SACRED HEART COLLEGE (AUTONOMOUS)

Department of Chemistry

MSc Chemistry - Pharmaceutical

Course Plan

Academic Year 2018-19

Semester One

PROGRAMME OUTCOMES

PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development.
PO 4	The students possess an ethical view of life, and have a broader (global) perspective transcending the provincial outlook.
PO 5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

PROGRAMME SPECIFIC OUTCOMES

Knowled	lge and Understanding			
PSO1	Demonstrate an in-depth knowledge and understanding of the principles of Inorganic, Organic, Physical and Theoretical Chemistry.			
PSO2	Demonstrate an awareness of the relevance of chemistry in a wider multi-disciplinary context.			
Intellect	ual Abilities			
PSO3	Apply their understanding in Chemistry to design solutions to unfamiliar problems in Chemistry and those involving other related disciplines.			
PSO4	Use their knowledge and understanding to conceptualize appropriate models and representations.			
Practical Skills				
PSO5	Design and conduct analytical, modelling and experimental investigations in Inorganic, Organic, Physical and Theoretical Chemistry.			
Professi	onal Skills			
PSO6	Ability to identify, design and conduct appropriate experiments, interpret data obtained, draw pertinent conclusions and communicate all these effectively.			

COURSE STRUCTURE

Course Code	Title Of The Course	No. Hrs./Wee k	Credi ts	Total Hrs./Sem
16P1CPHT01	Inorganic Chemistry I	4	4	72
16P1CPHT02	Basic Organic Chemistry	4	4	72
16P1CPHT03	Physical Chemistry I	3	3	54
16P1CPHT04	Quantum Chemistry and Group Theory	4	3	72

COURSE 1

PROGRAMME	M.SC. APPLIED CHEMISTRY - PHARMACEUTICAL	SEMESTER	1
COURSE CODE AND TITLE	16P1CPHT01 AND INORGANIC CHEMISTRY I	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	DR. RAMAKRISHNAN S (RKS), DR. THOMMACH MR. MIDHUN DOMINIC C D (MDCD) & M DEVASSYKUTTY (SD)	• •	

	COURSE OUTCOME	POS / PSOS	CL
CO1	Explain stability of organometallic compounds and clusters, and their application as industrial catalysts.	PO 1 PSO 4	A
CO2	Describe the key concepts of inorganic and organometallic chemistry including those related to synthesis, reaction chemistry, and structure and bonding.	PO 1 PSO 1	U
СО3	Demonstrate a systematic understanding of the key aspects of nuclear chemistry and their analytical applications.	PO 1 PSO 1	U
CO4	Recognize and explain the interaction of different metal ions with biological ligands.	PO 1 PSO 1	U

CL* Cognitive Level

CO -PO/PSO Mapping

Б

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2									1		
CO2	3						2					
CO3	3						1					
CO4	2						1					

UNIT :	1: ORGANOMETALLIC COMPOUNDS-SY	NTHESIS, STRUCTURE A	ND BONDIN	G (18H)
SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
1.	Introduction to organometallic compounds. Hapto nomenclature of organometallic compounds and 16 and 18 electron rule	Conventional Lecture using Chalk and Board and ICT -PPT	Q & A Session	CO1
2.	Organometallic compounds with linear pi donor ligands-olefins - synthesis, structure and bonding.	Conventional Lecture using Chalk and Board and ICT -PPT		CO1
3.	Organometallic compounds with linear pi donor ligands- acetylenes, synthesis, structure and bonding.	Conventional Lecture using Chalk and Board and ICT -PPT		CO1
4.	Organometallic compounds with linear pi donor ligands-dienes synthesis, structure and bonding.	Conventional Lecture using Chalk and Board and ICT -PPT		CO1
5.	Organometallic compounds with linear pi donor ligands-allyl complexes-synthesis, structure and bonding	Conventional Lecture using Chalk and Board and ICT -PPT		C01
6.	Complexes with cyclic pi donors- metallocenes and structure and bonding.	Conventional Lecture using Chalk and Board and ICT -PPT		CO1
7.	Complexes with cyclic pi donors cyclic arene complexes structure and bonding.	Conventional Lecture using Chalk and Board and ICT -PPT		CO1
8.	Metal carbene and alkylidenes, carbine and alkylidynes complexes, Fisher- type and Schrock- type complexes.	Conventional Lecture using Chalk and Board and ICT -PPT		C01
9.	Revision	Chalk and Board		CO1
10.	Metal Carbonyls: CO- as a π acid ligand, synergism, Molecular electronic structure and 18-electron rule	Conventional Lecture using Chalk and Board		CO1
11.	Binary Carbonyl complexes- Mononuclear and Binuclear	Conventional Lecture using Chalk and Board		CO1

