SACRED HEART COLLEGE (AUTONOMOUS)

Department of Chemistry MSc Chemistry

Course Plan

Academic Year 2018-19

Semester One

PROGRAMME OUTCOMES

PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development.
PO 4	The students possess an ethical view of life, and have a broader (global) perspective transcending the provincial outlook.
PO 5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

PROGRAMME SPECIFIC OUTCOMES

Knowled	lge and Understanding
PSO1	Demonstrate an in-depth knowledge and understanding of the principles of Inorganic, Organic, Physical and Theoretical Chemistry.
PSO2	Demonstrate an awareness of the relevance of chemistry in a wider multi-disciplinary context.
Intellect	ual Abilities
PSO3	Apply their understanding in Chemistry to design solutions to unfamiliar problems in Chemistry and those involving other related disciplines.
PSO4	Use their knowledge and understanding to conceptualize appropriate models and representations.
Practical	Skills
PSO5	Design and conduct analytical, modelling and experimental investigations in Inorganic, Organic, Physical and Theoretical Chemistry.
Profession	onal Skills
PSO6	Ability to identify, design and conduct appropriate experiments, interpret data obtained, draw pertinent conclusions and communicate all these effectively.

COURSE STRUCTURE

Course Code	Title Of The Course	No. Hrs./Wee k	Credit s	Total Hrs./Sem
16P1CHET01	Inorganic Chemistry I	4	4	72
16P1CHET02	Basic Organic Chemistry	4	4	72
16P1CHET03	Physical Chemistry I	3	3	54
16P1CHET04	Quantum Chemistry and Group Theory	4	3	72

COURSE 1

PROGRAMME	M.SC. CHEMISTRY	SEMESTER	1	
COURSE CODE AND TITLE	16P1CHET01 AND INORGANIC CHEMISTRY I	CREDIT	4	
HOURS/WEEK	4	HOURS/SEM	72	
FACULTY NAME	DR. RAMAKRISHNAN S (RKS), DR. THOMMACHAN XAVIER ACULTY NAME (TX), MR. MIDHUN DOMINIC C D (MDCD) & MR. SENJU DEVASSYKUTTY (SD)			

	COURSE OUTCOME	POS / PSOS	CL
CO1	Explain stability of organometallic compounds and clusters, and their application as industrial catalysts.	PO 1 PSO 4	А
CO2	Describe the key concepts of inorganic and organometallic chemistry including those related to synthesis, reaction chemistry, and structure and bonding.	PO 1 PSO 1	U
CO3	Demonstrate a systematic understanding of the key aspects of nuclear chemistry and their analytical applications.	PO 1 PSO 1	U
CO4	Recognize and explain the interaction of different metal ions with biological ligands.	PO 1 PSO 1	U

CL* Cognitive Level

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2									1		
CO2	3						2					
CO3	3						1					
CO4	2						1					

TEACHE	TEACHER I – MDCD : UNIT 1: ORGANOMETALLIC COMPOUNDS-SYNTHESIS, STRUCTURE AND BONDING (18H)								
SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME					
1.	Introduction to organometallic compounds. Hapto nomenclature of organometallic compounds and 16 and 18 electron rule	Conventional Lecture using Chalk and Board and ICT - PPT	Q & A Session	CO1					
2.	Organometallic compounds with linear pi donor ligands-olefins - synthesis, structure and bonding.	Conventional Lecture using Chalk and Board and ICT - PPT		CO1					
3.	Organometallic compounds with linear pi donor ligands- acetylenes, synthesis, structure and bonding.	Conventional Lecture using Chalk and Board and ICT - PPT		CO1					
4.	Organometallic compounds with linear pi donor ligands-dienes synthesis, structure and bonding.	Conventional Lecture using Chalk and Board and ICT - PPT		CO1					
5.	Organometallic compounds with linear pi donor ligands-allyl complexes-synthesis, structure and bonding	Conventional Lecture using Chalk and Board and ICT - PPT		CO1					
6.	Complexes with cyclic pi donors-metallocenes and structure and bonding.	Conventional Lecture using Chalk and Board and ICT - PPT		CO1					
7.	Complexes with cyclic pi donors cyclic arene complexes structure and bonding.	Conventional Lecture using Chalk and Board and ICT -		CO1					

		PPT		
8.	Metal carbene and alkylidenes, carbine and alkylidynes complexes, Fisher- type and Schrock-type complexes.	Conventional Lecture using Chalk and Board and ICT - PPT		CO1
9.	Revision	Chalk and Board		CO1
10.	Metal Carbonyls: CO- as a π acid ligand, synergism, Molecular electronic structure and 18-electron rule	Conventional Lecture using Chalk and Board		CO1
11.	Binary Carbonyl complexes- Mononuclear and Binuclear carbonyls. Preparation, properties, structure, bonding in metal carbonyls	Conventional Lecture using Chalk and Board		CO1
12.	Bridging modes of CO, Polynuclear metal carbonyls with and without bridging, oxygen bonded metal carbonyls	Conventional Lecture using Chalk and Board and ICT - PPT		CO1
13.	Ligands similar to CO- Cyanide, nitrosyls, dinitrogen, Hydrogen and dihydrogen complexes	Conventional Lecture using Chalk and Board and ICT - PPT		CO1
14.	Carbonyl clusters-LNCCS and HNCCS	Conventional Lecture using Chalk and Board		CO1
15.	Isoelectronic and isolobal analogy, Wade- Mingos rules, cluster valence electrons.	Conventional Lecture using Chalk and Board and ICT - PPT		CO1
16.	Wade-Mingos rules, cluster valence electrons.	Conventional Lecture using Chalk and Board		CO1
17.	Wade-Mingos rules, cluster valence electrons.	Conventional Lecture using Chalk and Board		CO1
18.	Revision	Chalk and Board	quiz	CO1
Tea	cher II – SD : Unit 2: Reactions and catalysis of C	Organometallic Co	ompounds (18h)

SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
19.	Substitution reactions-nucleophilic ligand substitution	Conventional Lecture	Q & A Session	CO2
20.	Nucleophilic and electrophilic attack on coordinated ligands. Carbonylate anions as nucleophiles.	Conventional Lecture		CO2
21.	Addition and elimination reactions-1,2 additions to double bonds	Conventional Lecture		CO2
22.	Carbonylation and decarbonylation	Conventional Lecture		CO2
23.	Oxidative addition and reductive elimination,	Conventional Lecture		CO2
24.	Insertion (migration) and elimination reactions.	Conventional Lecture		CO2
25.	Rearrangement reactions	Conventional Lecture		CO2
26.	Redistribution reactions, fluxional isomerism.	Conventional Lecture		CO2
27.	Revision	Conventional Lecture	Quiz	CO2
28.	Homogeneous and heterogeneous organometallic catalysis-alkene hydrogenation using Wilkinson catalyst, Tolman catalytic loops	Conventional Lecture		CO2
29.	Reactions of carbon monoxide and hydrogen- the water gas shift reaction	Conventional Lecture		CO2
30.	Reactions of carbon monoxide and hydrogen- the Fischer-Tropsch reaction (synthesis of gasoline).	Conventional Lecture		CO2
31.	Hydroformylation of olefins using cobalt or rhodium catalyst. Synthesis of diethyhexylphthalate.	Conventional Lecture		CO2
32.	Polymerization by organometallic initiators and templates for chain propagation-Ziegler Natta catalysts.	Conventional Lecture		CO2
33.	Carbonylation reactions-Monsanto acetic acid process, carbonylation of butadiene using Co2(CO)8 catalyst in adipic ester synthesis	Conventional Lecture		CO2
34.	Olefin methathesis-synthesis gas based reactions, photodehydrogenation catalyst ("Platinum Pop").	Conventional Lecture		CO2

35.	Palladium catalysed oxidation of ethylene-the Wacker process.	Conventional Lecture		CO2
36.	Revision	Conventional Lecture	Quiz	CO2

TEACHER III – TX : UNIT 3 : NUCLEAR CHEMISTRY (18H)

		LEADAUNG	\/\\\	COLUBEE
SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE
37.	Introduction to Nuclear Chemistry	Conventional Lecture	Q & A Session	CO3
38.	Radioactive decay. Alpha decay-Alpha ray spectrum, Beta decay-Types of beta decay, $\beta+$, $\beta-$, $\beta-$ ray spectrum	Conventional Lecture		CO3
39.	Neutrino antineutrino and Positron emission, Dirac theory, pair production, positron- electron annihilation	Conventional Lecture		CO3
40.	Electron capture, double β decay. Gamma decay- de-excitation of excited molecules, change of Energy, spin, parity during photon emission	Conventional Lecture		CO3
41.	Nuclear isomerism and isomeric transition, internal conversion, auger electrons and auger effect	Conventional Lecture		CO3
42.	Nuclear reactions. Q-Value and reaction threshold, reaction cross section-definition, and units	Conventional Lecture		CO3
43.	Cross section and reaction rate, neutron capture cross section, variation of neutron cross section with energy(1/V law)	Conventional Lecture		CO3
44.	Photonuclear, Thermonuclear and Fusion reactions, Magnetic confinement, internal confinement.	Conventional Lecture		CO3
45.	Nuclear fission - Fission fragment and mass distribution, fission yield, fission energy, fission cross section and threshold, fission neutrons, prompt and delayed neutrons, fission by high energy neutrons.	Conventional Lecture		CO3
46.	Nuclear Reactors. Fissile and fissionable nuclei, fast and thermal neutrons	Conventional Lecture		CO3
47.	Terms and symbols used in reactor technology- average no. of fission neutrons, fast fission factor, fast neutrons loss factor	Conventional Lecture		CO3
48.	Terms and symbols used in reactor technology- Resonance capture, thermal neutrons loss factor, thermal utilization factor, relative fission cross section, reproduction factor, critical size of reactor. Breeder reactor, fast breeder test reactor.	Conventional Lecture		CO3

49.	Terms and symbols used in reactor technology- Reproduction factor, critical size of reactor. Breeder reactor, fast breeder test reactor.	Conventional Lecture		CO3
50.	Reactor Safety precaution, Management of radioactive waste- Low level Waste, Intermediate level Waste, High level Waste.	Conventional Lecture		CO3
51.	Principles of counting techniques- G.M. counter, proportional, ionization and scintillation counters.	Conventional Lecture		CO3
52.	Applications of radioisotopes. Physico-chemical study-Solubility of sparingly soluble salts	Conventional Lecture	Q & A Session	CO3
53.	Applications of radioisotopes. Analytical applications-Isotope dilution analysis, radiometric titrations, Neutron Activation Analysis, Prompt Gama Neutron Activation Analysis and Neutron Absorptiometry.	Conventional Lecture		CO3
54.	Applications of radio isotopes medicine- Thyroiditis, Tumour identification, Determination of volume of blood in patient	Conventional Lecture		CO3

TEACHER IV – RKS : UNIT 4 : BIOINORGANIC CHEMISTRY (18H)

