SACRED HEART COLLEGE (AUTONOMOUS)

Department of BOTANY

MASTER OF SCIENCE IN BOTANY

Course plan

Academic Year 2018-19

Semester II

COURSE PLAN

PROGRAMME	M. Sc. Botany	SEMESTER	2		
COURSE CODE AND TITLE	BRYOLOGY AND PTERIDOLOGY (16P2BOTT05)	CREDIT	4		
HOURS/WEEK	4	HOURS/SEM	(Theory 36 + 36 hrs; Practical 18 + 36 hrs)		
FACULTY NAME	Lesly Augustine				

	Programme Outcome
PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development
PO 4	The students possess an ethical view of life , and have a broader (global) perspective transcending the provincial outlook
PO 5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.
	PROGRAM SPECIFIC OUTCOMES
PSO 1	Encourage a clear, comprehensive and advanced mastery in the field of Botany.
PSO 2	Comprehend the basic principles of biological sciences with special reference to Botany and its applied branches.
PSO 3	Develop skills in students to explore the intricacies of life forms at cellular, molecular and nano level.
PSO 4	Fuel students' motivation and enthusiasm and to help them not only to appreciate the beauty of different life forms but also to inspire them in the dissemination of the concept of biodiversity conservation.
PSO 5	Develop problem solving skills in students and encourage them to carry out innovative research projects thereby enkindling in them the spirit of knowledge creation.

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Understand the diversity of primitive land	PO1, PO2, PO3, PO4;	E
	plants.	PSO1, PSO3, PSO4, PSO5	
CO 2	Familiarize with the morphological and	PO1, PO2, PO3, PO4,	А
	anatomical features of Bryophytes and	PSO1, PSO2, PSO3, PSO4	
	Pteridophytes.		
CO 3	Identify the main characteristics of	PO1, PO2, PO3, PO4,	U
	Bryophytes and Pteridophytes.	PO5, PSO1, PSO2, PSO4,	
		PSO5	
CO 4	Chart the development of land adaptations	PO1, PO4, PO5, PSO1,	An
	in the Bryophytes and Pteridophytes.	PSO2, PSO3, PSO4, PSO5	
CO 5	Acquaintance with various lifecycle events in	PO1, PO2, PO3, PO4,	An
	the bryophyte and Pteridophytes.	PO5, PSO1, PSO2, PSO3,	
		PSO4, PSO5	
CO 6	Understand the evolutionary trends	PO1, PO3, PO4, PO5,	An
	primitive plant groups.	PSO1, PSO3	
CO 7	Ability to identify various Bryophytes and	PO1, PO2, PO3, PO4,	E
	Pteridophytes in their habitats.	PO5, PSO2, PSO3	

CL* Cognitive Level

R- Remember; U- Understand; A- Apply; An- Analyze; E- Evaluate; Cr- Create

CO - PO/PSO Mapping

	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO
	1	2	3	4	5	1	2	3	4	5
CO 1	1	1	2	3	0	2	0	3	2	2
CO 2	2	1	1	3	0	3	3	2	2	1
CO 3	2	2	1	2	2	2	1	0	3	3
CO 4	3	0	0	2	3	1	2	3	3	2
CO 5	3	1	2	2	2	3	1	2	2	2
CO 6	2	0	1	2	2	2	0	3	0	0
CO 7	1	2	3	0	3	0	1	1	2	0

Mapping Strength

- 0- No Mapping strength
- 1- Low
- 2- Medium
- 3- High

BRYOLOGY (Theory 36 hrs; Practical 18 hrs)

SESSION	торіс	LEARNING	VALUE	COURSE	
JEJJUN	TOPIC	RESOURCES	ADDITIONS	OUTCOME	
	Introduction to Course				
	(a) General characters, Classification, evolution of bryophytes	PPT/Lecture	Seminar	CO 1	
	(b) Morphology, anatomy and reproduction of Riccia, Marchantia & Anthoceros	PPT/Lecture	Seminar	CO 1	
	(c) Importance of bryophytes	PPT/Lecture	Seminar	CO 1	
	MODULE I; General introd	uction (5 hrs)			
1	Introduction to bryophytes, their fossil history and evolution.	PPT/Lecture		CO 1, CO7	
2	Concept of algal and pteridophytic originof bryophytes. General characters of bryophytes.	PPT/Lecture		CO 1, CO 6, CO7	
3	History of classification of bryophytes. Modern trends in classification of bryophytes.	PPT/Lecture		CO 1, CO 6	
4	DNA barcoding of bryophytes.	PPT/Lecture		CO 1, CO 6	
5	Systematic way of collection, preservation and identification of bryophytes with special reference to mosses. Conservation biology of bryophytes.	PPT/Lecture	Article reading	CO 1, CO 7	
	MODULE II, Ecology and Economic importance	e of bryophytes	(5 hrs)		
6	Bryophyte habitats.	PPT/Lecture		CO 1	
7	Water relations - absorption and conduction, xerophytic adaptations	PPT/Lecture	video	CO 2,CO7	
8	Water relations – drought tolerance, desiccation and rehydration, ectohydric, endohydric and myxohydric bryophytes	PPT/Lecture		CO 2,CO7	
9	Ecological significance of bryophytes - role as pollution indicators.	PPT/Lecture	video	CO 2,CO7	
10	Economic importance of bryophytes; i) Sphagnum as 'Peat Moss'ii) Medicinal Usesiii) as source of foodiv) as pollution indicators v) in experimental studies vi) Horticultural uses.	PPT/Lecture	video	CO 2,CO7	
	Module 3: Thallus structure (2	26 hrs)			
11	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned	PPT/Lecture		CO 2,CO7	
	in the practical (development of sex organs not				

	necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales		
	and Calobryales).		
12	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2,CO7
13	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2,CO7
14	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2,CO7
15	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture	CO 2,CO7
16	Comparative structural organization of gametophytes and sporophytes in an	PPT/Lecture	CO 2,CO7

	evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).			
17	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture		CO 2,CO7
18	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (a) Hepaticopsida (Sphaerocarpales, Marchantiales, Metzgeriales, Jungermanniales and Calobryales).	PPT/Lecture		CO 2,CO7
19	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture	video	CO 2,CO7
20	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not	PPT/Lecture	video	CO 2,CO7

