SACRED HEART COLLEGE (AUTONOMOUS)

Department of BOTANY

MASTER OF SCIENCE IN BOTANY

Course plan

Academic Year 2018-19

Semester IV

COURSE PLAN

PROGRAMME	MASTERS IN BOTANY	SEMESTER	4
COURSE CODE AND TITLE	16P4BOTT13: BIOTECHNOLOGY & GENETIC ENGINEERING	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72+36
FACULTY NAME	FACULTY NAME KIRAN GEORGE KOSHY		

COURSE OBJECTIVES

To explain the fundamental and advanced aspects of recombinant DNA technology, gene cloning strategies

To describe the various aspects of advanced transgenic technology

To explain the social and ethical issues in the field of biotechnology

To describe the scope and relevance of genome editing

To explain the applications of rDNA technology

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS	
	MODULE I				
1	Isolation and purification of DNA (genomic and	PPT	video		
2	plasmid) and RNA.	PPT/Lecture			
3		PPT/Lecture			
4		PPT/Lecture			
	MODULE 2				
5	(a) Vectors – necessary properties of a vector,	PPT/Lecture	e-resource		
6	Construction, important features and specific uses of	PPT/Lecture			
7	vectors: plasmid - pBR322, pUC, Lambda phage, M13,	Lecture			
8	artificial chromosomes – YAC, BAC, PAC, HAC. Shuttle	Lecture			
9	vectors, expression vectors.	Lecture			
10	(b) Direct Gene Transfer Methods - microprojectiles, electroporation, microinjection,	Lecture			
11	chemical, lipofection	PPT/Lecture			
	(c) Restriction endonucleases – naming, types				
	and reaction.				
	(d) Ligases – reaction, methods of blunt end				
	joining - linkers and adaptors				
	(e) Topocloning and Gateway cloning				
	MODULE 3	Г. .			
12	Creation of recombinant DNA, Introduction of	PPT/Lecture			
13	recombinant DNA into host cell – preparation of	PPT/Lecture			
14	competent host cells, transformation. Selection of				
15	transformed cells, identification of recombinant cells – insertional inactivation. Methods of screening and	PPT/Lecture			
16	selection of recombinant cells – selectable markers,	Lecture			
17	reporter systems – Lac Z system, GFP.	Lecture			

	MODULE 4				
18	(a) Agrobacterium tumefaciens mediated gene	Lecture			
19	transfer in plants - details of vector system based on	Lecture			
20	A. tumefaciens, binary vector and cointegrate vector.	PPT/Lecture			
21	Steps involved in Agrobacterium mediated gene	PPT/Lecture			
22	transfer to plants.	PPT/Lecture			
	(b) Details of the creation of Bt plants, Golden rice,	,			
	Flavr Savr Tomato.				
	MODULE 5				
23	Phosphodiester, phosphotriester, and phosphite-	PPT/Lecture			
24	triester method of DNA synthesis (Brief study only).	Lecture			
25	Phosphoramidite method, automated DNA synthesis. Artificial genome synthesis.	Lecture			
26	CIA-1				
20	MODULE 6				
27	Applications of protein engineering, protein	Lecture			
28	modification by site-directed mutagenesis,	Lecture			
28	combinatorial methods.	PPT/Lecture			
29		FFI/Lecture			
30	Design and operation, types. Applications - medical,	PPT/Lecture			
31	food and agriculture, industrial, pollution monitoring.	PPT/Lecture			
32	GMOs as biosensors.				
33	Inducible expression systems – examples, site-specific	PPT/Lecture			
34	recombination for in vivo gene manipulation, gene	PPT/Lecture			
35	targeting, gene silencing using antisense RNA and	PPT/Lecture			
-	36 RNAi. In vitro mutagenesis - site-directed		Quiz		
	mutagenesis.	Lecture Lecture	Q & Ans		
37		Lecture	Session		
38		PPT/Lecture	00001011		
	MODULE 7	11172000010			
39	Genomic and cDNA library. Procedure for the	PPT/Lecture			
40	construction of a genomic library using phage λ	PPT/Lecture			
	system. Identification of desirable clones from library	PPT/Lecture			
41	– hybridization probing, colony and plaque				
42	hybridization probing, immunological screening.	Lecture			
43	Locating and isolating a gene - in situ hybridization,	PPT/Lecture			
44	positional cloning, chromosome walking and jumping.	PPT/Lecture			
45		PPT/Lecture			
46		PPT/Lecture			
	MODULE 8				
47	(a) PCR - Procedure and applications, variants of PCR	PPT/Lecture			
48	- Real time PCR and its applications.	PPT/Lecture			
49	(b) In vitro mutagenesis- Oligonucleotide directed,	PPT/Lecture			
50	Error- prone PCR, Cassette Mutagenesis. Applications	PPT/Lecture			
50	of In vitro mutagenesis.	PPT/Lecture			
52	(c) Blotting techniques - procedure and applications	PPT/Lecture	Video		
	of southern, northern, western, and dot blotting.	PPT/Lecture			
53	Microarray (gene chip) technology.		 		
54	(d) Procedure and applications of DNA profiling,	PPT/Lecture	ļ		
55	Footprinting.				

