SACRED HEART COLLEGE (AUTONOMOUS)

:

Department of Chemistry

MSc Chemistry

Course Plan

Academic Year 2018-19

Semester Four

PROGRAMME	MSc Chemistry	SEMESTER	4
COURSE CODE AND TITLE	16P4CHET13EL: ADVANCED INORGANIC CHEMISTRY	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	90
FACULTY NAME	Dr. Midhun Dominic C D, Dr. Ramakrishnan S, Mr. Senju Devassykutty, Dr. Abi T.G		

Course Objectives
To apply the principles of group theory in co-ordination complexes.
To analyze the structures of inorganic complexes using IR, Raman, Mossbauer and EPR spectroscopic techniques.
To compare the chemistry of different photochemical reactions.
To interpret the structure and properties of nanomaterials.
To examine the structure and properties of different supramolecular architectures.
To describe the principle and applications of different analytical techniques.
To discuss the theories of acids and bases.

To draw the structures of inorganic molecules

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I Applications of Group Theory	(22 h)	•	
1	Transformation properties of atomic orbitals	РРТ	e-resource	
2	hybridization schemes for sigma and pi bonding with examples	PPT/Lecture		
3	Symmetry Adapted Linear Combination of Atomic orbitals in tetrahedral, octahedral and sandwich complexes.	PPT/Lecture		
4	Symmetry Adapted Linear Combination of Atomic orbitals in sandwich complexes.	PPT/Lecture	e-resource	
5	Ligand field theory	PPT/Lecture		
6	splitting of <i>d</i> orbitals in different environments using group theoretical considerations	PPT/Lecture		
7	construction of energy level diagrams	Lecture		
8	Correlation diagrams	Lecture		
9	Correlation diagrams	Lecture		
10	method of descending symmetry	Lecture		
11	method of descending symmetry	PPT/Lecture		
12	method of descending symmetry	PPT/Lecture		
13	formation of symmetry adapted group of ligands	PPT/Lecture		
14	formation of symmetry adapted group of ligands	PPT/Lecture		
15	M.O. diagrams, splitting terms for orbitals, energy levels	PPT/Lecture		
16	M.O. diagrams, splitting terms for orbitals, energy levels	Lecture		
17	<i>d-d</i> transition-selection rules	Lecture		
18	vanishing integrals	Lecture		

19	Raman spectra of complexes with oxo anions as ligands	Lecture			
20	Raman spectra of complexes with oxo anions as ligands	PPT/Lecture			
21	IR and Raman spectra using character tables in tetrahedral, octahedral and square planar complexes	PPT/Lecture			
22	IR and Raman spectra using character tables in tetrahedral, octahedral and square planar complexes	PPT/Lecture			
	MODULE II : Inorganic Spectroscopic	Methods (9 h)			
23	Infrared and Raman Spectroscopy Spectroscopy	PPT/Lecture			
24	structural elucidation of coordination	Lecture			
	compounds containing the following molecules/ions as ligands-NH3, H2O, CO,NO, OH–				
25	SO4 ²⁻ , CN ⁻ , SCN ⁻ , NO2 ⁻ and X ⁻ (X=halogen).	Lecture			
26	Electron Paramagnetic Resonance Spectroscopy	Lecture			
27	EPR of d^1 and d^9 transition metal ions in cubic and tetragonal ligand fields,	PPT/Lecture			
28	evaluation of g values	PPT/Lecture			
29	Metal hyperfine coupling constants.	PPT/Lecture			
30	Mössbauer Spectroscopy	PPT/Lecture			
31	applications of Mössbauer spectroscopy in the study of Fe(III) and Fe (II) complexes.	PPT/Lecture			
	MODULE III : Inorganic Photochemistry (9 h)				
32	Photochemical reactions	PPT/Lecture			
33	Photochemical reactions-substitution and redox reactions of Cr(III), Ru(II) and Ru(III) complexes.	PPT/Lecture			
34	Photo substitution, Photo racemization reactions	PPT/Lecture			