	necessary). (b) Anthocerotopsida (Anthocerotales)			
21	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture		CO 2,CO7
22	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture	video	CO 2,CO7
	1CIA	-		
23	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture		CO 2,CO7
24	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture		CO 2,CO7
25	Comparative structural organization of gametophytes and sporophytes in an	PPT/Lecture		CO 2,CO7

	evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).		
26	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (b) Anthocerotopsida (Anthocerotales).	PPT/Lecture	CO 2,CO7
27	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2,CO7
28	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2,CO7
29	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing	PPT/Lecture	CO 2,CO7

	groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).			
30	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2,	CO7
31	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2,	CO7
32	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	CO 2,	CO7
33	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned	PPT/Lecture	CO 2,	CO7

	in the practical (development of sex organs not			
	necessary).			
	(c) Bryopsida (Sphagnales, Polytrichales, and			
	bi yaies).			
	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	video	CO 2,CO7
34				
35	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	videos	CO 2,CO7
36	Comparative structural organization of gametophytes and sporophytes in an evolutionary perspective. Asexual and sexual reproductive structures, spore dispersal mechanisms and germination of thefollowing groups with reference to the types mentioned in the practical (development of sex organs not necessary). (c) Bryopsida (Sphagnales, Polytrichales, and Bryales).	PPT/Lecture	video	CO 2,CO7
	Practical 18 hrs		·	•
Detaile	d study of the structure of gametophytes and spo bryophytes by suitable micro p	orophytes of the reparation:	ne following	genera of
	Riccia	Hands-on		CO 4
37 - 38		Session	video	

	Targionia	Hands-on		CO 4
39		Session	video	
	Cyathodium	Hands-on		CO 4
40		Session	video	
	Marchantia	Hands-on		CO 4
41		Session	video	
	Lunularia	Hands-on	video	CO 4
42		Session		
	Dumortiera	Hands-on	video	CO 4
43		Session		
	Reboulia	Hands-on	video	CO 4
44		Session		
	Pallavicinia	Hands-on	video	CO 4
45		Session		
	Fossombronia	Hands-on	video	CO 4
46		Session		
	Porella	Hands-on	video	CO 4
47		Session		
	Anthoceros	Hands-on	video	CO 4
48		Session		
	Sphagnum	Hands-on	video	CO 4
49		Session		
	Pogonatum	Hands-on	video	CO 4
50		Session		
	Bryum	Hands-on	video	CO 4
51		Session		
	Fissidens	Hands-on		CO 4
52		Session		
	Hyophila	Hands-on		CO 4
53		Session		
	Students are expected to submit 5 bryophyte	Experiential		CO 4
	specimen's herbarium and also a report of field	learning		
	trip to bryophyte's natural habitats to			
54	familiarize with the diversity of bryophytes.			

References

1. Kashyap S R (1932). Liverworts of Western Himalayas and the Punjab plains (Vol. I & II). Research Co. Publications.

2. Chopra R N, P K Kumar (1988). Biology of Bryophytes. Wiley Eastern Ltd.

3. Chopra R S, S S Kumar (1981). Mosses of Western Himalayas and adjacent plains. Chronica Botanica.

4. Kumar S S (1984). An approach towards phylogenetic classification of Mosses. Jour. Hattori Bot. Lab. Nichinan, Japan.

5. Rashid A (1981). An Introduction to Bryophyta. Vikas publishing house Pvt. Ltd.

6. Richardson D H S (1981). Biology of Mosses. Blackwell Scientific publications, Oxford.

7. Shefield W B (1983 – '84). Introduction to Bryology (Vol. 1, 2). Jour. Hattori Bot. Lab, Nichinan, Japan.

8. Vashishta B R, A K Sinha, A Kumar (2003). Bryophyta. S Chand & Co. Ltd.

9. Udak R (1976). Bryology in India. ChronicaBotanica Co.

10. Pandey B P (1994). Bryophyta. S Chand and Co. Ltd.

11. Goffinet B, A J Shaw (2009). Bryophytic Biology (II Edn). Cambridge University Press.

12. Dyer A F, J G Duckett (Eds) (1984). The experimental Biology of Bryophytes. Academic Press.

13. Bonver F O (1935). Primitive land plants. MacMillan & Co. Ltd.

14. Campbell, Ditt (1940). The evolution of land plants. Stanford University Press.

15. Srivastava S N (1992). Bryophyta. Pradeep Publications.

16. Watson E V, P Ricards (1963). British Mosses and Liverworts. Cambridge University Press.

17. Nair M C, Rajesh K P, Madhusoodanan P V (2005). Bryophytes of Wayanad in Western Ghats. Malabar Natural History Society.

PTERIDOLOGY (Theory 36 hrs; Practical 36 hrs)

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES		COURSE
	Introduction to Course			
	Introduction to the Course	PPT/Lecture	video	CO 1
	(a) Introduction. general characters.	PPT/Lecture	Seminar/	CO 1
	classification and evolution of		videos	001
	pteridophytes			
	(b) Structural organization of sporophyte	PPT/Lecture		CO 1
	and gametophyte of pteridophytes		Seminar/	
	with special reference to stellar		videos	
	structure, heterospory and seed habit.			
	Module 1: General introduction a	and classificat	ion (4 hrs)	
1	Introduction, origin, general	PPT/Lecture	vedio	CO 1
	characteristics			
2	History of the classification of	PPT/Lecture	vedio	CO 1
	pteridophytes.			
3	Brief account on Smith's classification	PPT/Lecture		CO 1
	(2006).			
4	DNA barcoding of pteridophytes.	PPT/Lecture		CO 1
	Module 2: Structure of the	plant body (20	5 hrs)	
Distribut	ion, habitat, range, external and intern	ial morpholo	gy of spor	ophytes, spores,
mechani	sm of spore dispersal, gametophytic ge	eneration, set	kuality, emt	pryogeny of the
TOIIOWINg	classes of Pteridophytes with reference t	o the genera	mentioned	(development of
sex organ	is is not necessary):			CO 2 CO 7
5		PPT/Lecture		0 2,007
6	(b) Psilotopsida (l) Psilotales; Psilotum	PPT/Lecture		0 2,007
/	(b) Psilotopsida (l) Psilotales; Psilotum	PPT/Lecture		0 2,007
8	(c) Lycopsida (i) Protolepidodendrales;	PP1/Lecture		02,007
9	(ii) Lyconodiales: Lyconodium	DDT/Lecture		<u> </u>
10	(ii) Lycopodiales; Lycopodium	PPT/Lecture		
10		PPT/Lecture		
12		PPT/Lecture		
12	(iii) isoetales, isoetes	PPT/Lecture		
13	(iv) Selaginellales; Selaginella.	PPT/Lecture		
14	(iv) Selaginellalos: Selaginella.	PPT/Lecture		
10	(iv) seidginendies, seidginend. (d) Sphonopsida (i) Hyopialas (ii)	DDT/Lecture		
10	Sphenophyllales: Sphenophyllum			
17	(iii) Calamitales: Calamites	PPT/Lecture		CO 2 CO 7
1/	(iii) Calamitales, Calamites			

