra.	PPT/Lecture		
52	Interpretation of the given UV-Vis, IR NMR and			
·	•	•	•	

	mass spectra.			
53	Interpretation of the given UV-Vis, IR NMR and mass spectra.	Lecture		
54	Interpretation of the given UV-Vis, IR NMR and mass spectra.	PPT/Lecture		
	CIA II			

Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)		
2/9/2018	Problems on Spectral interpretation		
28/10/2018	Identification of structures of unknown organic molecules based on the data from IR, ¹ HNMR and ¹³ CNMR spectroscopy and mass spectroscopy		

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

ſ			Topic of Assignment & Nature of	
Date of assignment (Individual/Group –		assignment (Individual/Group –		
completion Written/Presentation – Graded or Non-		Written/Presentation – Graded or Non-		
			graded etc)	
	1	09/11/2018	Interpretation of the given UV-Vis, IR NMR and	
	1 09/11/2018		mass spectra.	

References

- 1. D.L. Pavia, G.M. Lampman, G.S.Kriz, *Introduction to Spectroscopy: A Guide for Students of Organic Chemistry* (3rd Ed.), Thomson. 2004.
- 2. W. Kemp, *Organic Spectroscopy*, 2nd edition, ELBS-Macmillan, 1987.
- 3. D. Nasipuri, *Stereochemistry of Organic Compounds: Principles and Applications*, Third Edition, New Age Publications, New Delhi, 2010.
- 4. D.F.Taber, Organic Spectroscopic Structure Determination: A Problem Based Learning Approach, Oxford University Press, 2009.
- 5. R. M. Silverstein, G.C. Bassler, T. C. Morril, *Spectroscopic Identification of Organic Compounds*, John Wiley, 1991.

- 6. D. H. Williams, I. Fleming, *Spectroscopic Methods in Organic Chemistry*, Tata McGraw Hill, 1988.
- 7. F. Bernath, Spectra of Atoms and Molecules, 2nd Edition, Oxford University Press, 2005.
- 8. E. B. Wilson, Jr., J. C. Decius, P. C. Cross, *Molecular Vibrations: The Theory of Infrared and Raman Spectra*, Dover Publications, 1980.
- 9. Atta-Ur-Rahman, M.I. Choudhary, *Solving Problems with NMR Specroscopy*, Academic Press, New York, 1996.
- 10. L. D. Field, S.Sternhell, J. R. Kalman, *Organic Structures from Spectra* (fourth edition), Wiley, 2008.
- 11. Online spectroscopy problems and solutions like www.orgchem.collarado.edu/Spectroscopy/Problems www.chem.ucla.edu/webSpectra