56	(e) Procedure and applications of ELISA, RIA, Immunoprecipitation, flow cytometry, FISH, GISH.	Lecture	Debate		
	MODULE 9	• •			
57	Approaches to gene therapy- somatic cell and	PPT/Lecture			
58	germline therapy, vectors used in gene therapy. In	PPT/Lecture			
59	vivo and ex vivo therapy. Gene therapy of SCID, Cystic fibrosis, gene augmentation therapy. Problems	PPT/Lecture			
60	and fears associated with gene therapy	PPT/Lecture			
61]	PPT/Lecture			
	MODULE 10				
62	Uses of GM microbes: Bacteria and yeast - producing useful proteins, basic genetic research	PPT/Lecture			
	CIA - II		1 1		
	Applications of GM animals: In basic research,	Lecture	Demo		
63	producing novel proteins; disease studies, prevention		video		
64	and cure diseases0). Uses of transgenic plants:	Lecture			
	Herbicide, insect and disease resistance, stress	Lecture	Group		
65	nutritional and other novel qualities in plants.		discussion		
66					
67		PPT/Lecture			
	MODULE 11				
68	Need for regulation, regulatory agency in India –	PPT/Lecture			
69	GEAE. Patents – issues relating to patenting living	PPT/Lecture			
70	organisms, their genes and other bioresources. Potential impact of GMOs on the ecosystem. GM	PPT/Lecture			
71	food – effect on health and environment. Ethical	PPT/Lecture			
	problems of rDNA technology. Economic issues.	PPT/Lecture			
	Potential misuse of modern molecular biology tools				
72	and techniques, bioweapons, bioterrorism.				
	PRACTICALS				
73 - 89	1. Isolation of plant genomic DNA and its	HANDS-ON			
	quantification. 2. Isolation of plasmids and its purification.				
	3. Isolation of bacterial genomic DNA and its				
	quantification by using UV spectrophotometer.				
	4. Separation of DNA by agarose gel electrophoresis.				
	5. Separation of proteins by PAGE.				
	6. PCR.				

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of	Topic of Assignment & Nature of assignment	
	completion (Individual/Group – Written/Presentation Graded or Non-graded etc)		
1	12/1/2019	Steps of rDNA Technology	
2	18/1/2019	Techniques in rDNA Technology	

References

- 1. James D Watson, Amy A Caudy, Richard M Myers, Jan A Witkowski (2007). *Recombinant DNA* (III Edn). W H Freeman.
- 2. S B Primrose, R M Twyman (2006). *Principles of gene manipulation and genomics* (VII Edn). Blackwell publishing.
- 3. Robert J Brooker (2009). Genetics: Analysis & principles (III Edn). McGraw Hill.
- 4. T A Brown (2002). *Genomes* (II Edn). Bios.
- 5. Leland H Hartwell, Leroy Hood, Michael L Goldberg, Ann E Reynolds, Lee M Silver, Ruth C Veres (2004). *Genetics: From genes to genomes* (II Edn). McGraw Hill.
- 6. Abul K Abbas, Andrew H Lichtmay, Shiv Pillai (2007). *Cellular and molecular immunology* (IV Edn). Elsevier..
- 7. Smita Rastogi, Neelam Pathak (2010). *Genetic engineering*. Oxford.
- 8. Bernard R Glick, Jack J Pasternak, Cheryl L Pattein (2010). *Molecular biotechnology: Principles and applications of recombinant DNA*. ASM press.
- 9. S B Primrose, R M Twyman, R W Old (2001). *Principles of gene manipulation* (VI Edn). Blackwell Science.
- 10. Jeremy W Dale, Malcolm von Schantz (2002). From genes to genomes. John Wiley & Sons Ltd.
- 11. Daniel L Hartl, Elizabeth W Jones (2009). *Genetics: analysis of genes and genomes* (VII Edn). Jones and Bartlett publishers.
- 12. P Nagarajan, N Senthilkumar (2002). Molecular biology: Principles and methods. Sree Narmatha
- 13. printers, Coimbatore.
- 14. Joseph Sambrook, David W Russell (2001). *Molecular cloning: A laboratory manual*. Cold spring harbor laboratory press.
- 15. David P Clark (2010). *Molecular biology*. Elsevier.
- 16. Jeremy M Berg, John L Tymoczko, Lubert Stryer, Gregory J Gatto Jr. (2007) *Biochemistry*. W H Freeman and company.
- 17. Desmond S T Nicholl (2010). An introduction to genetic engineering (III Edn). Cambridge.
- 18. D Peter Snustad, Michael J Simmons (2010). Principles of genetics (V Edn). John Wiley and Sons.
- 19. David A Micklos, Greg A Freyer with David A Crotty (2003). DNA Science: A first course (II Edn). L K Inter.
- 20. Benjamin A Pierce (2008). Genetics: A conceptual approach (IV Edn). W H Freeman and Company
- 21. Anthony J F Griffiths, Susan R Wesler, Sean B Carroll, John Doebley (2008). *Introduction to genetic analysis* (X Edn). W H Freeman and Company.
- 22. Benjamin Lewin (2006) Genes IX. Jones and Bartlett.
- 23. William J Thieman, Michael A Palladino (2009). Introduction to biotechnology (II Edn). Pearson.
- 24. Carl Branden, John Tooze (1999). Introduction to protein structure (II Edn). Garland Publishing.
- 25. T A Brown (1995). Gene cloning: An introduction (III Edn). Stanley Thomas (Publishers) Ltd.
- 26. S B Primrose (1999). Molecular biotechnology (II Edn). Panima Publishing Corporation.
- 27. Alan Fersht (1999). Structure and Mechanism in Protein Science. W H Freeman and Company.