SESSION TOPIC		structure, bonding in metal carbonyls Bridging modes of CO, Polynuclear metal carbonyls with and without			
carbonylsConventional Lecture using Chalk and Board and ICT -PPTConventional Lecture using Chalk and Board and ICT -PPT12.Ligands similar to CO- Cyanide, carbonylsConventional Lecture using Chalk and Board and ICT -PPTCO113.nitrosyls, dinitrogen, Hydrogen and dihydrogen complexesConventional Lecture using Chalk and Board 		carbonyls Bridging modes of CO, Polynuclear metal carbonyls with and without			
Bridging modes of CO, Polynuclear metal carbonyls with and without bridging, oxygen bonded metal carbonylsConventional Lecture using Chalk and Board and ICT -PPTCO113.Ligands similar to CO- Cyanide, nitrosyls, dinitrogen, Hydrogen and 		Bridging modes of CO, Polynuclear metal carbonyls with and without			
12.metal carbonyls with and without bridging, oxygen bonded metal carbonylsConventional Lecture using Chalk and Board and ICT -PPTCO113.Ligands similar to CO- Cyanide, nitrosyls, dinitrogen, Hydrogen and dihydrogen complexesConventional Lecture using Chalk and Board and ICT -PPTCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and Board and ICT -PPTCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and Board and ICT -PPTCO115.Isoelectronic and isolobal analogy, electrons.Conventional Lecture using Chalk and Board and ICT -PPTCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardquizCO1UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H)SESSIONTOPIC		metal carbonyls with and without			
12.bridging, oxygen bonded metal carbonylsUsing Chaik and Board and ICT -PPTCOT13.Ligands similar to CO- Cyanide, nitrosyls, dinitrogen, Hydrogen and dihydrogen complexesConventional Lecture using Chalk and BoardCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO115.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardCO118.RevisionChalk and BoardCO118.RevisionChalk and BoardQuizCO118.RevisionChalk and BoardQuizCO118.RevisionChalk and BoardQuizCO118.RevisionChalk and BoardQuizCO118.RevisionChalk and BoardQuizCO118.RevisionCotalk and BoardQuizCO1SESSIONTOPICLEARNINGVALUECOURSI		-	Conventional Lecture		
and ICT -PPTand ICT -PPT13.Ligands similar to CO- Cyanide, nitrosyls, dinitrogen, Hydrogen and dihydrogen complexesConventional Lecture using Chalk and BoardCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO115.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardCO118.RevisionChalk and BoardquizCO1UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H)SESSIONTOPICLEARNING	13.	bildging, oxygen bolided metal	using Chalk and Board		CO1
Ligands similar to CO- Cyanide, nitrosyls, dinitrogen, Hydrogen and dihydrogen complexesConventional Lecture using Chalk and Board and ICT -PPTCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO115.Isoelectronic and isolobal analogy, Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardCO118.RevisionChalk and BoardQuizCO118.RevisionChalk and BoardQuizCO1Conventional Lecture using Chalk and BoardCO1CO1CO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardQuizCO1Conventional Lecture using Chalk and BoardCO1CO1Conventional Lecture using Chalk and BoardCO1CO118.RevisionChalk and BoardQuizConventional Lecture using Chalk and BoardQuizCO1Conventional Lecture using Chalk and BoardCO118.RevisionCounceton Chalk and BoardQuizConventional Lecture using Chalk and BoardCO1Conventional Lecture using Chalk and BoardQuiz <t< td=""><td>13.</td><td>carbonyls</td><td>and ICT -PPT</td><td></td><td></td></t<>	13.	carbonyls	and ICT -PPT		
13.nitrosyls, dinitrogen, Hydrogen and dihydrogen complexesusing Chalk and Board and ICT -PPTCO114.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO115.Isoelectronic and isolobal analogy, Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardQuizCO1UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H)COURSICOURSISESSIONTOPICLEARNINGVALUECOURSI	13.		Conventional Lecture		
dihydrogen complexesand ICT -PPT14.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO115.Isoelectronic and isolobal analogy, electrons.Conventional Lecture using Chalk and BoardCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardQuizCO1UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H)SESSIONTOPICLEARNINGVALUE COURSI					CO1
14.Carbonyl clusters-LNCCS and HNCCSConventional Lecture using Chalk and BoardCO115.Isoelectronic and isolobal analogy, Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardquizCO1UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H)SESSIONTOPICLEARNINGVALUECOURSI			0		
15. Isoelectronic and isolobal analogy, Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 16. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 17. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 18. Revision Chalk and Board Quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC	1.4		Conventional Lecture		CO1
15.Wade-Mingos rules, cluster valence electrons.using Chalk and Board and ICT -PPTCO116.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO117.Wade-Mingos rules, cluster valence electrons.Conventional Lecture using Chalk and BoardCO118.RevisionChalk and BoardquizCO1UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H)SESSIONTOPIC	14.	Carbonyl clusters-LNCCS and HNCCS	using Chalk and Board		01
electrons. and ICT -PPT 16. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 17. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 18. Revision Chalk and Board quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC		Isoelectronic and isolobal analogy,	Conventional Lecture		
16. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 17. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 18. Revision Chalk and Board quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC	15.	Wade-Mingos rules, cluster valence	_		CO1
16. electrons. using Chalk and Board CO1 17. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 18. Revision Chalk and Board quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) LEARNING VALUE COURSI					
electrons. using Chalk and Board 17. Wade-Mingos rules, cluster valence electrons. Conventional Lecture using Chalk and Board CO1 18. Revision Chalk and Board quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC	16.	_			CO1
17. electrons. using Chalk and Board CO1 18. Revision Chalk and Board quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC LEARNING VALUE COURSI					
18. Revision Chalk and Board quiz CO1 UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC LEARNING VALUE COURSI	17.	_			CO1
UNIT 2: REACTIONS AND CATALYSIS OF ORGANOMETALLIC COMPOUNDS (18H) SESSION TOPIC LEARNING VALUE COURSE		electrons.	using Chalk and Board		
SESSION TOPIC LEARNING VALUE COURS	18.	Revision	Chalk and Board	quiz	CO1
ISESSION TOPIC	U	JNIT 2: REACTIONS AND CATALYSIS OF	ORGANOMETALLIC CON	IPOUNDS (1	8H)
RESOURCES ADDITIONS OUTCOM	SESSION	TOPIC	LEARNING	VALUE	COURSE
	52551011		RESOURCES	ADDITIONS	OUTCOME
Substitution reactions-nucleophilic Conventional Lecture Q & A	19.		Conventional Lecture	-	CO2
ligand substitution Session		-		Session	
Nucleophilic and electrophilic attack	20		Commentionel Lootune		603
20. on coordinated ligands. Carbonylate Conventional Lecture CO2 anions as nucleophiles.	20.		Conventional Lecture		02
		· · · · · · · · · · · · · · · · · · ·			
21. Addition and elimination reactions- Conventional Lecture CO2	21.		Conventional Lecture		CO2
1,2 additions to double bonds					
22. Carbonylation and decarbonylation Conventional Lecture CO2		1,2 additions to double bonds			
	22.				CO2
	22.				CO2
Oxidative addition and reductive			Conventional Lecture		
23.Oxidative addition and reductive elimination,Conventional LectureCO2		Carbonylation and decarbonylation Oxidative addition and reductive	Conventional Lecture		
Conventional Lecture CO2		Carbonylation and decarbonylation Oxidative addition and reductive	Conventional Lecture		
23. elimination, Conventional Lecture CO2		Carbonylation and decarbonylation Oxidative addition and reductive elimination,	Conventional Lecture		
23. elimination, Conventional Lecture CO2 24. Insertion (migration) and Conventional Lecture CO2	23.	Carbonylation and decarbonylation Oxidative addition and reductive elimination, Insertion (migration) and	Conventional Lecture Conventional Lecture		CO2
23. elimination, Conventional Lecture CO2	23.	Carbonylation and decarbonylation Oxidative addition and reductive elimination, Insertion (migration) and	Conventional Lecture Conventional Lecture		CO2
23. elimination, Conventional Lecture CO2 24. Insertion (migration) and elimination reactions. Conventional Lecture CO2	23.	Carbonylation and decarbonylation Oxidative addition and reductive elimination, Insertion (migration) and elimination reactions.	Conventional Lecture Conventional Lecture Conventional Lecture		CO2 CO2
23.elimination,Conventional LectureCO224.Insertion (migration) and elimination reactions.Conventional LectureCO225.Rearrangement reactionsConventional LectureCO2	23.	Carbonylation and decarbonylation Oxidative addition and reductive elimination, Insertion (migration) and elimination reactions. Rearrangement reactions	Conventional Lecture Conventional Lecture Conventional Lecture		CO2 CO2
23.elimination,Conventional LectureCO224.Insertion (migration) and elimination reactions.Conventional LectureCO225.Rearrangement reactionsConventional LectureCO226.Redistribution reactions, fluxional Conventional LectureCO2	23. 24. 25.	Carbonylation and decarbonylation Oxidative addition and reductive elimination, Insertion (migration) and elimination reactions. Rearrangement reactions Redistribution reactions, fluxional	Conventional Lecture Conventional Lecture Conventional Lecture Conventional Lecture		CO2 CO2 CO2
23. elimination, Conventional Lecture CO2 24. Insertion (migration) and elimination reactions. Conventional Lecture CO2 25. Rearrangement reactions Conventional Lecture CO2 Redistribution reactions Conventional Lecture CO2	23. 24. 25.	Carbonylation and decarbonylation Oxidative addition and reductive elimination, Insertion (migration) and elimination reactions. Rearrangement reactions Redistribution reactions, fluxional	Conventional Lecture Conventional Lecture Conventional Lecture Conventional Lecture		CO2 CO2 CO2

