SACRED HEART COLLEGE (AUTONOMOUS)

Department of BOTANY

MASTER OF SCIENCE IN BOTANY

Course plan

Academic Year 2018-19

Semester III

COURSE PLAN:

PROGRAMME	MASTERS IN BOTANY	SEMESTER	3
COURSE CODE AND TITLE	16P3BOTT09: TAXONOMY OF ANGIOSPERMS	CREDIT	4
HOURS/WEEK	6.5	HOURS/SEM	117
FACULTY NAME	EBIN P J		

Course Objectives

To define the scope and significance of angiosperm taxonomy and ethnobotany

To explain the various systems of angiosperm classification and its merits and demerits

To apply the different taxonomic keys and approaches for the exact identification of angiosperms up to the species level

To examine the vegetative and reproductive characters of various angiosperm families

To evaluate the evolutionary trends in angiosperms

To develop methodology for the ethnobotanical study and bioprospecting of the products.

*

SESSION	Topic/Module	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
Module 1:	Classification (8 hrs)			
Session 1	Linnaeus System	PPT/Lecture	Seminar	
Session 2	Bentham &Hooker's System	PPT/Lecture	Seminar	
Session 3	De Candolle's System	PPT/Lecture		
Session 4	Engler & Prantl System	PPT/Lecture		
Session 5	Bessey's System	PPT/Lecture		
Session 6	Takhtajan's System	PPT/Lecture		
Session 7	APG System	PPT/Lecture		
Session 8	Merits and demerits of different systems	PPT/Lecture	Seminar	
Module 2:	Tools of Taxonomy (6 hrs)			
Session 9	Functions of field study, , botanical gardens, BSI,	PPT/Lecture	Seminar	
Session 10	Taxonomic literature- Floras, eFlora,	PPT/Lecture	Seminar	
Session 11	Monographs & Revision	PPT/Lecture	Seminar	
Session 12	Journals (Rheedea & Taxon/Blumea)	PPT/Lecture		
Session	Construction of taxonomic keys-	PPT/Lecture	Video	

13	Indented			
Session 14	Construction of taxonomic keys- Brackted	PPT/Lecture	Video	
Module 3:	Angiosperm diversity with special re	ference to Tropical	flora (48 hrs)	
Session 15	Rununculaceae	PPT/Lecture		
Session 16	Magnoliaceae	PPT/Lecture		
Session 17	Menispermaceae	PPT/Lecture		
Session 18	Brassicaceae & Capparidaceae	PPT/Lecture		
Session 19	Polygalaceae	PPT/Lecture		
Session 20	Caryophyllaceae	PPT/Lecture		
Session 21	Guttiferae & Dipteriocarpaceae	PPT/Lecture		
Session 22	Tiliaceae	PPT/Lecture		
Session 23	Geraniaceae	PPT/Lecture		
Session 24	Rutaceae	PPT/Lecture	Seminar	
Session 25	Vitaceae	PPT/Lecture		
Session 26	Sapindaceae	PPT/Lecture		
Session 27	Fabaceae	PPT/Lecture	Seminar	
Session 28	Caesalpiniaceae	PPT/Lecture		
Session 29	Mimosaceae	PPT/Lecture		
Session 30	Rosaceae	PPT/Lecture		
Session 31	Lythraceae & Melastomaceae	PPT/Lecture		
Session 32	Rhizophoraceae	PPT/Lecture		
Session 33	Combretaceae	PPT/Lecture		
Session 34	Myrtaceae	PPT/Lecture	Seminar	
Session 35	Cucurbitaceae	PPT/Lecture		
Session 36	Apiaceae	PPT/Lecture		
Session 37	Aizoaceae	PPT/Lecture		
Session 38	Asteraceae	PPT/Lecture	Seminar	
Session 39	Campanulaceae	PPT/Lecture		

Session 40	Myrsinaceae	PPT/Lecture		
Session 41	Loganiaceae	PPT/Lecture		
Session 42	Oleaceae	PPT/Lecture		
Session 43	Apocynaceae & Asclepiadaceae	PPT/Lecture	Seminar	
Session 44	Boraginaceae	PPT/Lecture		
Session 45	Scrophulariaceae & Acanthaceae	PPT/Lecture		
Session 46	Bignoniaceae	PPT/Lecture		
Session 47	Verbenaceae & Lamiaceae	PPT/Lecture		
Session 48	Polygonaceae	PPT/Lecture		
Session 49	Aristolochiaceae	PPT/Lecture		
Session 50	Piperaceae	PPT/Lecture		
Session 51	Lauraceae	PPT/Lecture		
Session 52	Loranthaceae	PPT/Lecture		
Session 53	Euphorbiaceae	PPT/Lecture	Seminar	
Session 54	Moraceae & Urticaceae	PPT/Lecture		
Session 55	Orchidaceae	PPT/Lecture	Seminar	
Session 56	Cannaceae	PPT/Lecture		
Session 57	Dioscoriaceae	PPT/Lecture		
Session 58	Liliaceae	PPT/Lecture		
Session 59	Zingiberaceae	PPT/Lecture		
Session 60	Musaceae	PPT/Lecture		
Session 61	Araceae	PPT/Lecture	Seminar	
Session 62	Cyperaceae & Poaceae	PPT/Lecture		
Module 4:	Evolution of flowering plants (4 hrs)			
Session 63		PPT/Lecture	Video	
Session 64	Evolution and diversity of woody	PPT/Lecture	Video	
Session 65	and seed plants.	PPT/Lecture		
Session		PPT/Lecture		