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE
55.	Biochemistry of Iron Oxygen Carriers- Structure and functions of haemoglobin and myoglobin	Conventional Lecture Chalk & Board	ABBITIONS	CO4
56.	Oxygen transport mechanism of Hemoglobin, cooperativity in haemoglobin.	Lecture With power point presentation		CO4
57.	Bohr effect and phosphate effect. Hemerythrin Structure and function.	Lecture With power point presentation		CO4
58.	Redox Metalloenzymes-Cytochromes, Classification, Structure and function .	Lecture With power point presentation		CO4
59.	Role in Oxidative Phosphorylation of ADP to ATP. Iron Sulphur Proteins-Rubredoxin, Ferredoxin	Conventional Lecture		CO4
60.	Nitrogenase, Structure and function, Nitrogen Fixation. Peroxidases and catalases	Conventional Lecture		CO4
61.	Cytochrome P450- Structure and functions. Storage and transport of iron in biological systems-Ferritin, transferrin and Siderophores	Conventional Lecture		CO4
62.	Biochemistry of Zn and Copper.	Conventional		CO4

	Structure and functions of carboxypeptidase and carbonic anhydrase	Lecture		
63.	Superoxide dismutase. Structure and functions of various Copper proteins and enzymes.	Conventional Lecture		CO4
64.	Blue copper proteins (Type-1) - Electron transfer agents - Plastocyanin, Stellacyanin and Azurin.	Conventional Lecture		CO4
65.	Blue copper Enzymes (Type II) - Ascorbateoxidase, Laccase and ceruloplsmin.	Conventional Lecture		CO4
66.	Non Blue copper enzyme (Type III) - Cytochrome oxidase, Amine oxidases, Structure and functions of Hemocyanin.	Conventional Lecture		CO4
67.	Vitamin B_{12} - Structure and biological importance	Conventional Lecture		CO4
68.	Chlorophyll-Photosynthesis, PS I & PS II.	Conventional Lecture		CO4
69.	Therapeutic applications of cis-platin, Mechanism of action, MRI agents	Conventional Lecture		CO4
70.	Mechanism of muscle contraction, blood clotting mechanism.	Conventional Lecture		CO4
71.	Essential and trace elements in biological systems, Toxic effects of metals (Cd, Hg, Cr and Pb)	Conventional Lecture	Q & A Session	CO4
72.	Mechanism of ion transport across membranes, Sodium Potassium pump.	Conventional Lecture		CO4

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc.)	Course Outcome
1	18/08/18	Assignment on Redox metalloenzymes, blue copper proteins	CO4
2	22/08/18	Application of metal carbonyls and organometallic compounds	CO2

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc.)	Course Outcome
1	02/08/18	Application of: Radioactivity Fission & fusion	CO3

REFERENCES

- G. Wulfberg, Inorganic Chemistry, Ind. Edition, Viva, 2014.
- Shiver & Atkins, Inorganic Chemistry, 4th Edn. Oxford University Press, 2006.
- K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Cengage Learning 2nd Edn., 2014.
- J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Pearson Education India, 2006.
- F.A. Cotton, G Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1999.
- G.L. Miessler, D. A. Tarr, Inorganic Chemistry 3rd Ed., Pearson Education, 2007.
- B.E. Douglas, D.H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- I. Bertini, H. B Gray, S. J Lippard, J. S Valentine, Bioinorganic Chemistry.
- G. Friedlander, J.W. Kennedy, E.S. Macias, and J.M. Miller, Nuclear and Radiochemistry, John Wiley and Sons, 2nd Ed. 1981.
- H.J. Arnikar, Essentials of Nuclear Chemistry, New Age International,4th Edn., 2011.
- B.R Puri, L.R. Sharma and K.C. Kalia, Principles of Inorganic Chemistry, Milestone, 2011.
- S.N. Goshal, Nuclear Physics, S. Chand and Company, 2006.
- J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Harper Collins College Publishers, 1993.
- F.A. Cotton, G Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1999.
- K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- P. Powell, Principles of Organometallic Chemistry, 2nd Edn., Chapman and Hall, 1988.
- B.E. Douglas, D.H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- B.D. Guptha, A.J Elias, Basic Organometallic Chemistry, Universities Press, 2010.

COURSE 2

PROGRAMME	M.SC. CHEMISTRY	SEMESTER	1	
COURSE CODE AND TITLE	16P1CHET02 AND BASIC ORGANIC CHEMISTRY	CREDIT	4	
HOURS/WEEK	4	HOURS/SEM	72	
FACULTY NAME DR. JOSEPH .T. MOOLAYIL (JTM), DR. V.S SEBASTIAN(VSS), DR. FRANKLIN JOHN (FJ) , DR. JUNE CYRIAC (JUC)				

	COURSE OUTCOME	POS / PSOS	CL
CO1	Explain the basic concepts of organic chemistry.	PO1, PSO1	R
CO2	Illustrate the principles of physical organic chemistry.	PO1, PSO1	U
СОЗ	Demonstrate the reactivity and stability of organic molecules based on structure, including conformation and stereochemistry.	PO1, PSO3	U
CO4	Recognize the importance of organic photochemical reactions.	PO1, PSO4	U

CL* Cognitive Level

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2						2					
CO2	3						2					
CO3	3								2			
CO4										1		