28.	Homogeneous and heterogeneous organometallic catalysis-alkene hydrogenation using Wilkinson catalyst, Tolman catalytic loops	Conventional Lecture		CO2
29.	Reactions of carbon monoxide and hydrogen-the water gas shift reaction	Conventional Lecture		CO2
30.	Reactions of carbon monoxide and hydrogen-the Fischer-Tropsch reaction(synthesis of gasoline).	Conventional Lecture		CO2
31.	Hydroformylation of olefins using cobalt or rhodium catalyst. Synthesis of diethyhexylphthalate.	Conventional Lecture		CO2
32.	Polymerization by organometallic initiators and templates for chain propagation-Ziegler Natta catalysts.	Conventional Lecture		CO2
33.	Carbonylation reactions-Monsanto acetic acid process, carbonylation of butadiene using Co2(CO)8 catalyst in adipic ester synthesis	Conventional Lecture		CO2
34.	Olefin methathesis-synthesis gas based reactions, photodehydrogenation catalyst ("Platinum Pop").	Conventional Lecture		CO2
35.	Palladium catalysed oxidation of ethylene-the Wacker process.	Conventional Lecture		CO2
36.	Revision	Conventional Lecture	Quiz	CO2
	UNIT 3 : NUCLEAR	CHEMISTRY (18H)		
SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
37.	Introduction to Nuclear Chemistry	Conventional Lecture	Q & A Session	CO3
38.	Radioactive decay. Alpha decay- Alpha ray spectrum, Beta decay- Types of beta decay, β +, β -, β -ray spectrum	Conventional Lecture		CO3
39.	Neutrino antineutrino and Positron emission, Dirac theory, pair production, positron-electron annihilation	Conventional Lecture		CO3
40.	Electron capture, double β decay. Gamma decay- de-excitation of excited molecules, change of Energy, spin, parity during photon emission	Conventional Lecture		CO3

			1	
41.	auger electrons and auger effect	Conventional Lecture		CO3
42.	Nuclear reactions. Q-Value and reaction threshold, reaction cross section-definition, and units	Conventional Lecture		CO3
43.	Cross section and reaction rate, neutron capture cross section, variation of neutron cross section with energy(1/V law)	Conventional Lecture		CO3
44.	Photonuclear, Thermonuclear and Fusion reactions, Magnetic confinement, internal confinement.	Conventional Lecture		CO3
45.	Nuclear fission - Fission fragment and mass distribution, fission yield, fission energy, fission cross section and threshold, fission neutrons, prompt and delayed neutrons, fission by high energy neutrons.	Conventional Lecture		CO3
46.	Nuclear Reactors. Fissile and fissionable nuclei, fast and thermal neutrons	Conventional Lecture		CO3
47.	Terms and symbols used in reactor technology- average no. of fission neutrons, fast fission factor, fast neutrons loss factor	Conventional Lecture		CO3
48.	Terms and symbols used in reactor technology- Resonance capture, thermal neutrons loss factor, thermal utilization factor, relative fission cross section, reproduction factor, critical size of reactor. Breeder reactor, fast breeder test reactor.	Conventional Lecture		CO3
49.	Terms and symbols used in reactor technology- Reproduction factor, critical size of reactor. Breeder reactor, fast breeder test reactor.	Conventional Lecture		CO3
50.	Reactor Safety precaution, Management of radioactive waste- Low level Waste, Intermediate level Waste, High level Waste.	Conventional Lecture		CO3
51.	Principles of counting techniques- G.M. counter, proportional, ionization and scintillation counters.	Conventional Lecture		CO3
52.	Applications of radioisotopes. Physico-chemical study-Solubility of sparingly soluble salts	Conventional Lecture	Q & A Session	CO3

53.	,	Conventional Lecture		CO3
	Analysis, Prompt Gama Neutron Activation Analysis and Neutron Absorptiometry.			
54.	Applications of radio isotopes medicine-Thyroiditis, Tumour identification, Determination of volume of blood in patient	Conventional Lecture		CO3
	UNIT 4 : BIOINORGAN	IIC CHEMISTRY (18H)		
SESSION	UNIT 4 : BIOINORGAN TOPIC	IIC CHEMISTRY (18H) LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
SESSION 55.		LEARNING		
	TOPIC Biochemistry of Iron Oxygen Carriers- Structure and functions of	LEARNING RESOURCES Conventional Lecture		OUTCOME

56.	Hemoglobin, cooperativity in haemoglobin.	Lecture With power point presentation	CO4
57.	Bohr effect and phosphate effect. Hemerythrin Structure and function.	Lecture With power point presentation	CO4
58.	RedoxMetalloenzymes-Cytochromes,Classification,Structure and function.	Lecture With power point presentation	CO4
59.	Role in Oxidative Phosphorylation of ADP to ATP. Iron Sulphur Proteins- Rubredoxin, Ferredoxin	Conventional Lecture	CO4
60.	Nitrogenase, Structure and function, Nitrogen Fixation. Peroxidases and catalases	Conventional Lecture	CO4
61.	Cytochrome P450- Structure and functions. Storage and transport of iron in biological systems-Ferritin, transferrin and Siderophores	Conventional Lecture	CO4
62.	Biochemistry of Zn and Copper. Structure and functions of carboxypeptidase and carbonic anhydrase	Conventional Lecture	CO4
63.	Superoxide dismutase. Structure and functions of various Copper proteins and enzymes.	Conventional Lecture	CO4
64.	Blue copper proteins (Type-1) - Electron transfer agents - Plastocyanin, Stellacyanin and Azurin.	Conventional Lecture	CO4