COURSE PLAN

PROGRAMME	M.Sc. botany	SEMESTER	4
COURSE CODE AND TITLE	16P4BOTT14 TISSUE CULTURE AND MICROBIAL BIOTECHNOLOGY	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	Fr.Jose John, I'ma Neerackal		

COURSE OBJECTIVES

To examine the basic aspects of plant tissue culture in vitro germplasm conservation strategies

To describe the fundamentals of microbial biotechnology

To evaluate the different methods and processes involved in plant tissue culture

To describe the scope and relevance of Bioreactors and fermentation technology

To analyze the somaclonal and ploidy variants

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODU	LE I		
1	Introduction	PPT/ Lecturing		
2	Tissue culture regeneration of plants - Adventitious regeneration: Direct regeneration, indirect regeneration.	PPT/ Lecturing		
3	Tissue culture regeneration of plants - Adventitious regeneration: Direct regeneration, indirect regeneration.	PPT/ Lecturing		
4	Factors affecting adventitious regeneration; genotype, explant – orientation of explant, position on mother plant.	PPT/ Lecturing		
5	Factors affecting adventitious regeneration; genotype, explant – orientation of explant, position on mother plant.	PPT/ Lecturing		
6	Somatic embryogenesis: General aspects	PPT/ Lecturing		
7	Somatic embryogenesis: initiation of embryogenic cultures	PPT/ Lecturing		
8	Somatic embryogenesis: maturation of somatic embryos	PPT/ Lecturing		

	Gynogenesis: Developmental stage	
38	at inoculation, in vitro maturation	PPT/ Lecturing
	of embryo sacs	
	Gynogenesis: origin of embryos,	
39	triggering factors – pretreatment,	PPT/ Lecturing
	medium.	
40 - 41	Gynogenesis: Uses and limitations	PPT/ Lecturing
40 41	of haploid plants.	
	Triploids: importance of triploid	
42	plants	PPT/ Lecturing
	Triploids: conventional production	
40		DDT / Locturing
43	of triploid plants, endosperm	PPT/ Lecturing
	culture - advantages and limitations	
	Triploids: conventional production	
44	of triploid plants, endosperm	PPT/ Lecturing
	culture - advantages and limitations	
	MODUL	FIV
	Protoplast Culture - Isolation and	PPT/ Lecture
45		
45	purification of protoplasts, culture	
	of protoplasts	
	Protoplast Culture - cell division and	PPT/Lecture
46	callus formation, plant	
	regeneration.	
	Protoplast fusion (somatic	PPT/Lecture
47	hybridization) – chemical,	
47		
	mechanical, electrofusion.	
	Protoplast fusion (somatic	PPT/Lecture
	hybridization) – Selection, isolation	
48	of heterokaryons, cybrids and their	
	applications. Applications of	
	protoplast culture.	
	PRACTI	CAL
	Isolation and fusion of plant	Demo/ Lab
49	-	
	protoplasts	
50	Preparation of synthetic seeds.	Demo/ Lab
	Preparation of selective medium for	Demo/ Lab
	drought or salinity resistance.	
E1 E2	Preparation of MS soild medium	
51 – 52	from stock solutions containing	
	auxin and cytokinin, NaCl or PEG,	
	and inoculation.	
		Demo/ Lab
53 - 55	Finding out the uninucleate stage of	
	anther and anther culture.	
	Dissecting out an embryo from any	Demo/ Lab
56 - 58	seed and culturing it on a suitable	
	solid medium.	
L		

59 - 61	Cell plating technique.	Demo/ Lab			
	MICROBIAL BIOTECHNOLOGY				
62 - 64	Screening of microbes for metabolite production. Selection of media, sterilization of media.	Presentation/Chalk and Board			
65 - 66	Screening of microbes for metabolite production. Selection of media, sterilization of media.	Presentation/Chalk and Board			
67 - 69	Bioreactors – airlift, stirred tank, bubble column, rotary drum. Fermentation process - batch, fed batch, continuous fermentation. Submerged and solid state fermentation Process control during fermentation- pH, aeration, agitation, temperature, foam control	Presentation/Chalk and Board			
70	Downstream processing.	Presentation/Chalk and Board			
71 - 72	Large scale production of antibiotics - penicillin, streptomycin, industrial chemicals - ethanol, acetone, butanol, lysine. Microbial insecticides. Commercial production of enzymes and their uses - amylase, cellulase, polygalacturonase	Presentation/Chalk and Board			

	Торіс	Nature of Assignment
1	Protoplast Fusion - Scope and Applications	Written and Seminar Presentation
2	Protoplast Isolation and Purifications	Written and Seminar Presentation
3	Somatic Embryogenesis	Written and Seminar Presentation
4	Gynogenesis	Written and Seminar Presentation
5	Triploid Production in India	Written and Seminar Presentation
6	Androgenesis	Written and Seminar Presentation

REFERENCES

- 1. Hamish A Collin, Sue Edwards (1998). Plant tissue culture. Bios scientific publishers.
- 2. R A Dixon, R A Gonzales (2004). Plant cell culture, a practical approach (II Edn). Oxford University Press.
- 3. S S Bhojwani, M K Razdan (1996). Plant tissue culture: Theory and Practice. Elsevier.
- 4. Susan R. Barnum (1998). Biotechnology an introduction. Thomson Brooks/cole.
- 5. L Gamborg, G C Philips (Eds.) (2005). Plant cell, tissue and organ culture: Fundamental methods. Narosa Publishing House.
- 6. D E Evans, J O D Coleman, A Kearns (2003). Plant Cell Culture. BIOS Scientific Publishers.
- 7. Edwin F. George, Michael A. Hall, Geert-Jan De Klerk (2008). Plant Propagation by Tissue Culture (Vol I): The Background. Springer.
- 8. Michael R. Davey, Paul Anthony (2010). Plant Cell Culture: Essential Methods. Wiley-Blackwell A John Wiley & Sons, Ltd.
- 9. Trevor A. Thorpe and Edward C. Yeung (Eds) (2011). Plant Embryo Culture: Methods and Protocols. Springer, Heidelberg.