UNIT 1: BASIC CONCEPTS IN ORGANIC CHEMISTRY (12H)								
SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME				
1.	IUPAC nomenclature of polycyclic,	Conventional	Q & A	CO 1				
1.	heterocyclic	Lecture	Session	COI				
2.	Benzenoid, non-benzenoid and spiro	Conventional		CO 1				
۷.	compounds.	Lecture		COI				
3.	Review of basic concepts in organic chemistry:	Conventional		CO 1				
5.	Electron displacement effects-inductive effect	Lecture		COI				
4	Electrometric effect, resonance effect,	Conventional		CO 1				
4.	hyperconjugation, steric effect. Steric	Lecture		CO 1				

	inhibition of resonance.			
	Bonding weaker than covalent bonding- H-	Conventional		
5.	bonding, π - π interactions.	Lecture		CO 1
6.	Other non-covalent interactions	Conventional Lecture		CO 1
7.	Concept of aromaticity: delocalization of electrons – Huckel's rule	Conventional Lecture	Q & A Session	CO 1
8.	Craig rule- criteria for aromaticity -examples of neutral and charged aromatic systems,	Conventional Lecture	3033.011	CO 1
9.	Annulenes [10], [14], [18], [22]	Conventional Lecture		CO 1
10.	Tropolone, Azulene. NMR as a tool for	Conventional		CO 1
11.	Anti- and homo-aromatic systems—Alternate	Lecture Conventional Lecture		CO 1
12.	and non-alternate hydrocarbons Fullerenes, Carbon nanotubes and Graphene.	Conventional Lecture	Quiz	CO 1
	UNIT 2: PHYSICAL ORGANIC CHE			
		Conventional		
13.	Energy profiles. Hammond postulate	Lecture		CO 2
	Kinetic versus thermodynamic control of	Conventional		
14.	product formation	Lecture		CO 2
15.	Captodative effect — kinetic isotope effects	Conventional		CO 2
15.	with examples	Lecture		CO 2
16.	Continued	Conventional		CO 2
		Lecture	0.0.4	
17.	Stereochemical studies-use of isotopes, Hammet equation	Conventional Lecture	Q & A Session	CO 1
18.	Taft equation, cross-over experiments, Hammond postulates.	Conventional Lecture		CO 2
19.	Salt and Solvent effect.	Conventional Lecture		CO 2
20.	Intermediates vs. Transition state, linear free energy relationship.	Conventional Lecture		CO 2
21.	Introduction to carbon acids - pK _a of weak acids	Conventional Lecture		CO 2
22.	Kinetic and thermodynamic acidity.	Conventional Lecture		CO 2
23.	Introduction to organic bases- pK _b of weak bases.	Conventional Lecture	Q & A Session	CO 1
	UNIT 3 : REVIEW OF BASIC REACTION			
24.	Mechanism of SN1, SNAr	Conventional Lecture		CO 3
25.	SRN1 and Benzyne mechanisms.	Conventional Lecture		CO 3
26.	Catalysis by acids and bases	Conventional		CO 3

		Lecture		
27.	Nucleophiles with examples from acetal, cyanohydrin	Conventional Lecture	Q & A Session	CO 1
28.	Ester formation and hydrolysis reactions $-A_{AC}^2$ mechanisms	Conventional Lecture		CO 3
29.	A _{AC} ¹ mechanism.	Conventional Lecture		CO 3
30.	A _{AL} ¹ , B _{AC} ² mechanisms.	Conventional Lecture		CO 3
31.	B _{AL} ¹ mechanism.	Conventional Lecture	Quiz	CO 3
	UNIT 4: STEREOCHEMISTRY OF ORGANI	C COMPOUNDS	(15H)	
32.	Introduction to molecular symmetry and chirality – examples from common objects to molecules	Conventional Lecture	Q & A Session	CO 1
33.	lane, centre, alternating axis of symmetry.	Conventional Lecture		CO 3
34.	Centre of chirality – molecules with C, N, S based chiral centres	Conventional Lecture		CO 3
35.	Absolute configuration - enantiomers	Conventional Lecture		CO 3
36.	Racemic modifications - R and S nomenclature using Cahn-Ingold-Prelog rules	Conventional Lecture		CO 3
37.	Continued	Conventional Lecture		CO 3
38.	Molecules with a chiral centre and Cn	Conventional Lecture		CO 3
39.	Molecules with more than one center of chirality	Conventional Lecture		CO 3
40.	Definition of diastereoisomers constitutionally symmetrical and unsymmetrical chiral molecules	Conventional Lecture		CO 3
41.	Erythro, threo nomenclature.	Conventional Lecture	Q & A Session	CO 1
42.	Axial, planar and helical chirality – examples	Conventional Lecture		CO 3
43.	Stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls	Conventional Lecture		CO 3
44.	Ansa and cyclophanic compounds, spirans, exo-cyclic alkylidenecycloalkenes. Identification of enantiotopic, homotopic, diastereotopic hydrogens	Conventional Lecture		CO 3
45.	Prochirality, Topicity and prostereoisomerism – topicity of ligands and faces, and their nomenclature.	Conventional Lecture	Quiz	CO 3
46.	NMR distinction of	Conventional		CO 3

	enantiotopic/diastereotopic ligands. Stereospecific, stereoselective and assymetric	Lecture					
	synthesis.						
	UNIT 5: CONFORMATIONAL AN	· · · · · ·					
47.	Stereoisomerism: Definition based on symmetry and energy criteria	Conventional Lecture	Q & A Session	CO 1			
48.	Configuration and conformational stereoisomers.	Conventional Lecture		CO 3			
49.	Conformational descriptors	Conventional Lecture		CO 3			
50.	Factors affecting conformational stability of molecules.	Conventional Lecture		CO 3			
51.	Potential energy diagrams	Conventional Lecture		CO 3			
52.	Conformational analysis of acyclic systems: substituted ethanes	Conventional Lecture		CO 3			
53.	Aldehydes	Conventional Lecture	Q & A Session	CO 1			
54.	Ketones and olefins.	Conventional Lecture		CO 3			
55.	Conformational analysis of cyclic systems	Conventional Lecture		CO 3			
56.	Cyclohexane and its derivatives. Cyclohexanone.	Conventional Lecture		CO 3			
57.	nued	Conventional Lecture		CO 3			
58.	Conformational analysis of Fused and bridged bicyclic systems	Conventional Lecture	Quiz	CO 3			
59.	Decalins, adamantane	Conventional Lecture		CO 3			
60.	Hexamethylene diamine and congressane	Conventional Lecture		CO 3			
61.	Conformation of sugars-glucose, sucrose and lactose	Conventional Lecture		CO 3			
62.	Conformation and reactivity of elimination - dehalogenation	Conventional Lecture		CO 3			
63.	Dehydrohalogenation	Conventional Lecture		CO 3			
64.	Dehydration, semipinacolic deamination and pyrolytic elimination	Conventional Lecture		CO 3			
65.	Saytzeff and Hofmann eliminations, substitution and oxidation of 2 ⁰ alcohols.	Conventional Lecture		CO 3			
66.	Chemical consequence of conformational equilibrium - Curtin-Hammett principle.	Conventional Lecture		CO 3			
	UNIT 6: ORGANIC PHOTOCHEMISTRY (6H)						
67.	Jablonski diagram, triplet and singlet states. Photoreactions of carbonyl compounds:	Conventional Lecture	Q & A Session	CO 1			