65.	Blue copper Enzymes (Type II) - Ascorbateoxidase, Laccase and ceruloplsmin.	Conventional Lecture		CO4
66.	Non Blue copper enzyme (Type III) - Cytochrome oxidase, Amine oxidases, Structure and functions of Hemocyanin.	Conventional Lecture		CO4
67.	Vitamin B ₁₂ - Structure and biological importance	Conventional Lecture		CO4
68.	Chlorophyll-Photosynthesis, PS I & PS II.	Conventional Lecture		CO4
69.	Therapeutic applications of cis- platin, Mechanism of action, MRI agents	Conventional Lecture		CO4
70.	Mechanism of muscle contraction, blood clotting mechanism.	Conventional Lecture		CO4
71.	Essential and trace elements in biological systems, Toxic effects of metals (Cd, Hg, Cr and Pb)	Conventional Lecture	Q & A Session	CO4
72.	Mechanism of ion transport across membranes, Sodium Potassium pump.	Conventional Lecture		CO4

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group–Written/Presentation–Graded or Non-graded etc.)	Course Outcome
1	18/08/18	Assignment on Redox metalloenzymes, blue copper proteins	CO4
2	22/08/18	Application of metal carbonyls and organometallic compounds	CO2

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc.)	Course Outcome
1	02/08/18	Application of: Radioactivity Fission & fusion	CO3

REFERENCES

- G. Wulfberg, Inorganic Chemistry, Ind. Edition, Viva, 2014.
- Shiver & Atkins, Inorganic Chemistry, 4th Edn. Oxford University Press, 2006.
- K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Cengage Learning 2nd Edn., 2014.
- J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and

Reactivity, 4th Edn., Pearson Education India, 2006.

- F.A. Cotton, G Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1999.
- G.L. Miessler, D. A. Tarr, Inorganic Chemistry 3rd Ed., Pearson Education, 2007.
- B.E. Douglas, D.H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- I. Bertini, H. B Gray, S. J Lippard, J. S Valentine, Bioinorganic Chemistry.
- G. Friedlander, J.W.Kennedy, E.S.Macias, and J.M. Miller, Nuclear and Radiochemistry, John Wiley and Sons, 2nd Ed. 1981.
- H.J. Arnikar, Essentials of Nuclear Chemistry, New Age International,4th Edn., 2011.
- B.R Puri, L.R. Sharma and K.C. Kalia, Principles of Inorganic Chemistry, Milestone, 2011.
- S.N. Goshal, Nuclear Physics, S. Chand and Company, 2006.
- J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Harper Collins College Publishers, 1993.
- F.A. Cotton, G Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1999.
- K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- P. Powell, Principles of Organometallic Chemistry, 2nd Edn., Chapman and Hall, 1988.
- B.E. Douglas, D.H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- B.D. Guptha, A.J Elias, Basic Organometallic Chemistry, Universities Press, 2010.

PROGRAMME	M.SC. APPLIED CHEMISTRY - PHARMACEUTICAL	SEMESTER	1	
COURSE CODE AND TITLE	16P1CPHT02 AND BASIC ORGANIC CHEMISTRY	CREDIT	4	
HOURS/WEEK	4	HOURS/SEM	72	
FACULTY NAME DR. JOSEPH .T. MOOLAYIL (JTM), DR. V.S SEBASTIAN(VSS), DR. FRANKLIN JOHN (FJ) , DR. JUNE CYRIAC (JUC)				

COURSE 2

	COURSE OUTCOME	POS / PSOS	CL
CO1	Explain the basic concepts of organic chemistry.	PO 1 PSO 1	R
CO2	Illustrate the principles of physical organic chemistry.	PO 1 PSO 1	U
CO3	Demonstrate the reactivity and stability of organic molecules based on structure, including conformation and stereochemistry.	PO 1 PSO 3	U
CO4	Recognize the importance of organic photochemical reactions.	PO 1 PSO 4	U

CL* Cognitive Level

CO -PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2						2					
CO2	3						2					
CO3	3								2			
CO4										1		

UNIT 1: BASIC CONCEPTS IN ORGANIC CHEMISTRY (12H)							
SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME			
1.	IUPAC nomenclature of polycyclic, heterocyclic	Conventional Lecture	Q & A Session	CO 1			
2.	Benzenoid, non-benzenoid and spiro compounds.	Conventional Lecture		CO 1			
3.	Review of basic concepts in organic chemistry: Electron displacement effects-inductive effect	Conventional Lecture		CO 1			
4.	Electrometric effect, resonance effect, hyperconjugation, steric effect. Steric inhibition of resonance.	Conventional Lecture		CO 1			
5.	Bonding weaker than covalent bonding- H-bonding, π - π interactions.	Conventional Lecture		CO 1			
6.	Other non-covalent interactions	Conventional Lecture		CO 1			
7.	Concept of aromaticity: delocalization of electrons –Huckel's rule	Conventional Lecture	Q & A Session	CO 1			
8.	Craig rule- criteria for aromaticity - examples of neutral and charged aromatic systems,	Conventional Lecture		CO 1			
9.	Annulenes [10], [14], [18], [22]	Conventional Lecture		CO 1			
10.	Tropolone, Azulene. NMR as a tool for aromaticity	Conventional Lecture		CO 1			
11.	Anti- and homo-aromatic systems– Alternate and non-alternate hydrocarbons	Conventional Lecture		CO 1			
12.	Fullerenes, Carbon nanotubes and Graphene.	Conventional Lecture	Quiz	CO 1			
	Teacher II – JUC : Unit 2: Physical Or	ganic Chemistry	(11h)				
13.	Energy profiles. Hammond postulate	Conventional Lecture		CO 2			

14.	Kinetic versus thermodynamic control of product formation	Conventional Lecture		CO 2
15.	Captodative effect — kinetic isotope effects with examples	Conventional Lecture		CO 2
16.	Continued	Conventional Lecture		CO 2
17.	Stereochemical studies-use of isotopes, Hammet equation	Conventional Lecture	Q & A Session	CO 1
18.	Taft equation, cross-over experiments, Hammond postulates.	Conventional Lecture		CO 2
19.	Salt and Solvent effect.	Conventional Lecture		CO 2
20.	Intermediates vs. Transition state, linear free energy relationship.	Conventional Lecture		CO 2
21.	Introduction to carbon acids - pK _a of weak acids	Conventional Lecture		CO 2
22.	Kinetic and thermodynamic acidity.	Conventional Lecture		CO 2
23.	Introduction to organic bases- pK _b of weak bases.	Conventional Lecture	Q & A Session	CO 1
	Teacher III – FJ : Unit 3 : Review of basic r	reaction mechanis	sms (8h)	
24.	Mechanism of SN1, SNAr	Conventional Lecture		CO 3
25.	SRN1 and Benzyne mechanisms.	Conventional Lecture		CO 3
26.	Catalysis by acids and bases	Conventional Lecture		CO 3
27.	Nucleophiles with examples from acetal, cyanohydrin	Conventional Lecture	Q & A Session	CO 1
28.	Ester formation and hydrolysis reactions $-A_{AC}^2$ mechanisms	Conventional Lecture		CO 3
29.	A _{AC} ¹ mechanism.	Conventional Lecture		CO 3
30.	A _{AL} ¹ , B _{AC} ² mechanisms.	Conventional Lecture		CO 3
31.	B _{AL} ¹ mechanism.	Conventional Lecture	Quiz	CO 3
	Teacher IV – VSS : Unit 4: Stereochemistry o		unds (15h)	
	Introduction to molecular symmetry		0.0.5	
32.	and chirality – examples from common objects to molecules	Conventional Lecture	Q & A Session	CO 1
33.	Axis, plane, centre, alternating axis of symmetry.	Conventional Lecture		CO 3
34.	Centre of chirality – molecules with C, N, S based chiral centres	Conventional Lecture		CO 3
35.	Absolute configuration - enantiomers	Conventional Lecture		CO 3
-				