		I	1	ſ
66				
Module 5:	Ethnobotany (6 hrs)			
Session 67	Scope and importance of ethnobotany	PPT/Lecture		
Session 68	sources and methods of ethnobotanical studies	PPT/Lecture		
Session 69	Two typical ethno botanical studies from Kerala	PPT/Lecture	Video	
Session 70	Bioprospecting	PPT/Lecture		
Session	Patenting and Marketing of Plants of Ethnobotanical	PPT/Lecture		
71	importance (based on any case study from Kerala).	PPT/Lecture		
Session 72	Utility indices of ethnobotanical products	PPT/Lecture		
Practicals ((45 hrs)			
Session 73	Rununculaceae, Magnoliaceae	Hands-on		
Session 74	Menispermaceae, Brassicaceae	Hands-on		
Session 75	Capparidaceae, Polygalaceae	Hands-on		
Session 76	Caryophyllaceae, Guttiferae	Hands-on		
Session 77	Dipteriocarpaceae, Tiliaceae	Hands-on		
Session 78	Geraniaceae, Rutaceae	Hands-on		
Session 79	Vitaceae, Sapindaceae	Hands-on		
Session 80	Fabaceae, Caesalpiniaceae	Hands-on		
Session 81	Mimosaceae, Rosaceae	Hands-on		
Session 82	Lythraceae, Melastomaceae	Hands-on		
Session 83	Rhizophoraceae, Combretaceae	Hands-on		
Session 84	Myrtaceae, Cucurbitaceae	Hands-on		
Session 85	Apiaceae, Aizoaceae	Hands-on		
Session 86	Asteraceae, Campanulaceae	Hands-on		
Session 87	Myrsinaceae, Loganiaceae	Hands-on		
Session 88	Oleaceae, Apocynaceae	Hands-on		
Session 89	Asclepiadaceae, Boraginaceae	Hands-on		
Session 90	Scrophulariaceae, Bignoniaceae	Hands-on		

Session 91	Acanthaceae, Verbenaceae	Hands-on	
Session 92	Lamiaceae, Polygonaceae	Hands-on	
Session 93	Aristolochiaceae, Piperaceae	Hands-on	
Session 94	Lauraceae, Loranthaceae	Hands-on	
Session 95	Euphorbiaceae, Moraceae	Hands-on	
Session 96	Urticaceae, Orchidaceae	Hands-on	
Session 97	Cannaceae, Dioscoriaceae	Hands-on	
Session 98	Liliaceae, Zingiberaceae	Hands-on	
Session 99	Musaceae, Araceae Cyperaceae, Poaceae Study of flora, construction of keys and use of floras in the identification up to species from field study.	Hands-on	
Session 100		Hands-on	
Session 101		Hands-on	
Session 102		Hands-on	
Session 103		Hands-on	
Session 104		Hands-on	
Session 105		Hands-on	
Session 106		Hands-on	
Session 107		Hands-on	
Session 108		Hands-on	
Session 109	Preparation of dichotomous keys based on four sample plant materials	Hands-on	
Session 110	from the same family	Hands-on	
Session 111		Hands-on	
Session 112		Hands-on	
Session 113		Hands-on	
Session 114	Ethnohotony	Hands-on	
Session 115	Emnodolany	Hands-on	
Session 116		Hands-on	

Session	Handa an	
117	Hands-on	

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	20.06.2018	Plant collection and identification
2	14.07.2018	Collection of ethnobotanical specimens

References

1. Jain S K (1991). Dictionary of Indian Folkmedicine and Ethnobotany.

2. Paye G D (2000). Cultural Uses of Plants: A Guide to Learning about Ethnobotany. The New York Botanical Garden Press.

3. Hooker J D. (1875-1897)The flora of British India (Vol. I – VII).

4. Gamble J S (1915-1935). Flora of the Presidency of Madras. (Vol. I – III).

5. Cronquist A (1960). Evolution and classification of flowering plants. Thomas & Nelson Co.

6. Cronquist A (1981). An integrated system of classification of flowering plants. Columbia University Press.

7. Heywood V H, Moore D M (Eds) (1984). Current concepts in Plant taxonomy.

8. Radiford A E (1986). Fundamentals of plant systematics. Harper & Row.

9. Rendle A E (1970). The Classification of flowering plants. Vikas Publishers House Pvt Ltd.

10. Stace C A (1989). Plant Taxonomy and Biosystematics (II Edn). CBS Publ.

11. Woodland D W (1991). Contemporary Plant Systematics. Prentice Hall.

12. Sivarajan V V (1991). Introduction to Principles of Plant Taxonomy. Oxford IBH.

13. Takhtajan A L (1997). Diversity and Classification of Flowering Plants. Columbia Univ. Press.

14. Simpson M G (2010). Plant Systematics.

15. Singh G (2102). Plant Systematics Theory and Practice (3rd Edn). Oxford & IBH Publishing Co. New Delhi.

16. Battacharya B (2009). Systematic Botany (2nd Edn). Narosa Publishing House.

17. Lawrence H M G (1951). Taxonomy of Vascular Plants. The Macmillan Company. US.

18. Sunil C N and Sivadasan M (2009). Flora of Alappuzha District. Bishen Singh Mahendra Publishers.

19. Anilkumar N, Sivadasan M and Ravi N (2005). Flora of Pathanamthitta. Daya Publishing House.

20. Sasidharan N (2012). Flowering Plants of Kerala. KFRI.

21. Ramesh B.R, Ayyappan N, Grard P, Prosperi J, Aravajy S and Pascal J P (online). BIOTIK Western Ghats. <u>http://www.biotik.org/</u>

COURSE PLAN

PROGRAMME	MASTER OF SCIENCE BOTANY	SEMESTER	3
COURSE CODE AND TITLE	16P3BOTT10: GYMNOSPERMS, EVOLUTION & PALEOBOTANY	CREDIT	3
HOURS/WEEK	5.5	HOURS/SEM	99
FACULTY NAME	Dr. LESLY AUGUSTINE, ANTO JOSEPH		