		1	1	1
35	Energy and electron transfer process in ruthenium complexes	PPT/Lecture		
36	· · · · · · · · · · · · · · · · · · ·		Quiz	
37	water photolysis	PPT/Lecture		
38	Dye sensitized photochemical solar cells	PPT/Lecture		
39	Ruthenium and supramolecular sensitizers	PPT/Lecture		
40	Photo induced electron collection	PPT/Lecture		
	CIA-1	I		
	MODULE IV : Nanomaterials	(18 Hrs)		
41	General introduction to nanomaterials and emergence of nanotechnology	PPT/Lecture		
42	Moore's law	Lecture		
43	characterization of nano materials using XRD, SEM, TEM (Basic idea only)	PPT/Lecture		
44	Synthesis of Nanomaterials – Precipitation methods, Sol-gel method, chemical vapour deposition, reduction techniques	PPT/Lecture		
45	synthesis and properties of fullerenes	PPT/Lecture		
46	carbon nanotubes	PPT/Lecture		
47	lithography.	PPT/Lecture		
48	Green synthesis of nanoparticles of gold, silver	PPT/Lecture		
	Thin films-chemical vapor deposition	PPT/Lecture		
49	and atomic layer deposition techniques			
50	Diversity in nanosystems	PPT/Lecture		
51	self assembled monolayers on gold-growth process and phase transitions.	PPT/Lecture		
52	Synthesis, structure and bonding of	PPT/Lecture	Video	
L				

	phosphazenes			
53	Quantum dots- preparation	PPT/Lecture		
	Quantum dots- characterization and	PPT/Lecture		
54	applications			
55	Nanoshells-types of systems	PPT/Lecture		
56	Nanoshells- characterization and application.	Lecture		
	Evolving interfaces of nanotechnology-	PPT/Lecture		
57	nanobiology			
58	nanosensors, nanomedicines.	PPT/Lecture		
	MODULE V : Advanced topics in Coordinat	ion Chemistry	(9Hrs)	1
	Coordination Chemistry of Fullerenes.	PPT/Lecture		
	Fullerene metal complexes-Fullerides of alkali			
59	metals, Fullerenes as π-ligands,			
	Metal fullerides, exohedral fullerenes,	PPT/Lecture		
60	endohedral fullerenes			
	Metallo supra molecular chemistry and	PPT/Lecture		
61	Molecular Architecture.Molecular recognition			
	Molecular Receptors- Cation binding Hosts-	PPT/Lecture		
	Crown ethers, Heterocrowns, Spherands,			
62	Cryptands, Calixarenes.			
	Selectivity of Cation Complexation. Anionic	Lecture	Demo	
	Recognition. From anionic to cationic		video	
	recognition. Neutral Molecules Recognition-			
63	Cyclodextrins, Carcerands, Cyclophane			
64	Metallosupramolecular chemistry	Lecture		
	Different Strategies and Types. Helicates, Grid	Lecture		
65	type Metal ion Architecture, Ladder and Racks.			
	Supramolecular Assistance in the Synthesis of	Lecture		
66	Molecular and Supramolecular Structures			
67	Catenanes, Rotaxanes, Knots and Necklaces	PPT/Lecture		
	Molecular and Supramolecular Structures			

	MODULE VI : Analytical Methods (9 h)				
68	Atomic Spectroscopy: Emission Spectra – Absorption Spectra – Fluorescence Spectra.	PPT/Lecture			
69	Plasma Emission Spectroscopy – Direct current plasma	PPT/Lecture			
70	Inductively coupled plasma (ICP). Principle and Applications	Lecture			
71	Size Exclusion Chromatography: Column Packings – Applications – Chromatographic Separation of Fullerenes (Bucky Balls).	PPT/Lecture			
72	Affinity Chromatography. Chiral Chromatography	PPT/Lecture			
73	Supercritical Fluid Chromatography	PPT/Lecture			
74	important properties of supercritical fluids- Principle and Applications	PPT/Lecture			
75	Analytical procedures involved in the environmental monitoring of water quality	PPT/Lecture			
76	BOD, COD, DO, nitrite and nitrate, iron, fluoride	PPT/Lecture			
	CIA-2	1 1	I		
	MODULE VII : Acids and Ba	ses (9h)			
77	Acid –Base Strength. Acid-Base interaction	PPT/Lecture			
78	Ionic and Covalent Interaction(Dragoand Wayland Concept).	PPT/Lecture			
79	Steric Effect, Solvation Effect, Acid base strength and Proton affinity, Acidity and basicity of Binary Hydrogen compounds	PPT/Lecture			
80	Inductive effect, Non Aqueous solvent and Acid- Base strength	PPT/Lecture			
81	leveling effect, Superacid	PPT/Lecture			
82	Hard and Soft Acids and Bases Classification,	PPT/Lecture			