18	(iv) Equisetales; Equisetum	PPT/Lecture	(CO 2,CO7
19	(iv) Equisetales; Equisetum	PPT/Lecture	(CO 2,CO7
20	(e) Pteropsida (A) Primofilices: (i)	PPT/Lecture	(CO 2,CO7
	Cladoxylales; Cladoxylon (ii)			
	Coenopteridales			
21	(B) Eusporangiatae: (i) Marattiales;	PPT/Lecture	0	CO 2,CO7
	Angiopteris			
22	(ii) Ophioglossales; Ophioglossum	PPT/Lecture	(CO 2,CO7
23	(C) Osmundales; Osmunda.	PPT/Lecture	(CO 2,CO7
24	(C) Osmundales; Osmunda.		(CO 2,CO7
25	(D) Leptosporangiatae: (i) Marsileales;	PPT/Lecture	0	CO 2,CO7
	Marsilea			
26	(ii) Salviniales; Salvinia	PPT/Lecture		CO2
27	(ii) Salviniales; Azolla	PPT/Lecture		CO 5
28	(ii) Filicales; Pteris,	PPT/Lecture		CO 5
29	(ii) Filicales; Lygodium, Acrostichum,	PPT/Lecture		CO 5
30	(ii) Filicales; Gleichenia, Adiantum.	PPT/Lecture		CO 5
	Module 3: Comparative study	of Pteridophytes (4	hrs)	
	Stelar organization, soral and sporangial	PPT/Lecture		CO 5
31	characters			
	Gametophytes and sporophytes of	Hands-on		CO 5
	Pteridophytes in an evolutionary	Session		
32	perspective			
	Gametophytes and sporophytes of	PPT/Lecture		CO 5
	Pteridophytes in an evolutionary			
33	perspective			
24	An account on DNA barcoding of	PPT/Lecture		CO 5
34	Ipteridopnytes			
	Module 4: Ecology and Econo	mic importance (2	hrs)	
25	Ecological and economic significance of	PP1/Lecture		05
35	Feelogical and economic significance of			CO F
26	Ecological and economic significance of Ptoridophytos	PPT/Lecture		05
- 30	Prendophytes.	rtical		
Study	of morphology and anatomy of vegetative	and reproductive o	rgans using c	lear whole
Study	mounts/sections of the	following genera:		
	Psilotum	Hands-on		CO 4
38		Session		
	Psilotum	Hands-on		CO 4
39		Session		
	Lycopodium	Hands-on		CO 4
40		Session		
41	Lycopodium	Hands-on CO 4		

		Session	
	Selaginella	Hands-on	CO 4
42		Session	
	Selaginella	Hands-on	CO 4
43		Session	
	Equisetum	Hands-on	CO 4
44		Session	
	Equisetum	Hands-on	CO 4
45		Session	
	Angiopteris	Hands-on	CO 4
46		Session	
	Angiopteris	Hands-on	CO 4
47		Session	
	Ophioglossum	Hands-on	CO 4
48		Session	
	Marsilea	Hands-on	CO 4
49		Session	
	Marsilea	Hands-on	CO 4
50		Session	
	Salvinia	Hands-on	CO 4
51		Session	
	Azolla	Hands-on	CO 4
52		Session	
	Azolla	Hands-on	CO 4
53		Session	
	Lygodium	Hands-on	CO 4
54		Session	
	Lygodium	Hands-on	CO 4
55		Session	
	Acrostichum	Hands-on	CO 4
56		Session	
	Acrostichum	Hands-on	CO 4
57		Session	
-0	Gleichenia	Hands-on	CO 4
58		Session	
-0	Gleichenia	Hands-on	CO 4
59		Session	
<u> </u>	Pteris	Hands-on	CO 4
60		Session	
64	Pteris	Hands-on	CO 4
61		Session	
	Adiantum	Hands-on	CO 4
62		Session	

	Adiantum	Hands-on	CO 4
63		Session	
	Polypodium	Hands-on	CO 4
64		Session	
	Polypodium	Hands-on	CO 4
65		Session	
	Study of fossil Pteridophytes with the help of	Hands-on	CO 4
66	specimens and permanent slides.	Session	
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
67	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
68	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
69	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
70	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
71	submit the report along with the recorded.		
	Field trips to familiarize with the diversity of	Experiential	CO 4
	Pteridophytes in natural habitats and	learning	
	preparation of 5 pteridophyte herbarium and		
72	submit the report along with the recorded.		

References

- 1. Agashe S N (1995). Palaeobotany. Oxford and IBH publishing House.
- 2. Arnold C R (1977). Introduction to Palaeobotany. McGraw Hill Book Com.
- 3. Chandra S, Srivastava M (Eds) (2003). Pteridology in the New Millennium. Khuwar Acad.

Publishers.

- 4. Beddome C R H (1970). Ferns of south India. Today & Tommorrows Publ.
- 5. Dyer A F (1979). The experimental biology of ferns. Academic Press.