PROGRAMME	M. Sc. Botany	SEMESTER	4	
COURSE CODE AND TITLE	GENOMICS, PROTEOMICS & BIOINFORMATICS (16P4BOTT15)	CREDIT	4	
HOURS/WEEK	6	HOURS/SEM	(Theory 36 + 36 hrs; Practical 0 + 45 hrs)	
FACULTY NAME	Lesly Augustine			

COURSE PLAN

COURSE OBJECTIVES

To compile and explain the history of genomics and the revolution happened in the field

To distinguish the ancient and modern techniques to understand the structural features of genome

To elaborate the modern principles of functional genomics

To simplify the evolutionary studies using the genomics tools and appraise the social and ethical issues with a scientific temper

To formulate the genomic studies using the fundamentals of bioinformatics

GENOMICS & PROTEOMICS (Theory 36 hrs)

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	Introduction to Course			
	Introduction to the Course	PPT/Lecture	video	
	Genomics: Genome - basis and key concepts.	PPT/Lecture	Seminar	
	Proteomics- basis and key concepts.	PPT/Lecture	Seminar	
	Important findings of the completed genome projects: Human genome project	PPT/Lecture	Seminar	
	Important findings of the completed genome projects: Rice genome project,	PPT/Lecture	Seminar	
	Important findings of the completed genome projects: Arabidopsis genome project	PPT/Lecture	Seminar	
	Important findings of the completed genome projects: E. coli genome project	PPT/Lecture	Seminar	
	Important findings of the completed genome projects: Wheat genome project	PPT/Lecture	Seminar	
	Important findings of the completed genome projects: Tomato genome project.	PPT/Lecture	Seminar	
	Module 1: Structural ger	nomics (20 hrs.	.)	•
1	Basic steps in genome sequencing.	PPT/Lecture		
2	Shot gun sequencing of small genomes	PPT/Lecture		
3	Map based sequencing: Hierarchical shot gun sequencing (clone-by-clone approach) - steps involved	PPT/Lecture		
4	Whole genome shot gun approach - steps involved.	PPT/Lecture		
5	Genome mapping	PPT/Lecture		
6	Genetic mapping and physical mapping	PPT/Lecture		
7	Cytogenetic and linkage map	PPT/Lecture		
8	Molecular markers – RFLP	PPT/Lecture		
9	RAPD	PPT/Lecture		
10	AFLP	PPT/Lecture		
11	SSLP	PPT/Lecture		
12	SNP	PPT/Lecture		
13	Construction of linkage maps using molecular markers – E.g., RFLP maps	PPT/Lecture		
14	Physical mapping – restriction mapping,	PPT/Lecture		
15	STS	PPT/Lecture		
16	SNP	PPT/Lecture		
17	EST	PPT/Lecture		
18	Sequence assembly – methods used	PPT/Lecture		
19	Next generation sequencing strategies	PPT/Lecture		
20	Pyrosequencing, 454 GS FLX System	PPT/Lecture		
	Module 2: Functional ge)	•
21	Transcriptome, expression profiling (mRNA	PPT/Lecture	video	

	profiling).			
22	Gene expression analysis using dot blotting and microarrays	PPT/Lecture		
23	Fabrication of microarrays – spotted arrays, in situ synthesis.	PPT/Lecture		
24	Chromatin immunoprecipitation (ChIP) and its applications.	PPT/Lecture		
25	Determination of gene functions - knock out and knock down mutants	PPT/Lecture		
26	Antisense RNA and RNAi	PPT/Lecture		
27	Gene over expression	PPT/Lecture		
	Module 3: Comparative g	enomics (3 hr	s)	
28	Orthologs and Paralogs	PPT/Lecture		
29	Gene identification by comparative genomics	PPT/Lecture		
30	Comparative genomics as a tool in evolutionary studies.	PPT/Lecture		
31	Metagenomics.	PPT/Lecture		
	Module 4: Proteomics (6	i hrs.)		
32	Proteome, proteomics	PPT/Lecture		
33	Separation and identification of cellular proteins by 2D gel electrophoresis	PPT/Lecture	video	
34	Mass spectrometry	PPT/Lecture	video	
35	Protein expression analysis using Protein microarray	PPT/Lecture		
36	Protein localization using GFP,	PPT/Lecture	video	
37	Other applications of GFP	PPT/Lecture	video	

References

- S B Primrose, R M Twyman (2006). Principles of gene manipulation and genomics (VII Edn). Blackwell publishing.
- Robert J Brooker (2009). Genetics: analysis & principles (III Edn). McGraw Hill.
- James D Watson, Amy A Caudy, Richard M Myers, Jan A Witkowski (2007).
 Recombinant DNA (III Edn). W H Freeman.
- T A Brown (2002). Genomes (II Edn). Bios.
- Leland H Hartwell, Leroy Hood, Michael L Goldberg, Ann E Reynolds, Lee M Silver, Ruth C Veres (2004). Genetics: From genes to genomes (II Edn). McGraw Hill.
- Science, 16 February 2001, Vol. 291.
- Jeremy M Berg, John L Tymoczko, Lubert Stryer, Gregory J Gatto Jr. (2007).
 Biochemistry. W H Freeman and company.
- David P Clark (2010). Molecular biology. Elsevier.