	COURSE OBJECTIVES			
To ana	yze the morphological diversity of gymnosperms			
To exa	mine the reproductive behaviour in gymnosperms			
To pred	To predict evolutionary trends in biological systems			
To eva	uate ecological and economic significance of gymnospe	rms		
To exp	ain and interpret the origin and phylogeny organisms			
To just	ify the diversity and distributions of prehistoric flora			
	, ,	LEARNING	VALUE	
SESSION	ΤΟΡΙϹ	RESOURCES	ADDITIONS	REMARKS
	GYMNOSPERMS			
	MODULE I		1	
1	Origin, general characteristics, distribution and	PPT	video	
	classification of Gymnosperms			
2	Distribution of living gymnosperms in India	PPT/Lecture		
3	DNA barcoding of gymnosperms.	PP1/Lecture		
			T	
4	Class Progymnospermopsida: Aneurophyton	PPT/Lecture		
5	Class Cycadopsida: Heterangium	PPT/Lecture		
6	Lyginopteris	PP1/Lecture		
/	Lagenostoma Classication	Lecture		
8	Giossopteris	Lecture		
9	Medullosa	Lecture		
10	Caytonia	Lecture		
11	Bennettites	PPT/Lecture		
12	Williamsoniella	PPT/Lecture		
13	Nilsonia	PPT/Lecture		
14		PPT/Lecture	Video	
15	zamia	PP1/Lecture		
16	Pentoxylon	Lecture		
17	Class Coniferopsida: General account of families, <i>Pinus</i>	Lecture	Vídeo	
18	Taxodium	Lecture		
19	Cupressus	Lecture		
20	Podocarpus	PPT/Lecture		
21	Agathis	PPI/Lecture		
22	Araucaria -	PPT/Lecture		
23	Taxus	PPT/Lecture		

24	Ginkgo	Lecture		
25	Class Gnetopsida: Gnetum	Lecture	Video	
	CIA-1			
	Module III			
26	General account on the male and female			
	gametophyte development in Gymnosperms (Cycas)			
27	Economic importance of Gymnosperms.		Group	
			discussion	
	Practical			
28	<i>Cycas</i> - leaf	Hands on		
		session		
29	<i>Cycas</i> - Stem	Hands on		
		session		
30	Cycas – Reproductive structures	Hands on		
		session		
31	Zamia- leaf	Hands on		
		session		
32	Zamia- Stem	Hands on		
		session		
33	Zamia– Reproductive structures	Hands on		
24	Dinus losf	session		
34	Pinus- leai	Hands on		
25	Binus Stom	Hands on		
55	rinus- stem	session		
36	Pinus- Reproductive structures	Hands on		
50		session		
37	Cupressus- leaf	Hands on		
	,	session		
38	Cupressus- Stem	Hands on		
		session		
39	Cupressus – Reproductive structures	Hands on		
		session		
40	Agathis- leaf	Hands on		
		session		
41	<i>Agathis</i> - Stem	Hands on		
		session		
42	Agathis– Reproductive structures	Hands on		
		session		
43	Araucaria- leat	Hands on		
<u> </u>		session		
44	Araucaria- Stem	Hands on		
1E	Argucaria- Reproductive structures	Handson		
45	A advanta – Reproductive structures	session		
16	Gnetum-leaf	Handson		
40		session		
47	Gnetum- Stem	Hands on		
.,		session		
48	Gnetum– Reproductive structures	Hands on		

			1	Т
ļ		session		
49	Study of fossil gymnosperms through photographs	Hands on		
		session		
50	study of fossil gymnosperms through photographs	Hands on		
51	Study of fossil gymnosperms through photographs	Hands on		
51	Study of lossil gynnosperins through photographs	session		
52	Study of fossil gymnosperms through permanent	Hands on		
_	slides	session		
53	Study of fossil gymnosperms through permanent	Hands on		
	slides	session		
54	Study of fossil gymnosperms through permanent	Hands on		
	slides	session		
	EVOLUTION			
	Module 1	I		1
55	Abiogenesis, Biogenesis experiment of Miller (1953).	Lecture	Debate	
56	Theory of Organic evolution - Biochemical origin of	Lecture	Debate	
E 7	Morphology and Comparative Anatomy, Embryology			1
57	Physiology and Biochemistry – Evidence of evolution	PPT/Lecture		
58	Evidence of evolution - Paleontology, Biogeography.	PPT/Lecture		
	Micro and Macro-evolution and Punctuated	,		
	Equilibrium			
	Module 3			
59	Character Evolution	PPT/Lecture		
60	Convergent, divergent and parallel evolution	PPT/Lecture		
61	Phylogeny and patterns of Evolution	PPT/Lecture		
62	Coevolution and coadaptation, Adaptive radiation.	PPT/Lecture		
	CIA – II			
	Module 4			
63	Biodiversity, Genetic variation, phenotypic variation	Lecture		
64	Macro evolution; evolution above the species level.	Lecture		
65	Sex and Reproductive success: Paradox of sex.	Lecture	Group	
	Inbreeding and outcrossing		discussion	
66	Concept of sexual selection, sexual selection by mate	Lecture		
	choice.			
	Module 5			
67	Species concept; Morphological Species, Biological	PPT/Lecture		
	Species and Evolutionary Species.			
68	Types of speciation - Phyletic speciation and True	PPT/Lecture		
	speciation.			
69	iviecnanism of speciation - Genetic divergences and	PPI/Lecture		
70	Patterns of speciation - allopatric sympatric	PPT/Lecture	Video	
70	quantum and parapatric speciation		Video	
/1	lyuantum anu parapatric speciation.	rriflecture	VILLEU	
	Module 6			