6. Gifford E M, A S Foster (1989). Morphology and evolution of Vascular plants (III Edn). W H Freeman & Co.

7. Khullar S P (2000). An illustrated fern flora of West Himalayas (Vol I, II). International Book Distributers.

8. Kubitzki K (1976). The families and Genera of Vascular plants: Vol. I Pteridophytes. Vikas publishing house.

9. Rashid A (1976). An introduction to Pteridophytes. Vikas Publishing House.

10. Sporne K R (1982). Morphology of Pteridophytes. Hutchinson university Press.

11. Surange K R (1964). Indian Fossil Pteridophytes. CSIR.

12. Louis J D (1977). Evolutionary patterns and processes in ferns: Advances in Botanical Research.

13. Scott. Studies in Fossil Botany. Haffner publications.

14. Smith, Gilbert (1972). Cryptogamic Botany (Vol. II). Tata McGraw Hill publications.

15. Nayar B K, S Kaur (1971). Gametophytes of homosporous ferns. Bot. Rev.

COURSE PLAN

PROGRAMME	M.Sc. BOTANY	SEMESTER	2
COURSE CODE AND TITLE	16P2BOTT06: PLANT ANATOMY, PRINCIPLES OF ANGIOSPERM SYSTEMATICS & MORPHOLOGY	CREDIT	4
HOURS/WEEK	7.5	HOURS/SEM	135
FACULTY NAME	FR. JOSE JOHN		

MASTER OF SCIENCE

	PROGRAMME OUTCOME
PO 1	Exercise their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	Effectively communicate the knowledge of their study and research in their respective disciplines to their stakeholders and to the society at large.
PO 3	Make choices based on the values upheld by the institution, and have the readiness and know-how to preserve the environment and work towards sustainable growth and development.
PO 4	Develop an ethical view of life and have a broader (global) perspective transcending the provincial outlook.
PO 5	Explore new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

MASTER OF SCIENCE [BOTANY] PROGRAM SPECIFIC OUTCOMES

PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation.

	COURSE OUTCOMES	PO/ PSO	CL
	Understand the plant call structure and tissue level	PO1, PO3,	U
CO 1	organization in a datailed manner	PSO2, PSO3,	
		PSO4, PSO5	
coc	Know and carry out the plant anatomical specimen	PO1, PSO2,	А
02	preparations	PSO3, PSO5	
CO^{2}	Understand the details of wood anatomy, plant fibres and	PO1, PO2, PO5,	U
05	secretory tissues	PSO4	
	Common different wood types looking into enotomical	PO1, PO2,	Е
CO 4	Compare different wood types looking into anatomical	PSO1, PSO2,	
	pecunanties	PSO5	
		PO1, PO2, PO4,	An
CO 5	Assess the morphological features of angiosperms	PO5, PSO2,	
		PSO3, PSO5	
		PO1, PO2, PO4,	А
CO 6	Apply the principles of angiosperm systematics	PO5, PSO2,	
		PSO3, PSO5	
CI * C	Compitive Level	•	

- CL* Cognitive Level
- R- Remember
- U- Understand
- A- Apply
- An- Analyze
- E- Evaluate
- Cr- Create

CO - PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO
										3
CO 1	1	1	2	1	2	2	2	2	2	3
CO 2	3	0	0	1	1	2	3	2	1	3
CO 3	3	3	1	1	2	1	1	2	2	1
CO 4	2	1	2	0	1	2	1	1	3	3
CO 5	1	1	0	1	3	0	2	1	2	2
CO 6	1	1	0	1	3	0	2	1	2	2

Mapping Strength

- 0. No Mapping strength
- 1. Low
- 2. Medium
- 3. High

SESSION	TOPIC	LEARNING	VALUE	COURSE
		RESOURCES	ADDITIONS	OUTCOME
1	MODULE I II	DDT/L acturing		CO1
1	scope and significance of plant	PP1/ Lecturing		COI
	anatomy, interdisciplinary relations	Mariatara		
2	MODULE II		1	CO1 CO2
Z	MERISTEMS - Apical	PP1/ Lecturing		CO1, CO2,
	development of primery merister			005,004
	and theories of apical organization			
	origin of branches and lateral roots			
3	MERISTEMS - Apical	PPT/ Lecturing		CO1 CO2
5	organization: Stages of	11 17 Lecturing		CO3, CO4
	development of primary meristem			205, 201
	and theories of apical organization.			
	origin of branches and lateral roots.			
4-6	Primary thickening meristem	PPT/ Lecturing		CO1, CO2,
	(PTM) in monocots. Reproductive	C		CO3, CO4
	apex in angiosperms.			
7-9	Secretory tissues in plants: Structure	PPT/ Lecturing		CO1, CO2,
	and distribution of secretory			CO3, CO4
	trichomes (Drocera, Nepenthes),			
	salt glands, colleters, nectaries,			
	resin ducts and laticifers.			
10	Structure of bark and distribution	PPT/ Lecturing		CO1, CO2,
	pattern of laticifers in Hevea			CO3, CO4
	brasiliensis.			
11.10	MODULE III Seco	ndary Structure	I	CO1 CO2
11-12	Vascular cambium and cork	PP17 Lecturing		CO1, CO2,
	cambium: Structure and function,			003, 004
12.14	Secondary yylam and phlaami	DDT/Lecturing/		CO1 CO2
13-14	Optogeny, structure and function	PP1/Lecturing/		CO1, CO2, CO3, CO4
	Lignification patterns of xylem	Demo		005,004
15-16	Reaction wood: Compression wood	PPT/Lecturing/		CO1 CO2
15-10	and tension wood. Factors affecting	Demo		CO1, CO2, CO3, CO4
	reaction wood formation.	Demo		005,001
17-19	Wood: Physical, chemical and	PPT/ Lecturing		CO1. CO2.
	mechanical properties			CO3, CO4
20-21	Plant fibers: Distribution, structure			CO1. CO2.
_	and commercial importance of coir,			CO3, CO4
	jute, and cotton.			<i>,</i>
	MODULE IV L	eaf and Node	-	-
22-23	Leaf: Initiation, plastochronic	PPT/ Lecturing/		CO1, CO2,
	changes, ontogeny and structure of	Demo		CO3, CO4
	leaf. Structure, development and			