- D Peter Snustad, Michael J Simmons (2010). Principles of genetics (V Edn). John Wiley and Sons.
- David A Micklos, Greg A Freyer with David A Crotty (2003). DNA Science: A first course (II Edn). L K Inter.
- Benjamin A Pierce (2008). Genetics: A conceptual approach (IV Edn). W H Freeman and Company.
- Anthony J F Griffiths, Susan R Wesler, Sean B Carroll, John Doebley (2008). Introduction to genetic analysis (X Edn). W H Freeman and Company.
- Benjamin A Pierce (2008). Genetics: A conceptual approach (IV Edn). W H Freeman and Company
- C W Sensen (2002). Genomics and Bioinformatics. Wiley VCH.
- T A Brown (2002). Genomes (II Edn). Bios.
- William J Thieman, Michael A Palladino (2009). Introduction to biotechnology (II Edn). Pearson
- George Acquaah (2005). Understanding biotechnology. Pearson.
- Robert H Tamarin (2002). Principles of genetics. McGraw Hill.
- Robert K Murray, David A Bender, Kathleen M Botham, Peter J Kennelly, Victor W Rodwell, P Anthony Weil (2009). Harper's Illustrated Biochemistry (XXVIII Edn). Mc Graw Hill.
- Nature, 409 (6822): 860-921, 2001.
- S R Pennington, M J Dunn (Edts) (2002). Proteomics: From protein sequence to function. Viva Books Private Limited.
- Bernard R Glick, Jack J Pasternak, Cheryl L Pattein (2010). Molecular biotechnology, principles and applications of recombinant DNA. ASM press.
- Burton E Tropp (2012). Molecular biology: Genes to Proteins (IV Edn). Jones and Bartlett Learning.
- Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick (2011). Lewin's Genes X . Jones and Bartlett Publishers

BIOINFORMATICS (Theory 36 hrs; Practical 45 hrs)

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	Introduction to Course			
	Introduction, aim and importance of	PPT/Lecture	video	
	bioinformatics			
	Databases: primary and secondary	PPT/Lecture	Seminar	
	databases			
	DNA sequence databases - Genbank, DNA	PPT/Lecture		
	databank, Nucleotide sequence databank		Seminar	
	(EMBI Bank). Specialized databases			
	Protein databases - SWISS-PROT, PDB	PPT/Lecture	Seminar	
	Module: 1 (16	hrs.)		
1	Submission and retrieval of databases	PPT/Lecture	video	
2	Banklt	PPT/Lecture	video	
3	ENTREZ	PPT/Lecture		
4	Sequence analysis – significance	PPT/Lecture		
5	Methods of sequence alignment – paired sequence alignment	PPT/Lecture		
6	Multiple sequence alignment	PPT/Lecture		
7	Scoring matrices	PPT/Lecture		
8	Sequence comparison	PPT/Lecture		
9	Dot matrix method	PPT/Lecture		
10	Dynamic programming for sequence alignment	PPT/Lecture		
11	Global - Needleman Wunch algorithm	PPT/Lecture		
12	Local - Smith Waterman algorithms	PPT/Lecture		
13	Database similarity search – query sequence search	PPT/Lecture		
14	BLAST - different versions	PPT/Lecture		
15	FASTA - different versions	PPT/Lecture		
16	Tools for multiple sequence alignment – CLUSTAL X/W	PPT/Lecture		
	Module: 2 (8	hrs.)		
17	Gene prediction strategies	PPT/Lecture		
18	ORF search			
19	RNA secondary structure prediction	PPT/Lecture		
20	Protein structure and function prediction -	PPT/Lecture		
	tools used			
21		PPT/Lecture		ļ
22	Protein visualization tool – Rasmol	PPT/Lecture	Videos	ļ
23	Protein visualization tool – Rasmol	PPT/Lecture	Videos	
24	Protein visualization tool – Rasmol		Videos	
24 25		Module:	I – Rasmol PPT/Lecture Module: 3 (6 hrs.) natics in evolutionary PPT/Lecture	Module: 3 (6 hrs.)

	studies			
26	Molecular phylogenetics	PPT/Lecture	Videos	
	Molecular phylogenetics Molecular clock	,		
27		PPT/Lecture	Videos	
28	Construction of phylogenetic trees – MEGA	PPT/Lecture	Videos	
29	Construction of phylogenetic trees – MEGA	PPT/Lecture	Videos	
30	Phylip, Mr.Bayes, RaXML	PPT/Lecture	Videos	
	Module: 4 (6	1	r	
31	Computer assisted drug design - concept, methods and practical approaches	PPT/Lecture		
32	Computer assisted drug design - concept, methods and practical approaches	PPT/Lecture		
33	Computer assisted drug design - concept, methods and practical approaches	PPT/Lecture		
34	Various computational methods applied to design drugs.	PPT/Lecture		
35	Various computational methods applied to design drugs.	PPT/Lecture		
36	Various computational methods applied to design drugs.	PPT/Lecture	Group discussion	
	Practica	I	· · · ·	
	Protein visualization using Rasmol	Hands-on		
1		Session		
	Protein visualization using Rasmol,	Hands-on		
2		Session		
	Protein visualization using Pymol	Hands-on		
3		Session		
	Protein visualization using Pymol	Hands-on		
4		Session		
	Protein visualization using Swiss PDB viewer	Hands-on		
5		Session		
	Multiple sequence alignment using CLUSTAL	Hands-on		
6	W.	Session		
	Multiple sequence alignment using CLUSTAL	Hands-on		
7	W.	Session		
	Multiple sequence alignment using CLUSTAL	Hands-on		
8	W.	Session		
	Phylogenetic analysis by Phylip, MEGA.	Hands-on		
9		Session		
	Phylogenetic analysis by Phylip, MEGA.	Hands-on		
10		Session		
	Phylogenetic analysis by Phylip, MEGA.	Hands-on		
11		Session		
	Gene prediction programs – Grail/Exp,	Hands-on		
12	GENSCAN, ORF finder.	Session		
	Gene prediction programs – Grail/Exp,	Hands-on		
13	GENSCAN, ORF finder.	Session		
14	Gene prediction programs – Grail/Exp,	Hands-on		