			-	
36.	Racemic modifications - R and S nomenclature using Cahn-Ingold-Prelog rules	Conventional Lecture		CO 3
37.	Continued	Conventional Lecture		CO 3
38.	Molecules with a chiral centre and Cn	Conventional Lecture		CO 3
39.	Molecules with more than one center of chirality	Conventional Lecture		CO 3
40.	Definition of diastereoisomers constitutionally symmetrical and unsymmetrical chiral molecules	Conventional Lecture		CO 3
41.	Erythro, threo nomenclature.	Conventional Lecture	Q & A Session	CO 1
42.	Axial, planar and helical chirality – examples	Conventional Lecture		CO 3
43.	Stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls	Conventional Lecture		CO 3
44.	Ansa and cyclophanic compounds, spirans, exo-cyclic alkylidenecycloalkenes. Identification of enantiotopic, homotopic, diastereotopic hydrogens	Conventional Lecture		CO 3
45.	Prochirality, Topicity and prostereoisomerism – topicity of ligands and faces, and their nomenclature.	Conventional Lecture	Quiz	CO 3
46.	NMR distinction of enantiotopic/diastereotopic ligands. Stereospecific, stereoselective and assymetric synthesis.	Conventional Lecture		CO 3
	Teacher V – JTM : Unit 5: Conformation	tional Analysis (2	0h)	
47.	Stereoisomerism: Definition based on symmetry and energy criteria	Conventional Lecture	Q & A Session	CO 1
48.	Configuration and conformational stereoisomers.	Conventional Lecture		CO 3
49.	Conformational descriptors	Conventional Lecture		CO 3
50.	Factors affecting conformational stability of molecules.	Conventional Lecture		CO 3
51.	Potential energy diagrams	Conventional Lecture		CO 3
52.	Conformational analysis of acyclic systems: substituted ethanes	Conventional Lecture		CO 3
53.	Aldehydes	Conventional Lecture	Q & A Session	CO 1

		Comunitienel		
54.	Ketones and olefins.	Conventional Lecture		CO 3
55.	Conformational analysis of cyclic systems	Conventional Lecture		CO 3
56.	Cyclohexane and its derivatives. Cyclohexanone.	Conventional Lecture		CO 3
57.	Continued	Conventional Lecture		CO 3
58.	Conformational analysis of Fused and bridged bicyclic systems	Conventional Lecture	Quiz	CO 3
59.	Decalins, adamantane	Conventional Lecture		CO 3
60.	Hexamethylene diamine and congressane	Conventional Lecture		CO 3
61.	Conformation of sugars-glucose, sucrose and lactose	Conventional Lecture		CO 3
62.	Conformation and reactivity of elimination -dehalogenation	Conventional Lecture		CO 3
63.	Dehydrohalogenation	Conventional Lecture		CO 3
64.	Dehydration, semipinacolic deamination and pyrolytic elimination	Conventional Lecture		CO 3
65.	Saytzeff and Hofmann eliminations, substitution and oxidation of 2 ⁰ alcohols.	Conventional Lecture		CO 3
66.	Chemical consequence of conformational equilibrium - Curtin-Hammett principle.	Conventional Lecture		CO 3
	Teacher VI – JUC : Unit 6: Organic P	hotochemistry (6	ih)	I
67.	Jablonski diagram, triplet and singlet states. Photoreactions of carbonyl compounds: Norrish reactions of acyclic ketones	Conventional Lecture	Q & A Session	CO 1
68.	Cyclic ketones.	Conventional Lecture		CO 4
69.	Patterno-Buchi reaction.	Conventional Lecture		CO 4
70.	Barton reaction and photo reduction of ketones.	Conventional Lecture	Quiz	CO 4
71.	Di-π-methane reaction	Conventional Lecture		CO 4
72.	Photochemistry of Nitro and Azo groups. Photochemistry of vision	Conventional Lecture		CO 4

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	11/8/18	IUPAC nomenclature of polycyclic, heterocyclic	CO 1
2	20/8/18	Racemic modifications - R and S nomenclature using Cahn-Ingold-Prelog rules	CO 3

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	02/8/18	Non-covalent interactions	CO 1

REFERENCES

- D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, Third Edition, New Age Publications, New Delhi, 2010
- E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, New York, 1994
- D. Hellwinkel, Systematic nomenclature of organic chemistry, Springer international edition
- J.Clayden, N.Greeves, S.Warren, P.Wothers, Organic Chemistry, Oxford University Press, New York, 2004
- F. A. Carey and R. A. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, Fifth Edition, Springer, New York, 2007.
- R. Bruckner, Advanced Organic Chemistry: Reaction Mechanisms, Academic Press, 2002
- Aditi Sangal, Krishna's Advanced Organic Chemistry; Volume 1 Krishna Prakashn Media(P) Ltd.
- K.K.R.Mukherjee, Fundamentals of Photochemistry, New Age Publications, New Delhi, 1978
- N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science books 2009.
- N.J Turro, Modern Molecular Photochemistry, Benjamin Cummings Publishing Company, Menlopark, 1978.
- N. S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
- Jack Hine, Physical Organic Chemistry, McGraw-Hill; 2nd Edition, 1962.
- Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books, 2006

COURSE 3

PROGRAMME	M.SC. APPLIED CHEMISTRY - PHARMACEUTICAL	SEMESTER	1			
COURSE CODE AND TITLE	16P1CPHT03 AND PHYSICAL CHEMISTRY – I	CREDIT	3			
HOURS/WEEK	3	HOURS/SEM	54			
FACULTY NAME	DR. K. B. JOSE (KBJ), DR. JINU GEORGE (JG), DR. IGNATIOUS ABRAHAM (IGA)					

	COURSE OUTCOME	POS / PSOS	CL
CO1	Application of mathematical tools to calculate thermodynamic and kinetic properties.	PO 1 PSO 3	А
CO2	Explain the relationship between microscopic properties of molecules with macroscopic thermodynamic observables.	PO 1 PSO 2	U
CO3	Explain the kinetic behaviour of gases and their transport properties.	PO 1 PSO 4	U

CL* Cognitive Level

CO -PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2								3			
CO2	3							2				
CO3	3									1		