	classification of stomata and		
	trichomes.		
24-25	Krantz anatomy, anatomical	PPT/ Lecturing/	CO1, CO2,
	peculiarities in CAM plants. Leaf	Demo	CO3, CO4
	abscission.		
26-29	Nodal anatomy: Unilacunar,	PPT/ Lecturing/	CO1, CO2,
	trilacunar and multilacunar nodes,	Demo	CO3, CO4
	nodal evolution.		
30	Root-stem transition in	PPT/ Lecturing/	CO1, CO2,
	angiosperms.	Demo	CO3, CO4
	MODULE V Repro	ductive Anatomy	
31-33	Floral Anatomy: Anatomy of floral	PPT/ Lecturing	CO1, CO2,
	parts - sepal, petal, stamen and carpel;	e	CO3, CO4
	Floral vasculature (Aquilegia and		
	<i>Pyrola</i>). Vascular anatomy.		
	Development of epigynous ovary -		
	appendicular and receptacular theory.		
34-36	Fruit and seed anatomy: Anatomy	DDT / Lecturing	CO1 CO2
54-50	of fleshy and dry fruits - follicle		CO1, CO2, CO4
	legume herry Dehiscence of fruits		005,004
	Structure of seeds Anatomical		
	factors responsible for seed		
	dormancy and drought resistance		
	dormaney and drought resistance.		
		• • •	
27.40	MODULE VI Ecol	ogical Anatomy	G01 G02
37-40	Morphological and structural	PP17 Lecturing	CO1, CO2,
	adaptations in different ecological		003, 004
	groups - nydropnytes, xeropnytes,		
	epipinytes and narophytes.		
	MODULE VILAn	nlied Anstomy	
41-42	Applications of anatomy in		CO1 CO2
-11 -12	systematics (histotaxonomy) and		CO3, CO4
	Pharmacognosy Research prospects		005,001
	in		
	anatomy.		
	PRACT	CAL	
10	Study of cambia - non storied and	Lob Work	CO1, CO2,
43	storied.	Lab work	CO3, CO4
	Study of the anomalous primary and		CO1, CO2,
	secondary features in Amaranthus,		CO3, CO4
44-49	Boerhaavia, Mirabilis, Nyctanthes,		
	Piper and Strychnos.		
50-51	Study of stomata, trichomes, and		CO1, CO2,

	laticifers. Determination of stomatal index.	CO3, CO4
52-53	Study of the anatomical peculiarities of C4 and CAM plants (Leaf/Stem).	CO1, CO2, CO3, CO4
54-56	Study of nodal patterns.	CO1, CO2, CO3, CO4
57	Preparation of a histotaxonomic key.	CO1, CO2, CO3, CO4
58-59	Study of the pericarp anatomy of a legume, follicle and berry.	CO1, CO2, CO3, CO4
60	Identification of wood - soft wood and hard wood.	CO1, CO2, CO3, CO4

	ASSIGNMENTS AND SEMINARS				
	Торіс	Nature of Assignment			
1	Secondary Xylem and Phloem: Ontogeny, Structure and Function;	Written and Seminar Presentation	CO1, CO2, CO3, CO4		
2	Comparison of Anomalous Secondary Thickening in Nyctanthes, Piper and Strychnose stems	Written and Seminar Presentation	CO1, CO2, CO3, CO4		
3	Vascular Cambium	Written and Seminar Presentation	CO1, CO2, CO3, CO4		
4	Plant Fibres - Disrtibution, Structure and Importnace of Coir, Jute and Cotton	Written and Seminar Presentation	CO1, CO2, CO3, CO4		
5	Comparison of Anomalous Secondary Thickening in Boerhaavia, Mirabilis and Amaranthus stems	Written and Seminar Presentation	CO1, CO2, CO3, CO4		

TEXT BOOKS AND REFERENCES

- 1. Eames A J, McDaniel (1976). An introduction to plant Anatomy. Tata McGraw-Hill, New Delhi
- 2. Edred John, Henry Corner (1976). The seeds of dicotyledons (Vol. I, II). Cambridge University Press.
- 3. Ella Werker (1997). Seed Anatomy. Borntreager. University of Michigan
- 4. Elizabeth G Cutter (1978). Plant Anatomy Part I & II. Clive and Arnald Ltd.
- 5. Elizabeth G Cutter (1978). Applied Plant Anatomy. Clive and Arnald Ltd.
- 6. Ella Werker (1997). Seed Anatomy. Borntreager. University of Michigan
- 7. Esau K (1977). Anatomy of seed plants. Wiley and sons.
- 8. Fahn A. (1997). Plant anatomy. Aditya Publishers. New Delhi
- 9. Metcalf C R, Chalk L (1983). Anatomy of the dicotyledons: Wood structure and conclusion of the general introduction. Oxford University press

- 10. Reghu C P (2002). Structural features of Rubber wood. Rubberwood Processing and utilization in India.Ganesh Publications, Bangalore
- 11. Wardrop A B (1964). Reaction wood Anatomy in Arborescent angiosperms. Formation of wood in forest trees (Ed, Zimmerman). Academic press, New York.
- 12. Wardrop A B (1961). The structure and formation of reaction wood in Angiosperm: Problems of tree physiology. Recent advances in Botany (Vol II). University of Toronto press.

LEARNING VALUE COURSE SESSION TOPIC **RESOURCES ADDITIONS** OUTCOME **PRINCIPLES OF ANGIOSPERM SYSTEMATICS & MORPHOLOGY MODULE I** PPT/Lecture 37 Historical background of CO6 classification - Artificial, natural and phylogenetic systems 38 Importance of taxonomy **PPT/Lecture** CO6 e- resource **MODULE II** 39 Species/Genus/Family and other **PPT/Lecture** CO6 categories PPT/Lecture Species concept and intraspecific 40 CO6 categories - subspecies, varieties Quiz and forms **MODULE III** 41 Plesiomorphic and Apomorphic PPT/Lecture video CO6 characters Homology and Analogy PPT/Lecture 42 CO6 Parallelism and Convergence PPT/Lecture CO6 43 e- resource 44 Monophyly, Paraphyly and **PPT/Lecture** CO6 Polyphyly Phylogenetic tree - Cladogram 45 PPT/Lecture CO6 Phylogenetic tree - Phenogram **PPT/Lecture** CO6 46 Quiz **MODULE IV** 47 Sources of taxonomic characters -**PPT/Lecture** CO6 Anatomy & Cytology Sources of taxonomic characters -PPT/Lecture CO6 48 Phytochemistry 49 Sources of taxonomic characters -**PPT/Lecture** CO6 Quiz Molecular taxonomy **MODULE V** 50 Phenetic - Numerical Taxonomy -PPT/Lecture CO6 principles Numerical Taxonomy- methods PPT/Lecture 51 e- resource CO6 52 **Cladistic - Principles** PPT/Lecture CO6 PPT/Lecture 53 Cladistic - methods CO6