72	Natural selection and adaptation; Limiting factors	PPT/Lecture		
73	Origin of races and species	PPT/Lecture		
74	Kin Selection and Hamilton's Rule	PPT/Lecture		
75	Nature of adaptations, Significance of Genetic drift in natural selection.	PPT/Lecture		
	Module 7			
76	Modern synthetic theory of evolution	PPT/Lecture	Group discussion	
77	molecular evolution, concepts of natural evolution	PPT/Lecture		
78	molecular divergence and molecular clocks	PPT/Lecture		
79	molecular tools in phylogeny.	PPT/Lecture		
	Module 8		•	
80	Symbiosis, Plant-animal Co-evolution; Mutualism	PPT/Lecture		
81	Commensalism. Protective - Colouration and Shape. Mimicry: Batesian and Mullerian- mimicry.	PPT/Lecture		
	PALAEOBOTANY			
	Module 1			
82	Techniques in Palaeontology - mega fossils -	PPT/Lecture	Group	
	microfossils - nannofossils – ichnofossils		discussion	
83	collection, reformation & illustration - binomial	PPT/Lecture		
84	Plant fossils – Preservation, preparation, age	PPT/Lecture		
	determination.			
	Module 2	-		
85	Lyginopteris, Pentoxylon, Lagenostroma	PPT/Lecture		
86	Cordaites, Cardiocarpus, Calamites	PPT/Lecture		
87	Sphenophyllum, Calamostachys and Glossopteris.	PPT/Lecture		
	Module 3			
88	Fossil record – systematic	PPT/Lecture		
89	reconstruction and nomenclature	PPT/Lecture	Group	
			discussion	
90	Applied aspects of paleobotany	PPT/Lecture		
	Practicals			
91	Study of fossil plants based on permanent slides	Hands on		
		session		
92	Study of fossil plants based on permanent slides	Hands on		
93	Study of fossil plants based on permanent slides	Hands on		
55	study of rossil plants based on permanent shaes	session		
94	Study of fossil plants based on permanent slides	Hands on		
		session		
95	Study of fossil plants based on Photographs	Hands on		
06	Study of fossil plants based on Dhotographs	session		
90	Study of lossil plants based on Photographs	session		
97	Study of fossil plants based on Photographs	Hands on		
		session		

98	Study of fossil plants based on Photographs	Hands on session	
99	Study of fossil plants based on Photographs	Hands on session	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	05/08/2018	Compare the morphology of living gymnosperms
2	18/08/2018	Explain the evolution of land plants

References

- 1. Andrews H N Jr (1961). *Studies in Palaeobotany*. John Wiley and sons.
- 2. Arnold C A (1947). An introduction to Palaeobotany. John Wiley and sons.
- 3. Beck C E (1995). Gymnosperm Phylogeny. Bot. Rev. 51-176.
- 4. Bhatnagar S P, Moitra A (2000). *Gymnosperms*. New Age International Ltd.
- 5. Biswas C. The Gymnosperms. Today and Tomorrows print.
- 6. Chamberlain C J (1935). *Gymnosperms: Structure and Evolution*. University of Chicago Press.
- 7. Coulter J M, Chamberlain C J (1977). *Morphology of Gymnosperms*. University of Chicago Press.
- 8. Dallimore W, A B Jackson (1964). A Handbook of Coniferae and Ginkgoaceae (IV Edn). Edward Arnold & Co.
- 9. Delevoryas T (1962). *Morphology and evolution of Fossil Plants*. Holt, Rinehart and Winston.
- 10. Meyen S V (1984). Basic features of Gymnosperms' Systematics and Phylogeny as evidenced by the Fossil Record. Bot. Rev.
- 11. Sharma O P, S Dixit (2002). *Gymnosperms*. Pragati Prakashan.
- 12. Sporne A R (1974). The morphology of gymnosperms. Hutchinson Univ. Library.
- 13. Allan C. Hutchinson (2005). *Evolution and the Common Law*. Cambridge University Press.
- 14. Douglas J. Futuyma (2009). Evolution. Sinauer Associates. INC-Publishers. USA.
- 15. George Ledyard Stebbins (1971). *Process of Organic evolution*.
- 16. Gurbachan S. Miglani (2002). *Modern Synthetic theory of evolution*.
- 17. Hancock J. F (2003). Plant Evolution and the Origin of Crop Species. CABI.
- 18. Herbert H. Ross (1962). A Synthesis of Evolutionary Theory. Prentice Hall Of India.
- 19. Horatio Hacketrt Newmann (1932). *Evolution, Genetics and Eugenics*. University of Chicago press.
- 20. Katy Human (2006). *Biological evolution: An anthology of current thought.* The Rosen publishing group, Inc.
- 21. Kenneth V. Kardong (2005). *An introduction to Biological Evolution*. McGraw-Hill publications.

New York.

- 22. Martin Ingrouille and Bill Eddie (2006). *Plants Diversity and Evolution*. Cambridge University Press.
- 23. Maxtoshi Nei and Sudhir Kumar (2000). *Molecular Evolution and phylogenetics*. Oxford University Press.
- 24. Monroe W. Strickberger (1990). *Evolution*. Jones and Bartlett publishers.
- 25. Paul Amos Moody (1970). Introduction to Evolution. Harper and Row publishers, Newyork.

- 26. Roderic D. M. Page and Edward C. Holmes (1998). *Molecular Evolution: A Phylogenetic approach*. Blackwell Science Ltd.
- 27. Shukla R. S. and P. S.Chandel (1974). *Cytogenetics, Evolution, Biostatistics and Plant Breeding*.

S.Chand and Company Ltd. New Delhi.

28. Victor Rico-Gray, Paulo S. Oliveira (2007). *The Ecology and Evolution of Ant-Plant Interactions*.

University of Chicago Press.