	Acid Base strength and Hardness and Softness			
83	Symbiosis, HSAB Theory, HOMO – LUMO concept.	PPT/Lecture		
	Applications of HSAB –Solubility of halides and	PPT/Lecture		
84	chalcogenides, in qualitative Analysis			
	In biological function and Toxicology of	PPT/Lecture		
85	elements and in Medicinal Chemistry			
83	(Chelation)			
	MODULE VIII : Structure of Some Inorg	anic Molecules	(5 h)	
	Hybridization and Structure of molecules-	PPT/Lecture		
	Structure of the following molecules-			
	Trimethylborane, Phosphorus pentafluoride,			
	Ammonium tetrafluoroborate,			
86	Aluminiumbromide			
	Structure of molecules containing lone pairs-	PPT/Lecture		
	Spatial requirements between lone pairs and			
	bond pairs, Sulphur tetrafluoride, Bromine			
87	trifluoride, Dichloroiodate(I) anion,			
	Pentafluorate(IV) anion,	PPT/Lecture		
	Tetrachloroiodate(III)anion, Nitrogen			
	Dioxide, Nitrite ion, nitryl ion, Phosphorus			
	trihalides, Carbonylfluoride and			
	Xenonhexafluoride. Bent's rule and energy of			
88	Hybrid orbitals.			
89	Revision	PPT/Lecture		
90	Revision	PPT/Lecture		

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of	assignment (Individual/Group –	
	completion	Written/Presentation – Graded or Non-	
		graded etc)	
1	17/01/2019	Group theory : Problems	
2	07/02/2019	Nanomaterials: Opportunities and Challenges	

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of assignment (Individual/Group –		
	completion	Written/Presentation – Graded or Non-	
		graded etc)	
1	23/02/2019	Previous CSIR questions (Group activity)	

References

- 01. F.A. Cotton, Chemical Applications of Group Theory, Wiley-Interscince, 1990.
- 02. V. Ramakrishnan, M.S. Gopinathan, Group Theory in Chemistry, Vishal Pub., 1985.
- 03. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010
- 04. K. Nakamoto, IR and Raman Spectra of Inorganic and Coordination Complexes, Part A-Theory and Applications in Inorganic Chemistry, 6th Edn., John Wiley & sons, 1997.
- 05. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 06. R.L. Dutta, A. Syamal, Elements of Magnetochemistry, Affiliated East-West Press, New Delhi, 1993.
- 07. C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th Edn., Tata McGraw Hill, 1994.
- 08. A. K. Bridson, Inorganic Spectroscopic Methods, Oxford University Press, 1998.
- 09. D.M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum Press, 1994.
- 10. A.W. Adamson, P.D. Fleischauer, Concepts of Inorganic Photochemistry, Wiley, 1975.
- 11. V. Balzani, V. Carassiti, Photochemistry of Coordination Compounds, Academic Press, 1970.
- 12. T. Pradeep, Nano: the Essentials, Tata Mc Graw Hill, 2007.
- 13. C.N.R. Rao, A. Govindaraj, Nanotubes and Nanowires, Royal Society of Chemistry, 2011.
- 14. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry, 8th Edn., Saunders College Pub., 2007.
- 15. J.G. Dick, Analytical chemistry, Mc Graw-Hill, 1973.
- 16. S.E. Manahan, Environmental Chemistry, 9th Edn., CRC Press, 2010.
- 17. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edn., Harper Collins College Pub., 1993.
- 18. H.J. Emeleus, A.G. Sharpe, Modern Aspects of Inorganic Chemistry, 4th Edn., ELBS, 1973.
- 19. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.