	Norrish reactions of acyclic ketones			
68.	Cyclic ketones.	Conventional Lecture		CO 4
69.	Patterno-Buchi reaction.	Conventional Lecture		CO 4
70.	Barton reaction and photo reduction of ketones.	Conventional Lecture	Quiz	CO 4
71.	Di-π-methane reaction	Conventional Lecture		CO 4
72.	Photochemistry of Nitro and Azo groups. Photochemistry of vision	Conventional Lecture		CO 4

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	11/8/18	IUPAC nomenclature of polycyclic, heterocyclic	CO 1
2	20/8/18	Racemic modifications - R and S nomenclature using	CO 3
	20/0/10	Cahn-Ingold-Prelog rules	

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	02/8/18	Non-covalent interactions	CO 1

REFERENCES

- D. Nasipuri, Stereochemistry of Organic Compounds: Principles and Applications, Third Edition, New Age Publications, New Delhi, 2010
- E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, John Wiley & Sons, New York, 1994
- D. Hellwinkel, Systematic nomenclature of organic chemistry, Springer international edition
- J.Clayden, N.Greeves, S.Warren, P.Wothers, Organic Chemistry, Oxford University Press, New York, 2004
- F. A. Carey and R. A. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, Fifth Edition, Springer, New York, 2007.
- R. Bruckner, Advanced Organic Chemistry: Reaction Mechanisms, Academic Press, 2002
- Aditi Sangal, Krishna's Advanced Organic Chemistry; Volume 1 Krishna Prakashn Media(P)
 Ltd.
- K.K.R.Mukherjee, Fundamentals of Photochemistry, New Age Publications, New Delhi, 1978
- N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science books 2009.

- N.J Turro, Modern Molecular Photochemistry, Benjamin Cummings Publishing Company, Menlopark, 1978.
- N. S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
- Jack Hine, Physical Organic Chemistry, McGraw-Hill; 2nd Edition, 1962.
- Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books, 2006

COURSE 3

PROGRAMME	M.SC. CHEMISTRY	SEMESTER	1
COURSE CODE AND TITLE	16P1CHET03 AND PHYSICAL CHEMISTRY – I	CREDIT	3
HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME	DR. K. B. JOSE (KBJ), DR. JINU GEORGE (JG), D ABRAHAM (IGA)	R. IGNATIOUS	

	Course Outcome	POs / PSOs	CL
CO1	Application of mathematical tools to calculate thermodynamic and kinetic properties.	PO1, PSO3	А
CO2	Explain the relationship between microscopic properties of molecules with macroscopic thermodynamic observables.	PO1, PSO2	U
соз	Explain the kinetic behaviour of gases and their transport properties.	PO1, PSO4	U

CL* Cognitive Level

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2								3			
CO2	3							2				
CO3	3									1		

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
1.	Entropy - Free energy, Clausius Inequality, Maxwell's relations – significance. Partial molar properties – Chemical potential, Fugacity and Activity.	Chalk and board	Q & A Session	CO 1
2.	Thermodynamic functions of mixing, Gibbs-Duhem-Margules equation, Konowaloff's rule, Henry's law.	Chalk and board		CO 1
3.	Excess thermodynamic functions-free energy, enthalpy, entropy and volume. Chemical affinity and thermodynamic functions	Chalk and board		CO 1
4.	Nernst heat theorem, development of third law of thermodynamics, determination of absolute entropies using third law, entropy changes in chemical reactions.	Chalk and board		CO 1
5.	Effect of temperature and pressure on chemical equilibrium- van't Hoff equations	Chalk and board		CO 1
6.	Three component systems: Gibbs phase rule, graphical representation of three component systems.	Chalk and board	Quiz	CO 1
7.	Solid-liquid equilibria, ternary solutions with common ions Hydrate formation, compound formation.	Chalk and board		CO 1
8.	Liquid-liquid equilibria-one pair of partially miscible liquids	Chalk and board		CO 1
9.	Two pairs of partially miscible liquids, three pairs of partially miscible liquids.	Chalk and board		CO 1
T	eacher II – JG and IGA : Unit 2: Thermodyn Bioenergetics (rsible Proces	ses &
	Thermodynamics of irreversible	1011)		
10.	processes with simple examples. Uncompensated heat and its physical significance.	Chalk and board	Q & A Session	CO 1
11.	Entropy production- rate of entropy production, entropy production in chemical reactions, the phenomenological relations.	Chalk and board		CO 1
12.	The Onsager reciprocal relations - principle of microscopic reversibility.	Chalk and board		CO 1
13.	Electrokinetic phenomena.	Chalk and board		CO 1