	GENSCAN, ORF finder.	Session
	Gene prediction programs – Grail/Exp,	Hands-on
15	GENSCAN, ORF finder.	Session
	Locate specific sequences like TATA box,	Hands-on
	promoters, start signals, stop signals etc.	Session
	in a DNA sequence using computer	
	programmes. Eg. E. coli promoter, human	
16	promoter.	
	Locate specific sequences like TATA box,	Hands-on
	promoters, start signals, stop signals etc.	Session
	in a DNA sequence using computer	
	programmes. Eg. E. coli promoter, human	
17	promoter.	
	Locate specific sequences like TATA box,	Hands-on
	promoters, start signals, stop signals etc.	Session
	in a DNA sequence using computer	
	programmes. Eg. E. coli promoter, human	
18	promoter.	
	Locate specific sequences like TATA box,	Hands-on
	promoters, start signals, stop signals etc.	Session
	in a DNA sequence using computer	
	programmes. Eg. E. coli promoter, human	
19	promoter.	
	Locate specific sequences like TATA box,	Hands-on
	promoters, start signals, stop signals etc.	Session
	in a DNA sequence using computer	
	programmes. Eg. E. coli promoter, human	
20	promoter.	
	Multiple sequence alignment and	Hands-on
	ontology-based database searches on	Session
	selected plant cytoskeletal genes to	
	decipher the molecular phylogeny of	
21	cytoskeleton genes – record the results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	
22	phylogeny of cytoskeleton genes – record the	
22	results	
	Multiple sequence alignment and ontology- based database searches on selected plant	Hands-on
	cytoskeletal genes to decipher the molecular	Session
	phylogeny of cytoskeleton genes – record the	
23	results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	
	phylogeny of cytoskeleton genes – record the	
24	results	

	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	
	phylogeny of cytoskeleton genes – record the	
25	results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	
	· · · · · · · · · · · · · · · · · · ·	Session
	cytoskeletal genes to decipher the molecular	
	phylogeny of cytoskeleton genes – record the	
26	results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	
	phylogeny of cytoskeleton genes – record the	
27	results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	
		Session
	cytoskeletal genes to decipher the molecular	
20	phylogeny of cytoskeleton genes – record the	
28	results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	
	phylogeny of cytoskeleton genes – record the	
29	results	
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	56351011
	phylogeny of cytoskeleton genes – record the	
30	results	
- 50		
	Multiple sequence alignment and ontology-	Hands-on
	based database searches on selected plant	Session
	cytoskeletal genes to decipher the molecular	
	phylogeny of cytoskeleton genes – record the	
31	results	
	BLASTn	Hands-on
32		Session
	BLASTn	Hands-on
33		Session
55		
	BLASTp	Hands-on
34		Session
	BLASTp	Hands-on
35		Session
	BLASTx	Hands-on
26		
36		Session
	BLASTx	Hands-on
37		Session
	tBLASTn	Hands-on
38		Session
39	tBLASTn	Hands-on
L 37		

		Session	
	Drug Designing: Autodock Vienna and	Hands-on	
40	Discovery studio	Session	
	Drug Designing: Autodock Vienna and	Hands-on	
41	Discovery studio	Session	
	Drug Designing: Autodock Vienna and	Hands-on	
42	Discovery studio	Session	
	Drug Designing: Autodock Vienna and	Hands-on	
43	Discovery studio	Session	
	Drug Designing: Autodock Vienna and	Hands-on	
44	Discovery studio	Session	
	Drug Designing: Autodock Vienna and	Hands-on	
45	Discovery studio	Session	

References

1. Teresa K Attwood, David J Parry-Smith, Simiron Phukan (2007). Introduction to Bioinformatics. Pearson Education.

2. Zhumur Ghosh, Bibekanand Mallik (2008). Bioinformatics: principles and applications. Oxford University press.

3. Orpita Bosu, Simminder Kaur Thukral (2007). Bioinformatics: Databases tools and algorithms. OxfordUniversity press.

4. David W Mount (2001). Bioinformatics: Sequence and genome analysis. CBS publishers & distributors.

5. Jin Xiong (2006). Essential Bioinformatics. Cambridge University Press

COURSE PLAN

PROGRAMME	M.Sc. BOTANY	SEMESTER	4
COURSE CODE AND TITLE	16P4BOTT16: BIOSTATISTICS, MICROTECHNIQUES & BIOPHYSICS	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
TEACHERS IN CHARGE	Dr. Giby Kuriakose, Fr. Jose John, Mr. Kiran (George Koshy	

COURSE OBJECTIVES

To explain the tools and techniques available for studying biochemical and biophysical nature of life.

To describe the basics of bio-statistics and experimental design in research

To describe micro-preparation of plant materials for microscopic examination and histo-chemical studies.

To identify various statistical tools and their applications in data analysis processing

To explain principles and working of various types of microscopes and other instruments in biological research

To understand and Apply different bio statistical analytical methods in research, real life and professional fields.