Web resource references:

<u>https://www.understandingnano.com/resources.html</u>

PROGRAMME	MSc CHEMISTRY	SEMESTER	4
COURSE CODE AND TITLE	16P4CHET14 : ADVANCED ORGANIC CHEMISTRY	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	90
FACULTY NAME	Dr. Joseph T Moolayil, Dr. V. S Sebastian, Dr. Franklin J, Dr. Grace Thomas, Dr. June Cyriac		

COURSE OBJECTIVES

To illustrate the principles of biosynthesis, biomimetic synthesis, green synthesis and stereoselective transformations.

To explain the chemistry of advanced polymeric materials.

To describe the structure and applications of natural products and biomolecules

To explain the mechanism of drug action and drug designing

To explain different scientific methods, scientific writing and scientific journal

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I : BIOSYNTHESIS AND BIOMIM	ETIC SYNTHES	IS (15H)	
1	Basic principles of the biosynthesis of terpenes	PPT	video	
2	Basic principles of the biosynthesis of steroids and alkaloids	PPT/Lecture		
3	Basic principles of the biosynthesis of carbohydrates, and nucleic acids.	PPT/Lecture		
4	Biosynthesis of cholesterol and morphine,	PPT/Lecture	e-resource	
5	Biosynthesis of, glucose and phenyl alanine.	PPT/Lecture		
6	Biogenesis of isoprenoids and alkaloids.	PPT/Lecture		
7	Biomimetic synthesis of progesterone.	Lecture		

8	Biomimetic synthesis of spatreine.	Lecture	
9	Structure of DNA and RNA	Lecture	Q & A Session
10	Replication of DNA	PPT/Lecture	
11	Flow of genetic information	PPT/Lecture	
12	Protein biosynthesis	PPT/Lecture	
13	Transcription and translation		
14	Genetic code	PPT/Lecture	
15	Regulation of gene expression	Lecture	
	MODULE II : GREEN ALTERNATIVES TO OR	GANIC SYNTH	ESIS (12H)
16	Principles of Green Chemistry	PPT/Lecture	Q & A Session
17	Basic concepts, atom economy - twelve principles of Green Chemistry	PPT/Lecture	
18	Principles of green organic synthesis.		
19	Green alternatives to Organic Synthesis: Coenzyme catalysed reactions -thyamine catalyzed benzoin condensation.	PPT/Lecture	
20	Green alternatives of molecular rearrangements: Pinacol-pinacolone and Benzidine rearrangement.	PPT/Lecture	
21	Electrophilic aromatic substitution reactions.	PPT/Lecture	
22	Oxidation-reduction reactions.	PPT/Lecture	
23	Clay catalysed synthesis.	PPT/Lecture	
24	Condensation reactions. Green photochemical reactions.	PPT/Lecture	
25	Green Solvents: Ionic liquids, supercritical CO ₂ , fluorous chemistry.	PPT/Lecture	

26	General principles of microwave assisted organic synthesis.	PPT/Lecture	
27	General principles of ultrasound assisted organic synthesis.	PPT/Lecture	
	MODULE III : ADVANCES IN POLYMER	CHEMISTRY (13H)
28	Degree of polymerization, classification and stereochemistry of polymers.	PPT/Lecture	
29	Z iegler-Natta catalyst.	PPT/Lecture	
30	Glass transition temperature of polymers, factors affecting glass transition temperature.	PPT/Lecture	
31	Natural and synthetic rubber (SBR, Butyl, neoprene	PPT/Lecture	
32	Natural and synthetic rubber neoprene and nitrile rubber	PPT/Lecture	
33	Vulcanization.	PPT/Lecture	
34	Conducting polymers	PPT/Lecture	
35	Temperature resistant and flame retardant polymers	Lecture	Quiz
36	Polymers for medical applications.	Lecture	Q &A Session
37	Dendrimers and dendritic polymers, Terminology- classification of dendrimers	PPT/Lecture	
38	Methods of synthesis: convergent and divergent approaches	PPT/Lecture	
39	.Dendrimers as nanocapsules. Applications of dendrimers	PPT/Lecture	
40	Hyper branched polymers: definition, synthesis, applications.	PPT/Lecture	
	MODULE IV : STEREOSELECTIVE TRANS	FORMATIONS	(10H)
41	Assymetric induction	PPT/Lecture	Q & A Session