- 29. Volpe E. Peter (1993). Understanding Evolution. Universal Book Stall, New Delhi.
- 30. Willis K. J. and J. C. Mc Elwain (2002). *The Evolution of Plants*. Oxford University Press.
- 31. Ruap, D.M, Stanley, S.M, 1999: Principles of Palaeontology.W.H. Freeman and Co, Toppan Co. Ltd.
- 32. Stewart, W.N. and Rothwell G.W. (1993), Palaeobotany and the Evolution of Plants, Cambridge University Press.
- 33. Agashe, S.N. (1995), Palaeobotany, Oxford & IBH, New Delhi.
- 34. Siddiqui, K.A. (2002) Elements of Palaeobotany, Kitab Mahal, Allahabad.
- 35. Thomas, B.A. & Spicer R.A. (1987): The Evolution and Palaeobiology of land plants. Discordies Press, Fortland, USA.

COURSE PLAN 2018 - 19

PROGRAMME	M.Sc. BOTANY	SEMESTER	3
COURSE CODE AND TITLE	16P3BOTT11: PLANT PHYSIOLOGY AND METABOLISM	CREDIT	4
HOURS/WEEK	/WEEK 6.5		Theory 72 hrs; Practical 36 hrs
FACULTY NAME	PRINCY MOL A. P.		

COURSE OBJECTIVES

To explain the relationship of plant with its habitat

To relate mineral nutrition with the mechanism of absorption

To examine the mechanism of photosynthesis, nitrogen metabolism, plant growth regulators and sensory photobiology

To evaluate the transport mechanism in plant system

To examine the respiration mechanism in plants

To classify the plant responses to various environmental stresses

SESSION	SESSION TOPIC		VALUE ADDITIONS	REMARKS
	Introduction to the Course			
	and Osmosis. Water Potential. Cohesion-tension	PPT/ Lecture		
	theory. Entry of minerals into roots; bulk flow,	,		
	diffusion. Passive and active transport.			
	MODULE I - Plant water re	lations		
1	with water	PPT/ Lecture	video	
2	Turgor Pressure and Hydraulic conductivity.	PPT/ Lecture		
3	Aquaporins. Plant water status and Physiological processes.	PPT/ Lecture	E resource	
4	(b) Bulk flow of water. Water absorption by roots- pathways, root pressure and guttation.	PPT/ Lecture		
5	Water transport through xylem - pressure driven bulk flow.	PPT/ Lecture	E resource	
6	Water movement from the leaf to the atmosphere – hydraulic resistance	PPT/ Lecture		
7	Driving force of transpiration, pathway resistances.	PPT/ Lecture		
8	Leaf anatomy for regulating transpiration.	PPT/ Lecture	E resource	
9	Control of stomatal mechanism. PPT/ Lecture		E resource	
10	Theories of stomatal movement. Soil-plant- atmosphere continuum.	PPT/ Lecture	E resource	
	MODULE II - Absorption of n	ninerals		
11	 (a) Classification of mineral nutrients based on biological function. 	PPT/ Lecture	E resource	
12	 (b) Soil characters influencing nutrient availability – size and charge of soil particles, soil pH. (c) Bolo of Mycorrhized in putrient uptake 	PPT/ Lecture		
	(d) Theories of mineral salt absorption.	/		
13		PPT/ Lecture	video	
	MODULE III - Transport of ions, solutes a	and macromolec	cules	
14	(a) Electrical properties of membranes, Membrane potential.	PPT/ Lecture		
15	(b) Transport across cell membranes: Passive – diffusion, facilitated diffusion	PPT/ Lecture	video	
16	Membrane channels; gap junctions, porins	PPT/ Lecture		
17	Ion channels – gated channels, structure and working of K+ ion channels.	PPT/ Lecture	E resource	
18	Active transport: Carrier proteins; Na+K+ pump	PPT/ Lecture	video	
19	ABC transporters, Inophores, Symport, Antiport	PPT/ Lecture		
MODULE IV - Photosynthesis				

20	Basic principles of light absorption	PPT/ Lecture		
21	Excitation energy transfer, mechanism of electron transport.	PPT/ Lecture		
22	Light harvesting complexes: PS I, PSII	PPT/ Lecture	E resource	
23	Structure and composition of reaction centers, photooxidation of water	PPT/ Lecture		
24	organization of light-absorbing antenna systems, mechanism of chloroplast electron transport- complexes	PPT/ Lecture	video	
25	Proton transport and ATP synthesis.	PPT/ Lecture		
26	Repair and Regulation of Photosynthetic Machinery- Photoprotection, Photoinhibition.	PPT/ Lecture		
27	Structure and function of RuBisco.	PPT/ Lecture	E resource	
28	CO ₂ fixation- Regulation of Calvin cycle.	PPT/ Lecture	video	
29	Photorespiration, role of photorespiration in plants.	PPT/ Lecture		
30	CO ₂ concentrating mechanisms - C4 cycle	PPT/ Lecture	E resource	
31	CAM pathway	PPT/ Lecture	E resource	
32	Synthesis and mobilization of chloroplast starch, starch degradation, Regulation of synthesis and degradation.	PPT/ Lecture	video	
33	Biosynthesis of sucrose and signalling.	PPT/ Lecture		
	MODULE V - Translocation in t	he Phloem		
34	Materials translocated in the phloem- Sucrose and other materials.	PPT/ Lecture	E resource	
35	Mechanism of phloem translocation - Pressure flow model of phloem transport.	PPT/ Lecture		
36	Phloem loading and unloading.	PPT/ Lecture		
37	Photosynthate allocation and partitioning.	PPT/ Lecture	e-resource	
	CIA I			
MODULE VI - Respiration and lipid metabolism				
38	Three stages of respiratory metabolism. (brief study only).	PPT/ Lecture	e-resource	
39	Gluconeogenesis.	PPT/ Lecture		
40	Pentose phosphate pathway and its regularion.	PPT/ Lecture		
41	Mitochondrial electron transport and ATP synthesis – structure of electron transfer complexes (complex I – IV).	PPT/ Lecture	e-resource	
42	ATPase - detailed structure of F1 and Fo subunits	PPT/ Lecture	e-resource	