PRINCIPLES OF ANGIOSPERM SYSTEMATICS & MORPHOLOGY

MODULE VI						
54	History of ICN	PPT/Lecture	e- resource	CO6		
55	ICN - aims and Principles	PPT/Lecture		CO6		
56	ICN - rules and recommendations	PPT/Lecture		CO6		
57	Rules of priority, typification, author citation	PPT/Lecture		CO6		
58	Retention, rejection and changing of names	PPT/Lecture		CO6		
59	Effective and valid publication	PPT/Lecture	Quiz	CO6		
	MODU	JLE VII				
60	Chemotaxonomy - Theory	PPT/Lecture		CO6		
61	Chemotaxonomy - Applications	PPT/Lecture	video	CO6		
62	DNA barcoding - Procedure	PPT/Lecture		CO6		
63	DNA barcoding - Applications	PPT/Lecture	e- resource	CO6		
	MODU	LE VIII				
64	Habitat and habit			CO5		
65	Morphology of root	PPT/Lecture		CO5		
66	Morphology of stem	PPT/Lecture		CO5		
67	Morphology of leaf,	PPT/Lecture		CO5		
68	bract and bracteoles	PPT/Lecture		CO5		
69	inflorescence	PPT/Lecture		CO5		
70	Flowers	PPT/Lecture		CO5		
71	Fruits	PPT/Lecture		CO5		
72	Seeds	PPT/Lecture	Quiz	CO5		

PRINCIPLES OF ANGIOSPERM SYSTEMATICS & MORPHOLOGY - PRACTICAL

109	1. Morphology of leaf: Leaf	Hands -on	CO5, CO6
110	leaf, Phyllotaxy, Shapes of leaf	Hands -on	CO5, CO6
111	lamina, bases, margins and tips,	Hands -on	CO5, CO6
112	2. Inflorescence: Racemose -	Hands -on	CO5, CO6
113	Simple raceme,	Hands -on	CO5, CO6
114	Compound raceme, Spike, Spikelet, Catkin, Spadix, Corymb,	Hands -on	CO5, CO6
115	Simple umbel, Compound umbel,	Hands -on	CO5, CO6
116	Solitary cyme, Mono-, Di- and	Hands -on	CO5, CO6
117	polychasial	Hands -on	CO5, CO6
118	cyme. Special types - Cyathium,	Hands -on	CO5, CO6
119	Verticillaster, Hypanthodium,	Hands -on	CO5, CO6
120	Coenanthium.	Hands -on	CO5, CO6
121	3. Morphology of stamens:	Hands -on	CO5, CO6
122	Mono-, Di- and	Hands -on	CO5, CO6
123	Polyadelphous; Epipetalous,	Hands -on	CO5, CO6

124	Syngenesious, Synandrous,	Hands -on	CO5, CO6
125	Polyandrous, Didynamous,	Hands -on	CO5, CO6
126	Tetradynamous, Basifixed,	Hands -on	CO5, CO6
127	Dorsifixed, Versatile.	Hands -on	CO5, CO6
128	4. Morphology of carpels:	Hands -on	CO5, CO6
129	Apocarpous,	Hands -on	CO5, CO6
130	Syncarpous, Gynostegium. Placentation - Marginal, Parietal,	Hands -on	CO5, CO6
131	Axile, Free	Hands -on	CO5, CO6
132	central, Basal and Pendulous. 5. Morphology of fruits: Berry,	Hands -on	CO5, CO6
133	Drupe, Hesperidium, Pepo, Balausta, Amphisarca, Achene	Hands -on	CO5, CO6
134	Follicle, Capsule,	Hands -on	CO5, CO6
135	Legume, Lomentum, Nut, Caryopsis, Cypsela, Samara, Cremocarp, Siliqua, Carcerule, Regma. 6. Aggregate fruits; Composite fruits - Sorosis and Syconus; Pome. 7. Draw the L.S and floral diagram of at least 10 flowers having different ovary positions - hypogyny, perigyny and epigyny. 8. Workout nomenclatural problems regarding priority and author citations.	Hands -on	CO5, CO6

ASSIGNMENT /SEMINAR

Sl. No.	Торіс	Nature of Assignment	Course Outcome
1	Collection and identification of vegetative and reproductive structures of angiosperms	Collection and submission of specimens	CO 5, CO 6
2	Interdisciplinary approach of taxonomy	Written and Seminar Presentation	CO 5, CO 6

References

1. Lawrence George H M (1951). Taxonomy of vascular plants. Oxford and IBH Publ. Co. Pvt. Ltd.

2. Jeffrey C (1968). An Introduction to principles of Plant Taxonomy.

3. Cole A J (1969). Numerical Taxonomy. Academic Press.

4. Davis P H, Heywood V M (1973). Principles of Angiosperm Taxonomy. Robert E Kereiger Publ.

5. Harrison H J (1971). New Concepts in Flowering Plant Taxonomy. Heiman Educational Books Ltd.

- 6. Cronquist A (1981). An Integrated system of classifications of flowering plants. Columbia University Press.
- 7. Heywood V H, D M Moore (Eds) (1984). Current concept in Plant Taxonomy.
- 8. Naik V V (1984). Taxonomy of Angiosperms. Tata McGraw Hill Publ. Co. Ltd.
- 9. Radford A E (1986). Fundamentals of Plant Systematics. Harper & Row Publ.
- 10. Davis P H, V H Heywood (1991). Principles of Angiosperm Taxonomy. Today and Tomorrow Publications.
- 11. Stace C A (1989). Plant Taxonomy and Biosystematics. Etwaed Arnold.
- 12. Woodland D W (1991). Contemporary Plant Systematics. Prentice Hall.
- 13. Sivarajan V V (1991). Introduction to Principles of Plant Taxonomy. Oxford IBH.
- 14. Takhtajan A L (1997). Diversity and Classification of Flowering Plants. Columbia Univ. Press.

15 Taylor D V, L J Hickey (1997). Flowering plants: Origin, evolution and phylogeny. CBS Publishers & Distributors.

16. Stuessy T F (2002). Plant taxonomy: The systematic Evaluation of comparative data. Bishen Singh, Mahendra Pal Singh. Dehradun.

- 17. Gurcharan Singh (2004). Plant Systematics: Theory and practice. Oxford and IBH Publishing.
- 18. Wendy B Zomlefer (2006). Guide to Flowering Plant Families. Overseas Press India Private Ltd.
- 19. International Code of Botanical Nomenclature (latest)
- 20. Henry A N, Chandrabose M (1980). An aid to the International Code of Botanical Nomenclature.