Teacher	Teacher I – JG and IGA : Unit 1 : CLASSICAL THERMODYNAMICS (9h)										
SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME							
1.	Entropy - Free energy, Clausius Inequality, Maxwell's relations – significance. Partial molar properties – Chemical potential, Fugacity and Activity.	Chalk and board	Q & A Session	CO 1							
2.	Thermodynamicfunctionsofmixing,Gibbs-Duhem-Margulesequation,Konowaloff's rule, Henry's law.	Chalk and board		CO 1							
3.	Excess thermodynamic functions-free energy, enthalpy, entropy and volume. Chemical affinity and thermodynamic	Chalk and board		CO 1							

	functions			
4.	Nernst heat theorem, development of third law of thermodynamics, determination of absolute entropies using third law, entropy changes in chemical reactions.	Chalk and board		CO 1
5.	Effect of temperature and pressure on chemical equilibrium- van't Hoff equations	Chalk and board		CO 1
6.	Three component systems: Gibbs phase rule, graphical representation of three component systems.	Chalk and board	Quiz	CO 1
7.	Solid-liquid equilibria, ternary solutions with common ions Hydrate formation, compound formation.	Chalk and board		CO 1
8.	Liquid-liquid equilibria-one pair of partially miscible liquids	Chalk and board		CO 1
9.	Two pairs of partially miscible liquids, three pairs of partially miscible liquids.	Chalk and board		CO 1
Teache	r II – JG and IGA : Unit 2: Thermodynamics of (10h)	Irreversible Pro	ocesses & Bio	penergetics
10.	Thermodynamics of irreversible processes with simple examples. Uncompensated heat and its physical significance.	Chalk and board	Q & A Session	CO 1
11.	Entropy production- rate of entropy production, entropy production in chemical reactions, the phenomenological relations.	Chalk and board		CO 1
12.	The Onsager reciprocal relations - principle of microscopic reversibility.	Chalk and board		CO 1
13.	Electrokinetic phenomena.	Chalk and board		CO 1
14.	Thermoelectric phenomena	Chalk and board	Quiz	CO 1
15.	Bioenergetics: Coupled reactions, ATP and its role in bioenergetics.	Power point presentation		CO 1
16.	High energy bond, free energy and entropy change in ATP hydrolysis.	Power point presentation		CO 1
17.	Thermodynamic aspects of metabolism and respiration	Power point presentation		CO 1
18.	Thermodynamic aspects of glycolysis and biological redox reactions.	Power point presentation		CO 1
19.	Revision	Power point presentation	Quiz	CO 1
	Teacher III – KBJ : Unit 3 : STATISTICAL	THERMODYNAM	VICS (27h)	
20.	Permutation, probability, apriori and thermodynamic probability.	Chalk and board		CO 2

21.	Stirlings approximation, macrostates and microstates.	Chalk and board		CO 2
22.	Boltzmann distribution law	Chalk and board	Q & A Session	CO 2
23.	Partition function and its physical significance	Chalk and board		CO 2
24.	Phase space, different ensembles	Chalk and board		CO 2
25.	Canonical partition function, distinguishable and indistinguishable molecules	Chalk and board		CO 2
26.	Partition function and thermodynamic functions	Chalk and board		CO 2
27.	Separation of partition function	Chalk and board		CO 2
28.	Translational and rotational partition functions.	Chalk and board		CO 2
29.	Vibrational and electronic partition functions.	Chalk and board		CO 2
30.	Thermal de-Broglie wavelength. Calculation of thermodynamic functions and equilibrium constants.	Chalk and board		CO 2
31.	Statistical interpretation of work and heat	Chalk and board		CO 2
32.	Sakur-Tetrode equation	Chalk and board		CO 2
33.	Statistical formulation of third law of thermodynamics	Chalk and board		CO 2
34.	Thermodynamic probability and entropy, residual entropy	Chalk and board	Quiz	CO 2
35.	Heat capacity of gases - classical and quantum theories	Chalk and board		CO 2
36.	Heat capacity of hydrogen	Chalk and board		CO 2
37.	Heat capacity of solids- the vibrational properties of solids	Chalk and board		CO 2
38.	Einstein's theory and its limitations	Chalk and board	Q & A Session	CO 2
39.	Debye theory and its limitations	Chalk and board		CO 2
40.	Bose-Einstein statistics: Bose-Einstein distribution, example of particles	Chalk and board		CO 2
41.	Bose-Einstein condensation	Power point presentation		CO 2
42.	Difference between first order and higher order phase transitions	Chalk and board		CO 2
43.	liquid helium, super cooled liquids	Chalk and board		CO 2

44.	Fermi-Dirac distribution, examples of particles	Chalk and board		CO 2
45.	Application in electron gas, thermionic emission	Chalk and board		CO 2
46.	Comparison of three statistics	Chalk and board	Q & A Session	CO 2
	Teacher IV – JG : Unit 4 : GASE	OUS STATE(8h)	
47.	Derivation of Maxwell's law of distribution of velocities	Chalk and board		CO 3
48.	Graphical representation, experimental verification of the law.	Power point presentation		CO 3
49.	Derivation of average, RMS and most probable velocities, most probable velocity	Chalk and board	Quiz	CO 3
50.	Collision diameter, collision frequency in a single gas and in a mixture of two gases	Power point presentation		CO 3
51.	Mean free path	Chalk and board		CO 3
52.	Effusion, the rate of effusion	Chalk and board		CO 3
53.	Transport properties of gases - viscosity	Chalk and board		CO 3
54.	Thermal conductivity and diffusion	Chalk and board		CO 3

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	22/08/18	Solid-liquid equilibria, ternary solutions with common ions	CO 1

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	11/09/18	Different statistical models and comparison	CO 2

REFERENCES:

- R.P. Rastogi, R.R. Misra, An introduction to Chemical Thermodynamics, Vikas publishing house, 2009.
- J. Rajaram, J.C. Kuriakose, Thermodynamics, S Chand and Co., 1999.
- M.C. Gupta, Statistical Thermodynamics, New age international, 2007.
- M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics, Tata McGraw Hill, 1981.
- P.W. Atkins, Physical Chemistry, ELBS, 1994.
- K.J. Laidler, J.H. Meiser, B.C. Sanctuary, Physical Chemistry, 4thEdn. Houghton Mifflin, 2003.
- L.K. Nash, Elements of Classical and Statistical Mechanics, 2nd Edn., Addison Wesley, 1972.
- D.A. McQuarrie, J.D. Simon, Physiacl Chemistry: A Molecular Approach, University Science