43	Chemiosmotic hypothesis	PPT/ Lecture		
44	Binding change mechanism of ATP synthesis.	PPT/ Lecture	e-resource	
45	Comparison of mitochondrial and chloroplast ATP synthesis.	PPT/ Lecture	e-resource	
46	Mechanisms that lower ATP yield- alternative oxidase	PPT/ Lecture	e-resource	
47	Uncoupling proteins	PPT/ Lecture		
48	Rotenone- Insensitive NADH dehydrogenase	PPT/ Lecture		
49	Lipid metabolism: glyoxylate cycle.	PPT/ Lecture	e-resource	
	MODULE VII - Nitrogen meta	abolism		
50	N cycle. Nitrate assimilation- nitrogen reductase.	PPT/ Lecture		
51	Ammonium assimilation, Aminoacid biosynthesis	PPT/ Lecture		
52	Biological Nitrogen fixation - free living and symbiotic.	PPT/ Lecture	e-resource	
53	Symbiotic N fixation – nodule formation, leghaemoglobin.	PPT/ Lecture		
54	Process of N fixation	PPT/ Lecture	e-resource, video	
55	Structure of nitrogenase enzyme complex. Transport of amides and ureides. PPT/ Lectur			
	MODULE VIII - Stress phys	iology	•	
56	Response of plants to biotic (pathogen and insects) stress	PPT/Lecture	e-resource	
57	Abiotic stress -(water, temperature – low and high	PPT/Lecture	e-resource	
58	Stress - salt, oxygen deficiency	PPT/Lecture	e-resource	
59	Stress - heavy metal and air pollution.	PPT/Lecture	e-resource	
60	Mechanisms of resistance to biotic stress and tolerance to abiotic stress.	PPT/Lecture	e-resource	
	MODULE IX - Sensory photo	biology		
61	Structure, function and mechanisms of action of phytochromes, cryptochromes and phototropins.	PPT/Lecture	e-resource	
62	Responses to UV radiation.	Lecture		
63	Photoperiodism and biological clocks – circadian rhythms.	PPT/Lecture		
64	Vernalization. Floral induction and development.	PPT/Lecture	e-resource	
	MODULE X - Plant growth re	gulators		
65	Biosynthesis, storage, breakdown, transport,	PPT/Lecture		

66	physiological effects, and mechanism of action of plant growth hormones; Auxin			
67	67 Cytokinin		e-resource	
68	68			
69	Gibberellins	PPI/Lecture		
70	Abscisic acid	PPT/Lecture	e- resource	
71	Brassinosteroids	PPT/Lecture	e- resource	
72	Elicitors	PPT/Lecture	e- resource	
	CIA II			
	PRACTICAL			
73	Preparation of Molal, Molar and Percentage solutions.	Lab based expe	riment	
74	Estimation of proline in plant tissues under various abiotic stresses.	Lab based expe	riment	
75	Estimation of phenol in plant tissues affected by biotic stress.	Lab based expe	riment	
76	Determination of peroxidase activity in plant tissues affected by biotic/abiotic stresses.	Lab based expe	riment	
77	Estimation of free amino acids in senescing leaves to understand the source to sink transformation phenomenon.	Lab based expe	riment	
78	Determination of osmotic potential by tissue weight method.	Lab based expe	riment	
79	Separation of photosynthetic pigments by TLC/paper chromatography and calculating the Rf value.	Lab based expe	riment	
80	Demonstration of amylase activity and GA effect in germinating cereal seeds.	Lab based expe	riment	
81	Estimation of pigment composition of a leaf.	Lab based expe	riment	
82	Separation and collection of leaf pigments by silica gel column chromatography.	Lab based expe	riment	
83	Determination of nitrate reductase activity.	Lab based expe	riment	
84	Extraction and estimation of leghaemoglobin from root nodules.	Lab based expe	riment	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual – Graded)	Nature of Assignment
1	18/10/2018	Stress – water	Report writing
2	18/10/2018	Transport mechanism - pumps	based on
3	18/10/2018	Transport mechanism – channels	additional

4	18/10/2018	Biological nitrogen fixation	information
5	18/10/2018	Photosynthetic pigments	

References

1. Taiz, L. and Zeiger, E. (2010). Plant physiology (5th Edn). Sinauer Associates Inc., Publishers, U.S.A.

2. Buchanan, B. B., Gruissem, W. and Jones, R. L. (2015). Biochemistry and molecular biology of plants (2nd Edn.), Wiley Blackwell, New Delhi

3. Hopkins, W. G. and Huner, N. P. A. (1995). Introduction to plant physiology (4th Edn.) John Wiley & Sons, Inc., New York.

4. Pessarakli, M. (editor) (2001). Handbook of Plant and Crop Physiology (2nd Edn.), Marel Dekker, Inc., New York

5. Rolfe, S. and Opik, H. (2005) The Physiology of Flowering Plants (4th Edn.), Cambridge University Press, UK

6. Sadasivam, S. and Manickam, A. (1996). Biochemical methods (2nd Edn.), New age international Publishers.

7. Karp, G (2008). Cell and Molecular biology: Concepts and experiments (5th Edn.). John Wiley &Sons.

8. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., Ploegh, H. and Matsudaira, P. (2007). Molecular cell biology (6th Edn.). W H Freeman & Company.

9. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Molecular biology of the cell (4th Edn.). Garland Science, Taylor and Francis group.