42	Chiral auxiliaries and chiral pool.	PPT/Lecture		
43	Enantioselective catalytic hydrogenationdeveloped by Noyori and Knowels	PPT/Lecture		
44	Continued	PPT/Lecture		
45	Assymetric aldol condensation pioneered by Evans	PPT/Lecture		
46	Continued	PPT/Lecture		
47	Assymetric Diels- Alder reactions	PPT/Lecture		
48	Continued	PPT/Lecture		
49	Assymetric epoxidation using Jacobsen's catalyst	PPT/Lecture	Video	
50	Continued	PPT/Lecture		
	MODULE V : CHEMISTRY OF NATURAL PRODUCT	S AND BIOMC	DLECULES (14	IH)
51	Synthesis of camphor	PPT/Lecture		
52	Synthesis of atropine,	PPT/Lecture		
53	Synthesis of, papaverine	Lecture		
54	Synthesis of cyanin,	PPT/Lecture		
55	Synthesis of quercetin,	PPT/Lecture		
56	Synthesis of β-carotene,	PPT/Lecture		
57	Synthesis of testosterone,	PPT/Lecture		
58	Synthesis of, PGE_2 and $PGF_{2\alpha}$,	PPT/Lecture		
59	Synthesis Vitamine C	PPT/Lecture		
60	Synthesis of Riboflavin.	PPT/Lecture		
61	Methods for primary structure determination of peptides, proteins.	PPT/Lecture		
62	Methods for primary structure determination of p, proteins.	PPT/Lecture		
63	Enzymes- classification and structure	PPT/Lecture		

64	Enzymes- mode of action.	PPT/Lecture
	MODULE VI : MEDICINAL CHEMISTRY AND	DRUG DESIGNING (16H)
65	Drug- Structure-activity relationships- a general idea.	PPT/Lecture
66	Drug action - drug selectivity	PPT/Lecture
67	Receptor proteins- drug-receptor tinteraction	PPT/Lecture
68	Drug metabolism.	PPT/Lecture
69	Drug-receptor theory: occupancy theory, rate theory, induced fit theory	PPT/Lecture
70	Activation-aggregation theory.	PPT/Lecture
71	Mechanism of drug acting on DNA- ntercalating agent (proflavin), alkylating agent uracil mustard, cisplatin	PPT/Lecture
72	Chain cutting agents (bleomycin).	PPT/Lecture
73	Central nervous system acting drugs	PPT/Lecture
74	Antidepressants, tranquilizers	PPT/Lecture
75	Sedatives and hypnotics.	PPT/Lecture
76	A general idea of cardio-vascular drugs.	PPT/Lecture
77	Introduction to Drug design	PPT/Lecture
78	Concept of combinatorial and parallel synthesis.	PPT/Lecture
79	Computer assisted drug design	PPT/Lecture
80	Illustration of drug development through a specific exampleof antibacterials- Pencillines.	PPT/Lecture
	MODULE VII : RESEARCH METHODOLOGY	OF CHEMISTRY (10H)

81	The search of knowledge - purpose of research - scientific methods	PPT/Lecture
82	Role of theory -Characteristics of research.	PPT/Lecture
83	Types of research: Fundamental research, applied research, historical and experimental research.	PPT/Lecture
84	Statistical calculations: Presentation of data, mean, median, mode, errors in chemical analyses, linear regression and correlation. Method of least squares.	PPT/Lecture
85	Chemical literature: Primary, secondary and tertiary sources of literature. Classical and comprehensive reference.	PPT/Lecture
86	Literature databases: Science Direct, SciFinder. Chemical Abstract.	PPT/Lecture
87	Scientific writing: Research reports, thesis, journal articles, books	PPT/Lecture
88	Types of publications: articles, communications, reviews.	PPT/Lecture
89	Important scientific journals- important Chemistry journals	PPT/Lecture
90	Impact factor	PPT/Lecture