14.	Thermoelectric phenomena	Chalk and board	Quiz	CO 1
15.	Bioenergetics: Coupled reactions, ATP and its role in bioenergetics.	Power point presentation		CO 1
16.	High energy bond, free energy and entropy change in ATP hydrolysis.	Power point presentation		CO 1
17.	Thermodynamic aspects of metabolism and respiration	Power point presentation		CO 1
18.	Thermodynamic aspects of glycolysis and biological redox reactions.	Power point presentation		CO 1
19.	Revision	Power point presentation	Quiz	CO 1
	Teacher III – KBJ : Unit 3 : STATISTICA	L THERMODYNA	MICS (27h)	
20.	Permutation, probability, apriori and thermodynamic probability.	Chalk and board		CO 2
21.	Stirlings approximation, macrostates and microstates.	Chalk and board		CO 2
22.	Boltzmann distribution law	Chalk and board	Q & A Session	CO 2
23.	Partition function and its physical significance	Chalk and board		CO 2
24.	Phase space, different ensembles	Chalk and board		CO 2
25.	Canonical partition function, distinguishable and indistinguishable molecules	Chalk and board		CO 2
26.	Partition function and thermodynamic functions	Chalk and board		CO 2
27.	Separation of partition function	Chalk and board		CO 2
28.	Translational and rotational partition functions.	Chalk and board		CO 2
29.	Vibrational and electronic partition functions.	Chalk and board		CO 2
30.	Thermal de-Broglie wavelength. Calculation of thermodynamic functions and equilibrium constants.	Chalk and board		CO 2
31.	Statistical interpretation of work and heat	Chalk and board		CO 2
32.	Sakur-Tetrode equation	Chalk and board		CO 2
33.	Statistical formulation of third law of thermodynamics	Chalk and board		CO 2
34.	Thermodynamic probability and entropy, residual entropy	Chalk and board	Quiz	CO 2
35.	Heat capacity of gases - classical and quantum theories	Chalk and board		CO 2

		Chalk and		
36.	Heat capacity of hydrogen	board		CO 2
27	Heat capacity of solids- the vibrational	Chalk and		CO 2
37.	properties of solids	board		CO 2
38.	Einstein's theory and its limitations	Chalk and	Q & A	CO 2
56.	Ellistelli s theory and its limitations	board	Session	CO 2
39.	Debye theory and its limitations	Chalk and		CO 2
		board		
40.	Bose-Einstein statistics: Bose-Einstein	Chalk and		CO 2
	distribution, example of particles	board		
41.	Bose-Einstein condensation	Power point		CO 2
	Difference between first ander and	presentation		
42.	Difference between first order and	Chalk and board		CO 2
	higher order phase transitions	Chalk and		
43.	liquid helium, super cooled liquids	board		CO 2
	Fermi-Dirac distribution, examples of	Chalk and		
44.	particles	board		CO 2
	Application in electron gas, thermionic	Chalk and		
45.	emission	board		CO 2
_		Chalk and	Q & A	
46.	Comparison of three statistics	board	Session	CO 2
	Teacher IV – JG : Unit 4 : GASEO	US STATE (8h)		
	Derivation of Maxwell's law of	Chalk and		
47.	distribution of velocities	board		CO 3
_	Graphical representation, experimental	Power point		
48.	verification of the law.	presentation		CO 3
	Derivation of average, RMS and most	•		
49.	probable velocities, most probable	Chalk and	Quiz	CO 3
	velocity	board		
	Collision diameter, collision frequency in	Dower point		
50.	a single gas and in a mixture of two	Power point presentation		CO 3
	gases	presentation		
51.	Mean free path	Chalk and		CO 3
J1.	Weath free path	board		50 3
52.	Effusion, the rate of effusion	Chalk and		CO 3
	225.6.1, 6.16.1466 6.1611461611	board		
53.	Transport properties of gases - viscosity	Chalk and		CO 3
		board		
54.	Thermal conductivity and diffusion	Chalk and		CO 3
	<u>'</u>	board		

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	22/08/18	Solid-liquid equilibria, ternary solutions with common ions	CO 1

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	11/09/18	Different statistical models and comparison	CO 2

REFERENCES:

- R.P. Rastogi, R.R. Misra, An introduction to Chemical Thermodynamics, Vikas publishing house, 2009.
- J. Rajaram, J.C. Kuriakose, Thermodynamics, S Chand and Co., 1999.
- M.C. Gupta, Statistical Thermodynamics, New age international, 2007.
- M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics, Tata McGraw Hill, 1981.
- P.W. Atkins, Physical Chemistry, ELBS, 1994.
- K.J. Laidler, J.H. Meiser, B.C. Sanctuary, Physical Chemistry, 4thEdn. Houghton Mifflin, 2003.
- L.K. Nash, Elements of Classical and Statistical Mechanics, 2ndEdn., Addison Wesley, 1972.
- D.A. McQuarrie, J.D. Simon, Physiacl Chemistry: A Molecular Approach, University Science Books,1997
- C. Kalidas, M.V. Sangaranarayanan, Non-equilibrium Thermodynamics, Macmillan India, 2002.
- R.K. Murray, D.K. Granner, P. A. Mayes, V.W. Rodwell, Harper's Biochemistry, Tata McGraw Hill,1999.
- I. Tinoco, K. Sauer, J.C. Wang, J.D. Puglisi, Physical Chemistry: Principles and Applications in Biological Science, Prentice Hall, 2002.
- F.W. Sears, G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Addison Wesley, 1975.