10. Salisbury, F. B. and Ross, C. W. (1992). Plant Physiology (4th Edn.). Wadsworth Publishing Company, New York

COURSE PLAN 2018 - 19

PROGRAMME	M.Sc. BOTANY	SEMESTER	3
COURSE CODE AND TITLE	16P3BOTT12 : PLANT REPRODUCTIVE BIOLOGY, PALYNOLOGY AND PLANT BREEDING	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
TEACHERS IN CHARGE	Dr. Giby Kuriakose, MS. PrincyMol A P, Dr.Ima Neerakkal		

COURSE OBJECTIVES

To understand basic concepts of developmental biology, Palynology and plant breeding

To define plant breeding systems and self-incompatibility and their role in plant breeding in plants

To explain different pollination syndromes and pollination and post pollination changes in flowering plants

To compare structure of pollen grains and analyse pollen ultra-structural characters

To apply pollination-, palynology- and plant breeding- techniques

PLANT REPRODUCTIVE BIOLOGY, PALYNOLOGY AND PLANT BREEDING						
SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS		
	Module 1: Basic concepts of developmental Biology					
1	An overview of plant and animal development, Potency, Commitment, Specification, Induction, Competence.	Lecture/PPT	Q & A Session			
2	Applications of reproductive biology (research, agriculture, Industry, Forensic & Horticulture).	Lecture/PPT				
	Module 2: Pollination					
3	Sexuality of flowers and plants. Pollination agents and floral adaptations	Lecture/PPT	Q & A Session			
48	b) Pollination syndromes; study of common pollinators from each syndromes)	Lecture/PPT				
9	Breeding systems in plants, Types of pollen; wet and dry, types of stigma; wet and dry types (along with significance of each types)	Lecture/PPT				
	Module 4: Post pollination changes					
10	Pollen pistil interactions; pollen on stigma, pollen tube trough style, pollen tube entry to the ovule.	Lecture/PPT				
1115	Fertilization: Double fertilization; Embryogenesis - different types, Origins of polarity, factors influencing embryogenesis.	Lecture/PPT				
16	Endosperm-development and function, types of endosperm, endosperm haustoria.	Lecture/PPT				
17	Apomixis and Polyembryony and their applications in agri-horticulture	Lecture/PPT				
	Module 4: Breeding system and Self incompatibility					
18	Breeding system: Outbreeding devises and their efficacy	Lecture/PPT	Q & A Session			
19-21	Self-incompatibility: Genetic basis of SI. Gametophytic and sporophytic SI Physiology and Biochemistry of incompatibility	Lecture/PPT				

	Piological significance of incompatibility	Lecture/PPT		
	Methods to overcome SI and interspecific	Lecture/PPT		
23-26	incompatibility.			
	Module 5: Seed Biology			
27			Q & A	
27	Seed development, Classification of Seeds	Lecture/PPT	Session	
28	Importance of seeds	Lecture/FFT		
29	Seed dispersal; significance, agents and ecology of dispersal	Lecture/PPT		
30	Seed dormancy, Methods of breaking seed dormancy	Lecture/PPT		
31	soil seed banks	Lecture/PPT		
32-33	seed germination	Lecture/PPT		
34	Millennium seed project	Lecture/PPT		
	PALYNOLO	GY	1	
	Module 6. Introduction			
35	Introduction to pollen analysis, :History and scope of palynology	Lecture/PPT	Q & A Session	
36	Terminologies used in spore and pollen description, forensic palynology, paleopalynology	Lecture/PPT		
	Module-7: Pollen structure and			
		Lecture/PPT		
37	A. Development of pollen grains			
38	B. Pollen morphology- Shape and size, apertures types -and ornamentation	Lecture/PPT		
39	Special ornamentation featuresbladders, viscin threads, -spines, lipids	Lecture/PPT		
40	The pollen wall - Pollen wall development and formation, Pollen wall structure, Surface ornamentation and its importance.	Lecture/PPT		
41	Pollen wall chemical composition and its relationship to pollen preservation.	Lecture/PPT		
42	Pollen apertures - Inaperturate grain, simple and compound, Types, function and arrangement. Role -and use in pollen identification	Lecture/PPT		
	Module- 8: Pollen Analysis			
40		Lecture/PPT	Q & A	
43	Laboratory techniques	Lecture /DDT	Session	
44	Finding pollen in sediments forensic samples honey, rocks, archaeological sites and shipwrecks, etc.			

45	Production and Dispersal of pollen grains, where pollen is deposited. Purpose of Pollen collection and storage.	Lecture/PPT	
46	Pollenviability- factors that affect pollen viability.	Lecture/PPT	
47	Viability Test: - Germination assay, in vitro, in vivo. Non Germination assay FCR Test, FDA test (both are same). Acetocarmine test for assessing sterility. Acetocarmine test for assessing sterility.	Lecture/PPT	
48	R values and pollen coefficients Factors affecting pollen deposition	Lecture/PPT	
	Moodule – 9 Applications and Methods in palynology		
49	Palynology and Systematics, Pollen sampling and data gathering (how many samples to collect and what to collect) Modern pollen rain sampling and collecting important floral data, Stratigraphic sampling of geologic terrestrial deposits (i.e., natural vs. artificial levels),	Lecture/PPT	
50	Sampling lake and underwater archaeological deposits, Terrestrial archaeological site sampling, Forensic samples, Entomo-palynological samplingMelisso-palynology sampling, The statistical validity of using multiple vs. single samples from given locations	Lecture/PPT	
51	Tools and methods used for pollen sampling.	Lecture/PPT	
52	Uses of pollen in pharmaceuticals,Nutrition and in Cosmetics. Pollen allergy.	Lecture/PPT	
	PLANT BREEDING		
	Module 10: Introduction		
53	Objectives of plant breeding, important achievements and future prospects. Genetic variability and its role in plant breeding. Domestication and centers of origin of cultivated plants. Module 11: Systems of reproduction in	Lecture/PPT	
	Reproductive systems and pollination	Lecture/PPT	
54	control mechanisms; Sexual reproduction - Cross and self pollination;		