Books,1997

- C. Kalidas, M.V. Sangaranarayanan, Non-equilibrium Thermodynamics, Macmillan India, 2002.
- R.K. Murray, D.K. Granner, P. A. Mayes, V.W. Rodwell, Harper's Biochemistry, Tata McGraw Hill, 1999.
- I. Tinoco, K. Sauer, J.C. Wang, J.D. Puglisi, Physical Chemistry: Principles and Applications in Biological Science, Prentice Hall, 2002.
- F.W. Sears, G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Addison Wesley, 1975.
- J. Kestin, J. R. Dorfman, A Course in Statistical Thermodynamics, Academic Press, 1971

PROGRAMME	M.SC. APPLIED CHEMISTRY - PHARMACEUTICAL	SEMESTER	1		
COURSE CODE AND TITLE	16P1CPHT04 AND QUANTUM CHEMISTRY AND GROUP THEORY	CREDIT	3		
HOURS/WEEK	4	HOURS/SEM	72		
FACULTY NAME DR. JORPHIN JOSEPH (JRJ), DR. ABI T.G. (ATG)					

COURSE 4

	COURSE OUTCOME	POS / PSOS	CL
CO1	Understand the foundation and postulates of quantum mechanics.	PO1, PSO3	U
CO2	Describe the use of simple models for predictive understanding of different molecular systems and phenomena.	PO1, PSO4	U
CO3	Illustrate the concept of atomic orbitals by quantum mechanics.	PO1, PSO3	U
CO4	Explain the fundamentals of group theory.	PO1, PSO1	R
CO5	Apply the principles of group theory in chemical bonding.	PO1, PSO3	А

CL* Cognitive Level

CO -PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2								3			
CO2	3									1		
CO3	3								2			
CO4	3						2					
CO5	2								2			

	UNIT 1: POSTULATES OF QUANTUM MECHANICS (9H)					
SESSION	ΤΟΡΙϹ	TOPIC LEARNING VALUE RESOURCES ADDITIONS		COURSE OUTCOME		
1.	State function or wave function postulate: Born interpretation of the wave function, well behaved functions, orthonormality of wave functions	Lecture method		CO 1		
2.	Operator postulate: operator algebra, linear and nonlinear operators, Laplacian operator	Lecture method		CO 1		
3.	Hermitian operators and their properties	Lecture method		CO 1		
4.	Eigen functions and eigen values of an operator. Eigen value postulate: eigen value equation, eigen functions of commuting operators.	Lecture method		CO 1		
5.	Expectation value postulate			CO 1		
6.	Postulate of time-dependent Schrödinger equation, conservative systems and time- independent Schrödinger equation.	Lecture method		CO 1		
7.	Commuting and non-commuting operators	Lecture method		CO 1		
8.	Problems based on the topics discussed	Interaction/Discus sion	Q & A Session	CO 1		
9.	Problems based on the topics discussed Sion Session		CO 1			
	UNIT 2: APPLICATION TO EXACTLY SOLV					
SESSION	ΤΟΡΙϹ	LEARNING	VALUE	COURSE		
	Translational motion: free particle in	RESOURCES	ADDITIONS	OUTCOME		
10.	dimensional box with infinite potential walls	Lecture method		CO 2		

11.	Particle in a one-dimensional box with finite potential walls-tunnelling	Lecture method		CO 1
12.	Particle in a three dimensional box separation of variables, degeneracy.	Lecture method		CO 1
13.	Vibrational motion: one-dimensional harmonic oscillator (complete treatment), Hermite equation (solving by method of power series), Hermite polynomials, recursion relation	Lecture method		CO 1
14.	Wave functions and energies-important features, Harmonic oscillator model and molecular vibrations.	Lecture method		CO 1
15.	Rotational motion: co-ordinate systems, cartesian, cylindrical polar and spherical polar coordinates and their relationships. The wave equation in spherical polar coordinates	Lecture method		CO 1
16.	Particle on a ring, the phi equation and its solution, wave functions in the real form	Lecture method		CO 1
17.	Non-planar rigid rotor (or particle on a sphere)- separation of variables, the phi and the theta equations	Lecture method		CO 1
18.	Legendre and associated Legendre equations, Legendre and associated Legendre polynomials.	Lecture method		CO 1
19.	Spherical harmonics (imaginary and real forms) - polar diagrams of spherical harmonics.	Lecture method		CO 1
20.	Quantization of angular momentum, quantum mechanical operators corresponding to angular momenta (Lx, Ly, Lz and L2)-commutation relations between these operators.	Lecture method		CO 1
21.	Spherical harmonics as eigen functions of angular momentum operators Lz and L ²	Lecture method		CO 1
22.	Ladder operator method for angular momentum. Space quantization.	Lecture method		CO 1
23.	Problems based on the above topics	Interaction/Discus sion		CO 1
24.	Problems based on the above topics	Interaction/Discus sion		CO 1
25.	Revision	PowerPoint presentation		CO 1
26.	Revision	PowerPoint presentation	Q & A Session	CO 1

	UNIT 3: QUANTUM MECHANICS OF H	YDROGEN-LIKE AT	OMS (9H)	
SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
27.	Potential energy of hydrogen-like systems	Lecture method		CO 2
28.	The wave equation in spherical polar coordinates: separation of variables-R, theta and phi equations and their solutions	Lecture method		CO 2
29.	The wave equation in spherical polar coordinates: separation of variables-R, theta and phi equations and their solutions		CO 2	
30.	Wave functions and energies of hydrogen-like atoms. Orbitals-radial functions	PowerPoint presentation		CO 3
31.	Radial distribution functions, angular functions and their plots.	PowerPoint presentation		CO 3
32.	The postulate of spin by Uhlenbeck and Goudsmith	Lecture method		CO 2
33.	Discovery of spin-Stern Gerlach experiment	Lecture method		CO 3
34.	Spin orbitals-construction of spin orbitals from orbitals and spin functions.	Lecture method		CO 3
35.	Revision	PowerPoint presentation	Quiz	CO 2 & CO 3
	UNIT 4 : GROUP THEORY AND MOL		Y (18H)	
SESSION	ΤΟΡΙϹ	LEARNING VALUE C RESOURCES ADDITIONS OU		
36.	Symmetry elements, symmetry operations	PowerPoint presentation	Q & A Session	CO 4
37.	Symmetry elements, symmetry operations	PowerPoint presentation		CO 4
38.	Point groups and their symbols	PowerPoint presentation		CO 4
39.	Subgroups, classes, abelian and cyclic groups	PowerPoint presentation		CO 4
40.	Group multiplication tables	PowerPoint presentation		CO 4
41.	Classes in a group and similarity transformation	PowerPoint presentation		CO 4
42.	Matrices: addition and multiplication of matrices	Lecture method		CO 4
43.	Inverse and orthogonalmatrices, character of a matrix	Lecture method		CO 4
44.	Block diagonalisation, matrix representation of symmetry operations	PowerPoint presentation		CO 4