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I Killi			
1	Introduction, Principles and	PPT/ Lecturing		
	techniques of killing and fixing			
2	Properties of reagents, fixation	PPT/ Lecturing		
	images; properties and composition			
	of important fixatives - Carnoy's			
	Fluid, FAA, FPA, Chrome acetic acid			
	fluids, Zirkle- Erliki fluid.			
	MODULE II Dehydration, Clearin	ng, Embedding and	d Sectioning	
3	Dehydration: Principles of	PPT/ Lecturing		
	dehydration, properties and uses of			
	important dehydrating and clearing			
	agents - alcohols, acetone, xylol,			
	glycerol, chloroform, dioxan.			
4	Dehydration: Principles of	PPT/ Lecturing		
	dehydration, properties and uses of			
	important dehydrating and clearing			
	agents - alcohols, acetone, xylol,			
	glycerol, chloroform, dioxan.			
5	Dehydration Methods: (i) Tertiary-	PPT/ Lecturing		

	but d alcohol mathed (ii) Alcohol	
	butyl alcohol method (ii) Alcohol-	
6	xylol method.	DDT/Lecturing
	Embedding: Paraffin embedding.	PPT/ Lecturing
7	Sectioning: Free hand sections –	PPT/ Lecturing
	Prospects and problems; Sectioning	
	in rotary microtome – sledge	
	microtome and cryotome.	
	MODULE III	
8	Principles of staining; classification	PPT/ Lecturing/
	of stains, protocol for preparation	Demo
	of; (i) Natural stains - Haematoxylin	
	and Carmine; (ii) Coal tar dyes –	
	Fast green, Orange G, Safranine,	
	Crystal violet, Cotton Blue and Oil	
	Red O.	
9	Techniques of staining: (i) Single	PPT/ Lecturing/
	staining; Staining with Safranine or	Demo
	crystal violet (ii) Double staining;	
	Safranine-Fast green method,	
	Safranine-Crystal violet method (iii)	
	Triple staining; Safranine- Crystal	
	violet-Orange G method.	
10	Histochemical localization of starch,	PPT/ Lecturing
	protein, lipid and lignin.	
r	MODULE IV Specimen Preparation for	r Transmission Electron Microscopy
11	Material collection, fixing,	PPT/ Lecturing
	dehydration, embedding,	
	sectioning (glass knife preparation,	
	grid preparation, ultra microtome)	
	and staining	
12	Material collection, fixing,	PPT/ Lecturing
	dehydration, embedding,	
	sectioning (glass knife preparation,	
	grid preparation, ultra microtome)	
	and staining	
13	Material collection, fixing,	PPT/ Lecturing
	dehydration, embedding,	
	sectioning (glass knife preparation,	
	grid preparation, ultra microtome)	
	and staining	
	MODULE V W	hole Mounts
14	Principles and techniques of whole	PPT/ Lecturing
	mounting, TBA/Hygrobutol	
	method, Glycerine-xylol method.	
	Staining of whole mount materials	
	-	DDT / Locturing
1 .		
15	(haematoxylin, fast green or Safranine-fast green combination).	PPT/ Lecturing

	Significance of whole mounts	
16	Techniques of smear, squash and maceration.	PPT/ Lecturing
17	Mounting: Techniques, common mounting media used - DPX, Canada balsam, Glycerine jelly and Lactophenol	PPT/ Lecturing
18	Cleaning, labeling and storage of slides.	PPT/ Lecturing
	PRACT	ICAL
19	Preparation of semi permanent slides.	Lab Work
20	Preparation of permanent slides.	Lab Work
21	Preparation of whole mounts	Lab Work
22	Maceration	Lab Work
23	Preparation of fixatives (FAA, Carnoys'fluid, Houpt's adhesive).	Lab Work
24	Preparation of dehydration series (Alcohol, Acetone, TBA).	Lab Work
25	Preparation of paraffin blocks	Lab Work
26	Preparation of serial sections	Lab Work
27	Staining - Free hand sections - single & Double staining	Lab Work
28	Staining - Serial sections - single & Double staining	Lab Work

BIOSTATISTICS

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	Module -VI Introduction to Biostatistics			
29	Basic principles of Biostatistics: Methods of collection and classification of data	Lecture/PPT		
30	Primary and secondary data, qualitative and quantitative data.	Lecture/PPT		
31	Frequency distribution, graphical representation.	Lecture/PPT		
32	Measures of central tendency (a) Mean, (b) Median and (c) Mode	Lecture/PPT		
33	Measures of dispersion: Mean deviation, Standard deviation, variance, standard error, co- efficient of variation.	Lecture/PPT		

	Module-VII Correlation and	
	Regression	
34	Introduction to Regression and Correlation	Lecture/PPT
35	Liniar Regression	Lecture/PPT
36	Simple Liniar regression	Lecture/PPT
37	Multiple Linear Regression	Lecture/PPT
38	Correlation and Correlation coefficient	Lecture/PPT
39	Problem solving	Practical/Hand s on
	Module VIII: Probability	
40	Introduction to Probability	Lecture/PPT
41	Definition, mutually exclusive events – sum rule,	Lecture/PPT
42	Independent events – product rule.	Lecture/PPT
43	Probability of unordered combination of events.	Lecture/PPT
44	Binomial, Normal and Poisson distribution - 1	Lecture/PPT
45	Problem Solving	Practical/Hand s on
	Module IX: Design of experiments	
46	Experimental designs: Principles - replication and randomization.	Lecture/PPT
47	Common designs in biological experiments	Lecture/PPT
48	Completely randomized design,	Lecture/PPT
49	Randomized block design,	Lecture/PPT
50	Latin square design	Lecture/PPT
51	Factorial design	Lecture/PPT
52	Duncan's Multiple Range Test.	Lecture/PPT
53	Problem solving	Practical/Hand s on
	Module X: Tests of significance	
54	Statistical inference – estimation	Lecture/PPT
55	testing of hypothesis	Lecture/PPT
56	t-test	Lecture/PPT
57	Chi square test - goodness of fit	Lecture/PPT