COURSE PLAN

PROGRAMME	M.Sc. BOTANY	SEMESTER	2
COURSE CODE AND TITLE	16P2BOTT07: MOLECULAR BIOLOGY AND IMMUNOLOGY	CREDIT	4
HOURS/WEEK	5.5	HOURS/SEM	Theory 54+18 hrs; Practical 9+18 hrs
FACULTY NAME	PRINCY MOL A. P		

Programme Outcome

	PROGRAMME OUTCOMES
PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development
PO 4	The students possess an ethical view of life, and have a broader (global) perspective transcending the provincial outlook
PO 5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.
	PROGRAM SPECIFIC OUTCOMES
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation.

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Explain the basic properties, structure and functions of genetic materials.	PO1, PO2, PO4, PO5, PSO1, PSO2, PSO3, PSO5	U
CO 2	Explain the central dogma of molecular biology.	PO1, PO3, PO4, PO5, PSO1, PSO2, PSO3, PSO5	U, A, An
CO 3	Develop a thorough knowledge in gene expression mechanisms.	PO1, PO2, PO4, PO5, PSO1, PSO2, PSO3, PSO5	U, A, An
CO 4	Explain the mechanism of DNA repair systems	PO1, PO2, PO4, PO5, PSO1, PSO2, PSO3, PSO4, PSO5	U, A, An
CO 5	Compare the alternate forms of DNA and its significance	PO1, PO2, PO3, PO4, PO5, PSO1, PSO2, PSO3, PSO5	R, U
CO 6	Compare the diversity of RNA molecules and its diverse functions in biological systems.	PO1, PO4, PO5, PSO1, PSO3	R, U, A

CL* Cognitive Level

- R Remember
- U Understand
- A Apply
- An Analyze
- E Evaluate

Cr - Create

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	2		2	3	3	2	3		2
CO 2	1		1	2	2	2	2	1		3
CO 3	3	2		3	2	2	2	3		3
CO 4	1	1		1	2	3	1	3	1	2
CO 5	1	2	2	2	3	3	2	3		1
CO 6	2			3	2	2		3		

Mapping Strength

- 0- No Mapping strength
- 1- Low
- 2- Medium
- 3- High

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME			
	MOLECULAR BIOLOGY						
	MODULE I - Genetic material and its molecular structure						
1	Alternative conformations of DNA – A-	PPT/Lecture		CO1, CO5			
2	DNA,	PPT/Lecture	e-resource	CO1, CO5			
3	2-DN, C-DNA	PPT/Lecture		CO1, CO5			
4	E - DNA,	PPT/Lecture		CO1, CO5			
5	triplex DNA, H-DNA and quadruplex DNA Circular and linear DNA, Single- stranded DNA.	PPT/Lecture		CO1, CO5			
6	Structure and function of different	PPT/Lecture		CO1, CO6			
7	types of RNA - mRNA,	PPT/Lecture		CO1, CO6			
8	ITRNA, rRNA	PPT/Lecture	e-resource	CO1, CO6			
9	SnRNA, and Micro RNA. RNA tertiary structures.	PPT/Lecture		CO1, CO6			
10	Ribozymes – Hammerhead ribozymes.	PPT/Lecture		CO1			
11	C-value paradox, DNA renaturation kinetics, Tm, Cot curve.	PPT/Lecture		CO1			

12	Unique and Repetitive DNA – mini- and	PPT/Lecture		CO1		
	microsatellites					
MODULE II - DNA replication, repair and recombination						
13	DNA replication: Unit of replication,	PPT/Lecture	e-resource	CO1, CO2		
14	replication (in both procaryotes and	PPT/Lecture	video	CO1, CO2		
15	replication origin (in both procaryotes	PPT/Lecture		CO1, CO2		
16	procaryotes), priming (in both procaryotes and eucaryotes), replication fork, fidelity of replication. Process of replication – initiation, elongation and termination. Replication in the telomere - telomerase.	PPT/Lecture		CO1, CO2		
17	DNA repair mechanisms: Direct repair, excision repair – base excision repair	PPT/Lecture	video	CO1, CO4		
18	and nucleotide excision repair (NER), eucaryotic excision repair – GG-NER,	PPT/Lecture		CO1, CO4		
19	TC-NER. Mismatch repair, Recombination repair – homologous recombination repair, nonhomologous end joining, SOS response – Transletion DNA polymerase.	PPT/Lecture		CO1, CO4		
20	Recombination: Homologous and nonhomologous recombination.	PPT/Lecture	e-resource	CO1		
21	molecular mechanism of homologous recombination. Site-specific recombination.	PPT/Lecture		CO1		
22	Transposable elements: General features.	PPT/Lecture	e-resource	CO1		
23	Types of transposons,	PPT/Lecture		CO1		
24	Elements, Composite Transposons, Ac	PPT/Lecture		CO1		
25	Replicative transposon- Tn3 Elements. Retrotransposons- retrovirus like elements: Ty1 Element, Retroposons- LINEs, SINEs.	PPT/Lecture		CO1		
	MODULE III - Ger	e expression				
26	Gene: Concept of gene; structural	PPT	video	CO 1		
27	and genetic definitions –	PPT/Lecture		CO 1		
28	complementation test.	PPT/Lecture		CO 1		

29		PPT/Lecture e-resource	CO 1
30	Transcription in procaryotes:	PPT/Lecture	CO 1
31	Initiation – promoter structure,	PPT/Lecture	CO 1
32	structure of RNA polymerase,	Lecture	CO 1
33	structure and role of sigma factors.	Lecture	CO 1
34	Elongation – elongation complex,	Lecture	CO 1
35	Termination – rho-dependent and rho-independent termination.	Lecture	CO 1
36	Transcription in eucaryotes: Types,	PPT/Lecture	CO 1
37	polymerases. Promoters –	PPT/Lecture	CO 1
38	important features of class I, II, & III	PPT/Lecture	CO 1
39	silencers. General transcription	PPT/Lecture	CO 1
40	factors and formation of pre- initiation complex. Elongation	PPT/Lecture	CO 2
41	factors, structure and function of	Lecture	CO 2
42	Post-transcriptional events: Split	Lecture	CO 2
43	genes, splicing signals, splicing mechanisms of group I, II, III, and	Lecture	CO 2
44	tRNA introns. Alternative splicing,	Lecture	CO 2
45	transsplicing. Structure, formation and functions of 5' cap and 3' tail of mRNA, RNA editing, mRNA export. rRNA and tRNA synthesis and processing.	PPT/Lecture	CO 2
46	Translation: Important features of	PPT/Lecture	CO 2
47	composition and assembly of	PPT/Lecture	CO 2
48	procaryotic and eukaryotic ribosomes. tRNA charging. initiator	PPT/Lecture	CO 2
49	tRNA.	Lecture	CO 2
50	formation of initiation complex in procaryotes and eucaryotes, initiation factors in procaryotes and eucaryotes, Kozak sequence.	Lecture	CO 2
51	Elongation – process of polypeptide	Lecture	CO 2
52	synthesis, active centers in	Lecture	CO 2
53	transferase, elongation factors.	PPT/Lecture	CO 2
54	Termination – process of	PPT/Lecture	CO2