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

		Topic of Assignment & Nature of		
	Date of	assignment (Individual/Group –		
	completion	Written/Presentation – Graded or Non-		
		graded etc)		
1	22/2/2019	Write a note on important types of publications		

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

		Topic of Assignment & Nature of			
	Date of	assignment (Individual/Group –			
	completion	Written/Presentation – Graded or Non-			
		graded etc)			
1	6/2/2019	Make a list of Important scientific journals			

References

- 1. D. Voet and J.G. VoetBiochemistry Wiley, 2nd ed, 1995
- 2. J. Mann, Chemical Aspects of Biosynthesis, Oxford Chemistry Primer No. 20, 1994.
- 3. *Biomimetic Organic Synthesis*, First Edition. Edited by Erwan Poupon and Bastien Nay. Wiley-VCH Verlag GmbH & Co., 2011
- 4. W. Carruthers, *Modern Methods of Organic Synthesis*, Cambridge University Press, 1996.
- 5. J. Clayden, N. Greeves, S. Warren and P. Wothers, *Organic Chemistry*, Oxford University Press, 2001.
- 6. R.O.C. Norman and J.M. Coxon, *Principles of Organic Synthesis*, ELBS with Chapman & Hall, 1993.
- 7. V.K.Ahluwalia, Green Chemistry: *Environmentally Benign Reactions,* ,Ane Books, New Delhi, 2009.
- 8. Jeremy M. Berg, John L. Tymoczko and LubertStryer, *Principles of Biochemistry* 6th edition, 2006 (W.H. Freeman & Co.).
- 9. Lehninger, Nelson, D. L. and M. M. Cox. *Principles of Biochemistry 5th edition*(W. H. Freeman &Co.), 2008.
- 10. V.K.Ahluwalia, M.Gupta, Medicinal Chemistry, Ane Books, New Delhi, 2012.
- 11. Patric, G. L., *An Introduction to Medicinal Chemistry*. 5thEdn.; Oxford University,2013.
- 12. Silverman, R. B., *The Organic Chemistry of Drug Design and Drug Action*. 2nd ed.; Academic Press: 2004Press: 2005
- 13. Devue Yan, Chao Gao, Holger Frey, *Hyperbranched Polymers: Synthesis, Properties and applications:* 2011.
- 14. S.V.Bhat, B.A.Nagasampaki, M.Sivakumar, *Chemistry of Natural Products*, Narosa Publications, New Delhi, 2005.
- 15. R.L.Dominoswki, Research Methods, Prentice Hall, 1981.
- 16. J.W.Best, *Research in Education*, Prentice Hall, New Delhi, 1981.
- 17. H.F.Ebel, C.Bliefert and W.E.Russey, *The Art of Scientific Writing*, VCH, Weinheim, 1988.
- 18. Durtson, Poole, Thesis and assignment writing- Anderson, 1971.
- 19. John E. Freund. Modern elementary statistics, 2003, ISBN-13: 978-0131874398
- 20. S. P. Gupta. Statistical Methods: S. Chand, 2014.

PROGRAMME	M.Sc. CHEMISTRY	SEMESTER	4
COURSE CODE AND TITLE	16P4CHET15EL: ADVANCED PHYSICAL CHEMISTRY	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	90
FACULTY NAME	DR. K B JOSE, DR. THOMMACHAN XAVIER, DR. JINU GEORGE, Dr. IGNATIOUS ABRAHAM	JORPHIN JOSEPH	, DR.