55	asexual reproduction, Incompatibility and Male sterility, their types.	Lecture/PPT	
	Module 12: Hybridization		
56	Hybridization - role and methods, Inter- varietal, inter specific and inter generic crosses.	Lecture/PPT	
57	Back-cross breeding.	Lecture/PPT	
58	Heterosis, Inbreeding dep	Lecture/PPT	
	Module 13: Breeding for resistance		
59	Breeding for biotic (disease) and abiotic (drought) stresses; loss due to diseases,	Lecture/PPT	
60	Disease development, disease escape, disease resistance, vertical and horizontal resistances of biotic stress	Lecture/PPT	
		Lecture/PPT	
61	Methods of breeding for disease resistance.		
	Module 14: Mutation breeding		
62	Mutagens and crop improvement. Spontaneous and induced mutations, effects of mutation.	Lecture/PPT	
63-65	Physical and chemical mutagens; principles and working of Gamma gardens, methods of mutation breeding,	Lecture/PPT	
66-67	Mutations in oligogenic traits, mutations in polygenic traits, limitations of mutation breeding,	Lecture/PPT	
68	Achievements of mutation breeding.	Lecture/PPT	
69	Role of mutations in Plant Breeding.	Lecture/PPT	
	Module 15: Modern breeding methods		
71-72	Modern trends in plant breeding	Lecture/PPT	
73	Modern agricultural techniques and practices	Lecture/PPT	
74	Poly house farming, hydroponics,	Lecture/PPT	
75	aquaponics and precision farming.	Lecture/PPT	

Suggested Assignments

1. Sampling procedures in palynology- Melisso-palynology and Entomo-palynology.

2. Pollinators - Insects, birds, and bats, unique evolution of specific plant taxa and their pollinators.

3. Melisso-palynology.

4. Floral nectar types and pollen used by honeybees, history of the discipline.

5. Extraction of pollen from honey samples.

6. Counting pollen in honey: What are pollen coefficient values in honey? Why use them and how to establish them? Pollen concentration values, correct number and type of pollen counts needed, methods of reporting honey pollen data.

7. Determining geographical origins and honey blends based on the pollen.

8. Insects (other than bees) and pollen.

9. Crop pollination.

10. Pollen as a method to track the migration movements of adult forms of many agricultural insect pests. Role in predicting insect migration routes (i.e., butterflies, moths).

11. Importance of pollen as a dietary item in the life cycle of insect pests (i.e., moths, butterflies, boll weevils, etc.).

12. Techniques used to examine pollen on the surface and gut of insects.

13. SEM analyses and the development of photographic pollen keys.

14. What are relative pollen counts, absolute counts, secondary counts, and large-fractionanalysis counts?

15. Establishing pollen concentration values and the value of these data.

16. When and how to use pollen influx techniques.

17. Recognition of real vs. artificial vegetational changes.

18. How to avoid making errors in pollen data interpretations.

19. Computer programs used to plot pollen data.

20. Are statistical methods valid for explaining pollen data?

References

- 1. Faegri, K., and Iversen, J. (1989) (also reprinted in 2000)). *Textbook of Pollen Analysis*, 4th Ed. Blackburn Press, Caldwell, NJ.
- 2. Kapp,R. O., Davis, O. K. & King, J. E. (2000). *Guide to Pollen and Spores*. (2nd edition, 3rd printing). AASP Press, Dallas.
- 3. Erdtman, G. (1943) An Introduction to Pollen Analysis, World Public Library Association
- 4. Shivanna, K. R. and Rangaswamy, N. S. (1992). Pollen Biology -A Laboratory Manual, Springer-Verlag, Berlin.
- 5. Nowicke, J. W. and Skvarla, J. J. (1979) Pollen Morphology (Vol. 66).
- 6. Stanley, R. G. and Linskens, H. F. (1974) Pollen Biology Biochemistry Management, Springer - Verlag Berlin Heidelberg, New York.
- 7. Simpson, M. G. (2010) Plant Systematics Palynology (2nd Edition), Academic Press.
- 8. Faegri, K. and Iversen, J. (1950) Text-book of Modern Pollen Analysis, Ejnar Munksgaard, Copenhagen.
- 9. Clement, C., Pacini, E. and Audran, J. C. (1999) Anther and Pollen from Biology to Biotechnology, Springer.
- 10. Bhattacharya, K., Majumdar, M. R. and Bhattacharya, S. G. (2006). A textbook of Palynology, New Central Book Agency Pvt. Ltd., Kolkata.

- 11. Shukla, A. K., Vijayaraghavan, M. R. and Chaudhry, B. (2014) Biology of Pollen, APH Publishing Corporation, New Delhi.
- 12. Allard R W (1995). *Principles of Plant Breeding*. John Wiley and Sons, Inc.
- 13. Denis Murphy (2007). Plant Breeding and Biotechnology. Cambridge University Press.
- 14. Ghahal G S and Gosal S S (2002). *Principles and procedures of Plant Breeding*. Narosa Publishing House.
- 15. Izak Bos and Peter Caligari (2007). *Selection methods in plant breeding*. Springer.
- 16. Kang M.S. (2002). Quantitative Genetics, Genomics and Plant Breeding. CABI.
- 17. Langridge P., K. Chalmers, Horst Lörz and Gerhard Wenzel (2005). *Molecular Marker Systems in Plant Breeding and Crop Improvement*. Springer-Verlag.
- 18. Sharma J R (1994). *Principles and practices of Plant Breeding*. Tata McGraw-Hill Publishers Company Ltd.
- 19. Singh B D (1996). Plant Breeding: Principles and methods. Kalyani Publications.