COURSE 4

PROGRAMME	M.SC. CHEMISTRY	SEMESTER	1
COURSE CODE AND TITLE	16P1CHET04 AND QUANTUM CHEMISTRY AND GROUP THEORY	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME DR. JORPHIN JOSEPH (JRJ), DR. ABI T.G. (ATG)			

	COURSE OUTCOME	POS / PSOS	CL
CO1	Understand the foundation and postulates of quantum mechanics.	PO1, PSO3	U
CO2	Describe the use of simple models for predictive understanding of different molecular systems and phenomena.	PO1, PSO4	U
соз	Illustrate the concept of atomic orbitals by quantum mechanics.	PO1, PSO3	U

CO4	Explain the fundamentals of group theory.	PO1, PSO1	R
CO5	Apply the principles of group theory in chemical bonding.	PO1, PSO3	А

CL* Cognitive Level

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2								3			
CO2	3									1		
CO3	3								2			
CO4	2						2					
CO5	2								2			

UNIT 1: POSTULATES OF QUANTUM MECHANICS (9H)						
SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME		
1.	State function or wave function postulate: Born interpretation of the wave function, well behaved functions, orthonormality of wave functions	Lecture method		CO 1		
2.	Operator postulate: operator algebra, linear and nonlinear operators, Laplacian operator			CO 1		
3.	Hermitian operators and their properties	Lecture method		CO 1		
4.	Eigen functions and eigen values of an operator. Eigen value postulate: eigen value equation, eigen functions of commuting operators.	Lecture method		CO 1		
5.	Expectation value postulate			CO 1		
6.	Postulate of time-dependent Schrödinger equation, conservative systems and time-independent Schrödinger equation.			CO 1		
7.	Commuting and non-commuting operators	Lecture method		CO 1		
8.	Problems based on the topics discussed	Interaction/Disc ussion	Q & A Session	CO 1		
9.	Problems based on the topics discussed	Interaction/Disc ussion	Q & A Session	CO 1		
	UNIT 2: APPLICATION TO EXACTLY SOLVA	BLE MODEL PROB	LEMS (18H)			
SESSION	TOPIC	LEARNING	VALUE	COURSE		

		RESOURCES	ADDITIONS	OUTCOME
10.	Translational motion: free particle in one- dimension, particle in a one dimensional box with infinite potential walls	Lecture method		CO 2
11.	Particle in a one-dimensional box with finite potential walls-tunnelling	Lecture method		CO 1
12.	Particle in a three dimensional box separation of variables, degeneracy.	Lecture method		CO 1
13.	Vibrational motion: one-dimensional harmonic oscillator (complete treatment), Hermite equation (solving by method of power series), Hermite polynomials, recursion relation	Lecture method		CO 1
14.	Wave functions and energies-important features, Harmonic oscillator model and molecular vibrations.			CO 1
15.	Rotational motion: co-ordinate systems, cartesian, cylindrical polar and spherical polar coordinates and their relationships. The wave equation in spherical polar coordinates	Lecture method		CO 1
16.	Particle on a ring, the phi equation and its solution, wave functions in the real form	Lecture method		CO 1
17.	Non-planar rigid rotor (or particle on a sphere)- separation of variables, the phi and the theta equations	Lecture method		CO 1
18.	Legendre and associated Legendre equations, Legendre and associated Legendre polynomials.	Lecture method		CO 1
19.	Spherical harmonics (imaginary and real forms) - polar diagrams of spherical harmonics.	Lecture method		CO 1
20.	Quantization of angular momentum, quantum mechanical operators corresponding to angular momenta (Lx, Ly, Lz and L2)-commutation relations between these operators.	Lecture method		CO 1
21.	Spherical harmonics as eigen functions of angular momentum operators Lz and L ²	Lecture method		CO 1
22.	Ladder operator method for angular momentum. Space quantization.	Lecture method		CO 1
23.	Problems based on the above topics	Interaction/Disc ussion		CO 1
24.	Problems based on the above topics	Interaction/Disc ussion		CO 1
25.	Revision	PowerPoint presentation		CO 1

26.	Revision	PowerPoint	Q & A Session	CO 1
	UNIT 3: QUANTUM MECHANICS OF HYD	presentation ROGEN-LIKE ATO		
SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
27.	Potential energy of hydrogen-like systems	Lecture method		CO 2
28.	The wave equation in spherical polar coordinates: separation of variables-R, theta and phi equations and their solutions	Lecture method		CO 2
29.	The wave equation in spherical polar coordinates: separation of variables-R, theta and phi equations and their solutions	Lecture method		CO 2
30.	Wave functions and energies of hydrogen- like atoms. Orbitals-radial functions	PowerPoint presentation		CO 3
31.	Radial distribution functions, angular functions and their plots.	PowerPoint presentation		CO 3
32.	The postulate of spin by Uhlenbeck and Goudsmith	Lecture method		CO 2
33.	Discovery of spin-Stern Gerlach experiment	Lecture method		CO 3
34.	Spin orbitals-construction of spin orbitals from orbitals and spin functions.	Lecture method		CO 3
35.	Revision	PowerPoint presentation	Quiz	CO 2 & CO 3
	UNIT 4 : GROUP THEORY AND MOLE	CULAR SYMMETR	Y (18H)	
SESSION	TOPIC	LEARNING	VALUE	COURSE
		RESOURCES	ADDITIONS	OUTCOME
36.	Symmetry elements, symmetry operations	PowerPoint presentation	Q & A Session	CO 4
37.	Symmetry elements, symmetry operations	PowerPoint presentation		CO 4
38.	Point groups and their symbols	PowerPoint presentation		CO 4
39.	Subgroups, classes, abelian and cyclic groups	PowerPoint presentation		CO 4
40.	Group multiplication tables	PowerPoint presentation		CO 4
41.	Classes in a group and similarity transformation	PowerPoint presentation		CO 4
42.	Matrices: addition and multiplication of matrices	Lecture method		CO 4
43.	Inverse and orthogonalmatrices, character of a matrix	Lecture method		CO 4
44.	Block diagonalisation, matrix representation of symmetry operations	PowerPoint presentation		CO 4