	Course Objective						
	To describe the physical principles of crystallography and apply it in explaining the properties of solids and liquid crystals.						
To apply t corrosion.	he principles of electrochemistry in electroch	nemical cells, f	uel cells, stora	age cells and			
To explain	the principles of dynamic electrochemistry						
To describ	e the principles of diffraction methods and va	rious atomic s	pectroscopic t	echniques			
To apply v	arious electro-analytical techniques in qualita	tive and quant	itative analysi	S.			
SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS			
	MODULE I : CRYSTALLC)GRAPHY	I				
1	Crystallography- Miller indices, stereographic projection	Lecture					
2	Point groups (derivation not expected), translational symmetry, glide planes and screw axes	PPT/Lecture	e-resource				
3	space groups, simple cases like triclinic and monoclinic systems	PPT/Lecture					
4	Interplanar spacing	PPT/Lecture	e-resource				

5	Method of determining lattice types	PPT/Lecture		
6	Reciprocal Lattices	PPT/Lecture		
7	Crystallography- methods of characterizing crystal structure	Lecture		
8	Rotating crystal method	Lecture		
9	Powder X-ray diffraction method	Lecture		
10	Determination of structure of sodium chloride by powder method	Lecture		
11	Comparison of the structures of NaCl and KCl	PPT/Lecture		
12	Brief outline of single crystal X-ray diffraction	PPT/Lecture		
13	Crystal growth techniques.	Lecture	video	
14	Crystallography- Structure factor	Lecture		
15	Atomic scattering factor	Lecture		
16	Co-ordinate expression for structure factor	PPT/Lecture		
17	Structure by Fourier synthesis.	PPT/Lecture		
18	Revision	Lecture	e-resource	
19	Liquid crystals: mesomorphic state, types, examples and application of liquid crystals.	Lecture		
20	Theories of liquid crystals. Photoconductivity of liquid crystals.	Lecture		
		IEMISTRY	1	•
21	Electrochemical cells and	Lecture		
22	concentration cells	PPT/Lecture	e-resource	
L		1		

23	activity coefficient determination	PPT/Lecture	
24	liquid junction potential, evaluation of thermodynamic properties	Lecture	
25	the electrode double layer, electrode- electrolyte interface	PPT/Lecture	e-resource
26	different models of double layer, theory of multilayer capacity,	PPT/Lecture	
27	electro capillary, Lippmann equation, membrane potential.	Lecture	
28	Storage Cells: Lead,	Lecture	
29	Ni-Cd, Lithium	Lecture	
30	Fuel cells, classification based on working temperature	PPT/Lecture	
31	Chemistry of fuel cells,	PPT/Lecture	e-resource
32	H ₂ -O ₂ fuel cells	Lecture	
33	Fuel cell efficiency	Lecture	
34	Electro catalysis.	Lecture	
35	Dynamic Electrochemistry	Lecture	
36	Kinetics of electron transfer	Lecture	
37	Polarization -electrolytic polarization	PPT/Lecture	
38	Dissolution and decomposition potential,	PPT/Lecture	
39	Concentration polarization	PPT/Lecture	
40	Overvoltage	Lecture	e-resource
41	Hydrogen and oxygen overvoltage	Lecture	
42	Butler-Volmer equation for simple electron	PPT/Lecture	

	transfer reactions,			
43	Tafel equation and its significance	PPT/Lecture		
44	transfer coefficient, exchange current density, rate constants.	PPT/Lecture		
	MODULE III : DIFFRACTION	I METHODS		
45	Electron diffraction of gases. Wierl's equation	Lecture		
46	Neutron diffraction method-SANS	Lecture		
47	Comparison of X-ray,	Lecture		
48	electron and neutron diffraction methods.	PPT/Lecture		
49	X-ray diffraction techniques	PPT/Lecture	e-resource	
50	XRD	PPT/Lecture		
51	SAXS	PPT/Lecture		
52	WAXS	PPT/Lecture		
		C TECHNIQUES		
53	Atomic absorption spectroscopy (AAS),	PPT/Lecture		
54	principle of AAS,	PPT/Lecture		
55	absorption of radiant energy by atoms	PPT/Lecture		
56	Classification of atomic spectroscopic methods	PPT/Lecture		
57	measurement of atomic absorption,	PPT/Lecture		
58	Instrumentation.	PPT/Lecture	e-resource	
59	Atomic emission spectroscopy (AES),	PPT/Lecture		