Representation of groups by matrices,	Power Point Presentation		CO 4	
Construction of representation using				
			CO 4	
			CO 4	
			CO 4	
			CO 4	
-				
			CO 4	
· · ·				
-			CO 4	
Direct product of representations			CO 4	
Revision		Quiz	CO 4	
	CTROSCOPY AND	CHEMICAL BO	ONDING	
(18H)				
ΤΟΡΙϹ			COURSE	
		ADDITIONS	OUTCOME	
Applications in vibrational spectra			CO 5	
	•			
Transition moment integral			CO 5	
Vanishing of integrals			CO 5	
	Power Point	-	CO 5	
vibrations,	Presentation	Session		
	Power Point			
selection rules for vibrational			CO 5	
absorption.	resentation			
Determination of thesymmetry of	Power Point		CO 5	
normal modes of H_2O , C_2H_4 ,	Presentation			
Trans N ₂ F ₂ ,CHCl ₃ and NH ₃ using Cartesian	PowerPoint		CO 5	
coordinates and internal coordinates	PowerPoint presentation		CO 5	
	presentation		CO 5	
coordinates and internal coordinates	presentation Power Point		CO 5 CO 5	
coordinates and internal coordinates Complementary character of IR and	presentation			
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR and Raman active vibrational modes.	presentation Power Point		CO 5	
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR	presentation Power Point Presentation			
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR and Raman active vibrational modes. Applications in chemical bonding	presentation Power Point Presentation PowerPoint		CO 5 CO 5	
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR and Raman active vibrational modes.	presentation Power Point Presentation PowerPoint presentation		CO 5	
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR and Raman active vibrational modes. Applications in chemical bonding	presentation Power Point Presentation PowerPoint presentation PowerPoint		CO 5 CO 5 CO 5	
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR and Raman active vibrational modes. Applications in chemical bonding Applications in chemical bonding	presentation Power Point Presentation PowerPoint presentation PowerPoint presentation		CO 5 CO 5	
coordinates and internal coordinates Complementary character of IR and Raman spectra-determination of the IR and Raman active vibrational modes. Applications in chemical bonding Applications in chemical bonding Construction of hybrid orbitals with	presentation Power Point Presentation PowerPoint presentation PowerPoint presentation Power Point		CO 5 CO 5 CO 5	
	Construction of representation using vectors and atomic orbitals as basis Construction of representation using vectors and atomic orbitals as basis Statement of Great OrthogonalityTheorem (GOT) Properties of irreducible representations. Construction of irreducible representation using GOT Construction of character tables for C2v, C2h, C3, C3v and C4v Direct product of representations Revision : APPLICATION OF GROUP THEORY IN SPE (18H) TOPIC Applications in vibrational spectra Transition moment integral Vanishing of integrals Symmetry aspects of molecular vibrations, Vibrations of polyatomicmolecules- selection rules for vibrational absorption. Determination of thesymmetry of normal modes of H ₂ O, C ₂ H ₄ ,	Construction of representation using vectors and atomic orbitals as basisPresentationConstruction of representation using vectors and atomic orbitals as basisPresentationConstruction of representation using vectors and atomic orbitals as basisPresentationStatement of Great OrthogonalityTheorem (GOT)PresentationProperties of irreducible representation of irreducible representation using GOTPresentationConstruction of irreducible representation of character tables for C2v, C2h, C3, C3v and C4vPresentationDirect product of representations RevisionPower Point PresentationRevisionPower Point PresentationTOPICLEARNING RESOURCESApplications in vibrational spectra Vanishing of integralsPower Point PresentationVanishing of integrals Symmetry aspects of molecular vibrations,Power Point PresentationVibrations of polyatomicmolecules- selection rules for vibrational absorption.Power Point PresentationDetermination of thesymmetry ofPower Point	Construction of representation using vectors and atomic orbitals as basisPresentationConstruction of representation using vectors and atomic orbitals as basisPower PointConstruction of representation using vectors and atomic orbitals as basisPresentationStatement of Great OrthogonalityTheorem (GOT)PresentationProperties of irreducible representations.Power PointProperties of irreducible representation using GOTPresentationConstruction of character tables for C2v, C2h, C3, C3v and C4vPower PointDirect product of representationsPower Point PresentationRevisionPower Point PresentationQuizToPICLEARNING RESOURCESVALUE ADDITIONSApplications in vibrational spectra vibrations,Power Point PresentationQuizTransition moment integral vibrations,Power Point PresentationQuixSymmetry aspects of molecular vibrations,Power Point PresentationQuixSymmetry aspects of molecular absorption.Power Point PresentationQuix ASymmetry aspects of molecular absorption.Power Point PresentationQuix AVibrations, flucture vibrational absorption.Power Point PresentationQuix ADirect product of thesymmetry of presentationPower Point PresentationADirect product of representationPresentationADirect product of representationPresentationADirect product of representationPresentationADirect product of	

66.	PCI ₅	Power Point Presentation		CO 5	
67.	Transformation properties of atomic	Power Point		CO 5	
07.	orbitals	Presentation			
68.	Symmetry adapted linear combinations	Power Point	Q & A	Q&A COL	
08.	(SALC).	Presentation	Session	CO 5	
69.	Revision	Power Point		со г	
69.		Presentation		CO 5	
70.	MO diagram for water and ammonia	Power Point		CO 5	
70.		Presentation			
71	Revision	Power Point			
71.		Presentation		CO 5	
70	Revision	Power Point	Qui	CO F	
72.		Presentation	Quiz	CO 5	

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1.	29/07/18 Wave functions and energies-important features,		CO 2
1.	Harmonic oscillator model and molecular vibrations.		
2.	16/08/18	construction of character tables for C2v,C2h, C3, C3v and	CO 4
2.	10/00/10	C4v	

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1.	03/09/18	Radial distribution functions, angular functions and their plots.	CO 2

REFERENCES:

- I.N. Levine, Quantum Chemistry, 6th Edition, Pearson Education Inc.
- P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, 4th Edition, Oxford University Press, 2005
- Donald, A. McQuarrie, Quantum Chemistry, University Science Books, 1983
- J.P. Lowe, Quantum Chemistry, 2nd Edition, Academic Press Inc., 1993
- A.K. Chandra, Introduction to Quantum Chemistry, 4th Edition, Tata McGraw-Hill, 1994
- R.K. Prasad, Quantum Chemistry, 3rd Edition, New Age International, 2006
- Jack Simons, An Introduction to Theoretical Chemistry, Cambridge University Press, 2003
- F.A. Cotton, Chemical applications of Group Theory, 3rd Edition, John Wiley & Sons Inc., 2003
- H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley & Sons Inc., 1965.
- A. Salahuddin Kunju & G. Krishnan, Group Theory & its Applications in Chemistry, PHI Learning Pvt. Ltd. 2010.

- Swarnalakshmi, T. Saroja, R.M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.
- S.F.A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd Edn., Wiley, 2007
- K.Veera Reddy, Symmetry & Spectroscopy of Molecules 2nd Edn., New Age International 2009