50				
58	Chi square test-independence or	Lecture/PPT		
59	Chi square test -association	Lecture/PPT		
60	Chi square test - detection of linkages	Lecture/PPT		
61	F-test	Lecture/PPT		
62	ANOVA.	Lecture/PPT		
63	Problem Solving	Practical/Hand s on		
	BIOPH	YSICS		I
SESSION	торіс	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	Module XI: Microscopy			
64	Parts of microscope, principles of microscopy.	Lecture/PPT		
65	Types of microscopes - simple and compound; Stereo microscope,	Lecture/PPT		
66	Phase contrast microscope, Fluorescence microscope, Polarization microscope,	Lecture/PPT		
67	Confocal microscope and electron microscope (TEM, SEM and E-SEM).	Lecture/PPT		
68	Micrometry, Photomicrography and microphotography	Lecture/PPT		
	Module XII: Principles and applications of instruments			
69	Basic principles and applications of; (i) pH meter (ii) UV-visible spectrophotometers.	Lecture/PPT		
70	Centrifuges: Basic Principle, Table top centrifuge and ultra- centrifuge. Centrifugation techniques Zonal	Lecture/PPT		
71	Centrifugation, Equilibrium density gradient centrifugation.	Lecture/PPT		
72	Chromatography: Principles and application; paper, TLC, Column chromatography, GC, HPLC.	Lecture/PPT		
73	Immunoassay systems, ELISA - ELISA reader.	Lecture/PPT		
74	Electrophoresis: SDS PAGE, AGE and PFGE.	Lecture/PPT		

75	X-ray crystallography.	Lecture/PPT	
76	Haemocytometer.	Lecture/PPT	
77	Mass Spectrometry	Lecture/PPT	

SI No	Торіс	Nature of Assignment
1	Specimen Preparation for Electron	Written and Seminar
	Microscopy - SEM	Presentation
2	Stains and Staining Techniques	Written and Seminar
		Presentation
3	Dehydration and Staining	Written and Seminar
		Presentation
4	Whole mounts and Mounting	Written and Seminar
	techniques	Presentation
5	Significances and Applications of	Written and Seminar
	Biostatistics	Presentation
6	Role of testing hypothesis in research	Written and Seminar
		Presentation
7	Application of probability	Written and Seminar
		Presentation
8	Experimental design	Written and Seminar
		Presentation
9	Electron Microscopy - SEM	Written and Seminar
		Presentation
10	Micrometry	Written and Seminar
		Presentation
11	Advancement of Biophysics	Written and Seminar
		Presentation
12	Applications of Biophysics	Written and Seminar
		Presentation

TEXT BOOKS AND REFERENCES

- 1. Gray (1964). Handbook of Basic Microtechnique. McGraw Hill co.
- 2. Johanson D A (1940). Plant microtechnique. McGraw Hill co.
- 3. John E Sass (1967). Botanical Microtechnique. Oxford IBH Publ. Company.
- 4. Krishnamurthy K V (1987). *Methods in Plant Histochemistry*. S Viswanathan printers, Anand book depot, Madras.

- 5. Prasad M K, M Krishna Prasad (1983). *Outlines of Microtechnique*. Emkay Publications.
- 6. Toji Thomas (2005). *Essentials of botanical microtechnique* (II Edn). Apex infotech publishing company.
- 7. Johanson D A (1940). Plant microtechnique. McGraw Hill co.
- 8. John E Sass (1967). Botanical Microtechnique. Oxford IBH Publ. Company.
- 9. Gray (1964). Handbook of Basic Microtechnique. McGraw Hill co.
- 10. Prasad M K, M Krishna Prasad (1983). *Outlines of Microtechnique*. Emkay Publications.
- 11. Geoffrey A Meek (1976). Practical electron microscopy. John Willey and sons.
- 12. Krishnamurthy K V (1987). *Methods in Plant Histochemistry*. S Viswanathan printers, Anand book depot, Madras.
- 13. Toji Thomas (2005). *Essentials of botanical microtechnique* (II Edn). Apex infotech publishing company.
- 14. Ackerman E A, Ellis L E E, Williams L E (1979). Biophysical Science. Prentice-Hall Inc.
- 15. Chang R (1971). Basic principles of spectroscopy. McGraw Hill.
- 16. Pesce A J, Rosen C G, Pasty T L. *Fluorescence Spectroscopy: An introduction for Biology and Medicine*. Marcel Dakar.
- 17. Stanford J R (1975). Foundation of Biophysics. Academic press.
- 18. Henry B Bull (1971). An Introduction to physical biochemistry. F A Devis Co.
- 19. Perkampus H (1992). UV-VIS Spectroscopy and its applications. Springer-Verlag.
- 20. Garry D Christian, James E O'reilvy (1986). Instrumentation analysis. Alien and Bacon, Inc.
- 21. Friefelder D. *Physical Biochemistry*. W H Freeman and Co.
- 22. Mahadevan A, Sridhar R (1996). *Methods in Physiological Plant Pathology*. Sivakmi Publications