60	advantages and disadvantages of AES	Lecture		
61	Origin of spectra	Lecture		
62	Principle and instrumentation.	Lecture		
63	Flame emission spectroscopy (FES)	Lecture		
64	Flames and flame temperature	Lecture		
65	Spectra of metals in flame, instrumentation	Lecture		
66	Introduction to Fluorescence Spectroscopy	Lecture		
	MODULE V : ELECTRO ANALYTIC	CAL TECHNIQU	ES	
67	Polarography	PPT/Lecture		
68	decomposition potential, residual current	Lecture		
69	migration current, supporting electrolyte	Lecture		
70	diffusion current, Polarogram,	Lecture	Video	
71	half wave potential, limiting current density	Lecture		
72	Polarograph, explanation of polarographic waves	PPT/Lecture		
73	The dropping mercury electrode, advantages and limitations of DME	PPT/Lecture		
74	Applications of polarography	PPT/Lecture		
75	Quantitative analysis- pilot ion procedure, standard addition methods	PPT/Lecture	e-resource	
76	Qualitative analysis-determination of half wave potential of an ion,	Lecture		
77	advantages of polarography.	Lecture		
78	Amperometry: general principles of	Lecture		

	amperometry		
79	application of amperometry in the qualitative analysis of anions and cations in solution, Instrumentation	Lecture	Video
80	Amperometric titrations - titration procedure, merits and demerits of amperometric titrations	Lecture	
81	Coulometry: coulometer-Hydrogen Oxygen coulometers, silver coulometer	PPT/Lecture	
82	Coulometric analysis with constant current	PPT/Lecture	
83	Coulometric titrations, application of coulometric titrations-neutralization titrations, complex formation titrations, redox titrations	PPT/Lecture	Video
84	Advantages of coulometry	Lecture	
85	Voltametry: Voltametry-cyclic-voltametry	Lecture	
86	Anodic stripping voltametry	Lecture	
87	Ion selective electrodes:	PPT/Lecture	
88	glass electrodes	PPT/Lecture	Video
89	sodium, potassium, lithium ion selective electrodes	PPT/Lecture	
90	Revision		

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	
1	15/01/2019	Environmental applications of Atomic Spectroscopy	
2	10/02/2019	Use of fuel cells in space shuttles	
3	25/02/2019	Applications of Liquid Crystals	

References

- 01. L.V. Azaroff, Introduction to Solids, Mc Graw Hill, 1984.
- 02. D.K. Chakrabarty, Solid State Chemistry, New Age Pub., 2010.
- 03. R.J. Silbey, R.A. Alberty, M.G. Bawendi, Physical Chemistry, 4th Edn. Wiley, 2005.
- 04. G.M. Barrow, Physical Chemistry, 5th Edn. Tata McGraw Hill, 2007.
- 05. A.R. West, Basic Solid State Chemistry, John Wiley & Sons, 1999.
- 06. K.J. Laidler, J.H. Meiser, B.C. Sanctuary, Physical Chemistry, 4th Edn. Houghton Mifflin, 2003.
- 07. P.W. Atkins, Physical Chemistry, ELBS, 1994.
- 08. G.W. Castellan, Physical Chemistry, Addison-Wesley, 1983.
- 09. B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH 2002.
- 10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edn. Springer, 2006.
- 11. D.L. Andrews, A.A. Demidov, Resonance Energy Transfer, Wiley, 1999.
- 12. S. Glasstone, Introduction to Electrochemistry, Biblio Bazar, 2011.
- 13. D. R. Crow, Principles and Applications of Electrochemistry, 4th Edn. S. Thornes, 1994.
- 14. B.K. Sharma, Electrochemistry, Krishna Prakashan, 1985.
- 15. H. Kaur, Spectroscopy, 6th Edn. Pragati Prakashan, 2011.

16. A.I. Vogel, A Text Book of Quantitative Analysis including Instrumental Analysis, John Wiley & Sons, 1961.

17. H.H. Willard, J.A .Dean, L.L. Merritt, Instrumental Methods of Analysis, Van Nostrand, 1965.

 D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry, 8th Edn. Saunders College Pub., 2007.