45.	Representation of groups by matrices,	Power Point Presentation		CO 4
1.0	Construction of representation using	Power Point		00.4
46.	vectors and atomic orbitals as basis	Presentation		CO 4
47.	Construction of representation using	Power Point		CO 4
47.	vectors and atomic orbitals as basis	Presentation		CO 4
48.	Statement of Great OrthogonalityTheorem	Power Point		CO 4
40.	(GOT)	Presentation		CO 4
49.	Properties of irreducible representations.	Power Point		CO 4
43.	Properties of irreducible representations.	Presentation		CO 4
50.	Construction of irreducible representation	Power Point		CO 4
30.	using GOT	Presentation		CO 4
51.	Construction of character tables for C2v,	Power Point		CO 4
31.	C2h, C3, C3v and C4v	Presentation		CO 4
52.	Direct product of representations	Power Point		CO 4
32.	Direct product of representations	Presentation		CO 4
53.	Revision	Power Point	Quiz	CO 4
J3.	IVEAISIOII	Presentation	Quiz	CO 4

UNIT IV: APPLICATION OF GROUP THEORY IN SPECTROSCOPY AND CHEMICAL BONDING (18H)

SESSION	TOPIC	LEARNING	VALUE	COURSE	
SESSION	TOPIC	RESOURCES	ADDITIONS	OUTCOME	
54.	Applications in vibrational spectra	PowerPoint		CO 5	
54.	Applications in vibrational spectra	presentation		CO 5	
55.	Transition moment integral	Power Point		CO 5	
	Transition moment integral	Presentation			
56.	Vanishing of integrals	Power Point		CO 5	
50.	vanishing of integrals	Presentation			
57.	Symmetry aspects of molecular vibrations,	Power Point	Q & A	CO 5	
57.	Symmetry aspects of molecular vibrations,	Presentation	Session		
58.	Vibrations of polyatomicmolecules-selection	Power Point		CO 5	
56.	rules for vibrational absorption.	Presentation		CO 3	
59.	Determination of thesymmetry of normal	Power Point		CO 5	
39.	modes of H_2O , C_2H_4 ,	Presentation		603	
60.	Trans N ₂ F ₂ ,CHCl ₃ and NH ₃ using Cartesian	PowerPoint		CO 5	
00.	coordinates and internal coordinates	presentation		CO 3	
	Complementary character of IR and Raman	Power Point		CO 5	
61.	spectra-determination of the IR and Raman	Presentation			
	active vibrational modes.	Trescritation			
62.	Applications in chemical bonding	PowerPoint		CO 5	
02.	Applications in chemical bonding	presentation			
63.	Applications in chemical bonding	PowerPoint		CO 5	
03.	Applications in chemical boliding	presentation		CO 3	
64.	Construction of hybrid orbitals with (1)H ₂ O	Power Point		CO 5	
	(2), NH ₃	Presentation		CO 3	
65.	(3) BF ₃ (4) CH ₄	Power Point		CO 5	
65.	(3) 51 3 (4) (114	Presentation			

66.	PCI ₅	Power Point Presentation		CO 5	
67.	Transformation properties of atomic	Power Point		CO 5	
07.	orbitals	Presentation			
68.	Symmetry adapted linear combinations	Power Point	Q & A	CO 5	
06.	(SALC).	Presentation	Session	05	
69.	Revision	Power Point		CO 5	
69.	Revision	Presentation		CO 5	
70.	MO diagram for water and ammonia	Power Point		CO 5	
70.		Presentation		CO 3	
71	Revision	Power Point		60.5	
71.		Presentation		CO 5	
72	Davidia a	Power Point	O:-	60.5	
72.	Revision	Presentation	Quiz	CO 5	

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1.	29/07/18	Wave functions and energies-important features,	CO 2
1.	29/07/16	Harmonic oscillator model and molecular vibrations.	
2.	16/08/18	construction of character tables for C2v,C2h, C3, C3v and	CO 4
۷.	10/06/16	C4v	

GROUP ASSIGNMENTS/ACTIVITES – DETAILS & GUIDELINES

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1.	03/09/18	Radial distribution functions, angular functions and their plots.	CO 2

REFERENCES

- I.N. Levine, Quantum Chemistry, 6th Edition, Pearson Education Inc.
- P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, 4th Edition, Oxford University Press, 2005
- Donald, A. McQuarrie, Quantum Chemistry, University Science Books, 1983
- J.P. Lowe, Quantum Chemistry, 2nd Edition, Academic Press Inc., 1993
- A.K. Chandra, Introduction to Quantum Chemistry, 4th Edition, Tata McGraw-Hill, 1994
- R.K. Prasad, Quantum Chemistry, 3rd Edition, New Age International, 2006
- Jack Simons, An Introduction to Theoretical Chemistry, Cambridge University Press, 2003
- F.A. Cotton, Chemical applications of Group Theory, 3rd Edition, John Wiley &Sons Inc., 2003
- H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley &Sons Inc., 1965.
- A. Salahuddin Kunju & G. Krishnan, Group Theory & its Applications in Chemistry, PHI Learning Pvt. Ltd. 2010.

- Swarnalakshmi, T. Saroja, R.M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.
- S.F.A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd Edn., Wiley, 2007
- K. Veera Reddy, Symmetry & Spectroscopy of Molecules 2nd Edn., New Age International 2009