55	termination, release factors,	PPT/Lecture		CO 2						
= 0	ribosome recycling									
56	revision									
	CIA I									
57	Genetic code: Cracking the genetic	PPT/Lecture		CO 3						
58	code – simulation synthetic	PPT/Lecture		CO 3						
59	polynucleotides and mixed	PPT/Lecture		CO 3						
60	Important features of the genetic	Lecture	Quiz	CO 3						
61	code, proof for the triplet code, Exceptions to the standard code.	Lecture	Q & Ans Session	CO 4						
62	Protein sorting and translocation: Cotranslational and posttranslational – signal sequences, SRP, translocon.	PPT/Lecture		CO 4						
63	Membrane insertion of proteins. Post-translational modification of	PPT/Lecture		CO 4						
64	proteins. Protein folding – self- assembly, role of chaperones in protein assembly	PPT/Lecture		CO 4						
	MODULE IV - Control o	f gene expressio	n							
65	Viral system: Genetic control of lytic and lysogenic growth in λ phage,	PPT/Lecture		CO 4						
66	lytic cascade Procaryotic system: Transcription	Lecture		CO 4						
67	switches, transcription regulators. Regulation of transcription initiation;	PPT/Lecture		CO 4						
68	Regulatory proteins - activators and repressors. Structure of Lac	PPT/Lecture		CO 4						
69	operator, CAP and repressor control of lac genes. Regulation after transcription initiation – regulation of amino acid biosynthetic operons- attenuation of trp operon, riboswitches.	PPT/Lecture		CO 4						
70	Eucaryotic system: Changes in chromatin and DNA structure –	PPT/Lecture		CO 4						
71	chromatin compaction, transcriptional activators and	PPT/Lecture		CO 4						
72	repressors involved in chromatin remodelling, gene amplification, gene rearrangement, alternate splicing, gene silencing by heterochromatization, and DNA methylation. Effect of regulatory	PPT/Lecture	_	CO 4						

	transcription factors on transcription. Post-transcriptional control – mRNA stability, RNA interference. Role of small RNA in heterochromatization and gene silencing. RNA interference- Discovery, RNAi path way, miRNA, siRNA, piwiRNA			
	IMMUNOL	.OGY		
	MODULI	El		
73	 a. Innate and acquired immunity. Cells and molecules involved in innate and acquired immunity 	Lecture/ Interaction/ PPT		CO1
74	a. Humoral and cellular immunity, Antigens, Epitopes	Lecture/ Interaction/ PPT		C01
75	b. Structure, function and types of antibody molecules. Antigen-antibody interactions.	Lecture/ Interaction/ PPT	e-resource	CO1
76	b. Antigen processing and presentation.	Lecture/ Interaction/ PPT		CO1
77	c. Activation and differentiation of B cells – formation, role.	Lecture/ Interaction/ PPT	Video, e- resource	C01
78	c. T cells – types, roles, T cell receptors.	Lecture/ Interaction/ PPT/ Audio visual learning/ Practical	Video, e- resource	CO1
79	d. Primary and secondary immune modulation	Lecture/ Interaction/ PPT/Audio visual learning	e-resource	C01
80	d. complement system, pattern recognition receptors – toll-like receptors.	Lecture/ Interaction/ PPT/Audio visual learning	e-resource	C01
81	d. MHC molecules. Cell-mediated effector functions, inflammation	Lecture/ Interaction/ PPT/Audio visual learning	e-resource	C01
82	Hypersensitivity and autoimmunity, congenital and acquired immunodeficiencies.	Lecture/ Interaction/ PPT/Audio visual learning		C01
	MODULE II			
83	a. Generation of antibody diversity.	Lecture/ Chalk and board/ Interaction/ PPT	e-resource	CO1
84	b. Production and uses of monoclonal antibodies	Lecture/ Interaction/ PPT/		CO1

		Assignment				
85	Antibody engineering.	Lecture/ Interaction/ PPT/ Assignment		CO1		
	MODULE III		• •			
86	 a. Vaccines: Basic strategies, inactivated and live attenuated pathogens, 	Lecture/ Interaction/ PPT		CO1		
87	b. subunit vaccines	Lecture/ Interaction/ PPT	e-resource	CO1		
88	recombinant vaccines (e.g., Hepatitis B vaccine)	Lecture/ Interaction/ PPT		C01		
89	DNA vaccines	Lecture/ Interaction/ PPT	e-resource	CO1		
90	 b. Modern approaches to vaccine development - edible vaccines. 	Lecture/ Interaction/ PPT		C01		
	PRACTIC	AL				
91	Molecular Biology Problems	Demonstration		CO6		
92	Virtual lab experiments	Computer based practical		C01		
CIA - II						

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of	Topic of Assignment & Nature of	Nature of	Course
	completion	assignment (Individual – Graded)	Assignment	Outcome
1	02/01/2020	Viral System		CO 2
2	28/01/2020	Genetic code		CO 3
2	11/02/2020	Vaccines: Basic strategies, inactivated and live		COI
3 14	14/02/2020	attenuated pathogens,	Review report on	COI
٨	11/02/2020	Subunit vaccines, recombinant vaccines (e.g.,	recent research	CO1
4 14/02/202	14/02/2020	Hepatitis B vaccine)	works in the	
F	11/02/2020	Modern approaches to vaccine development -	respective fields	CO1
5	14/02/2020	edible vaccines.		

References

1	Goldsby, R. A., Kindt, T. J., Osborne, B. A. and Kuby, J. (2003). Kuby Immunology (5th edition). W H Freeman and Company.
2	Roitt, I. M. and Delves, P. J. (2001). Roitt's Essential Immunology (10th edition). Blackwell Publishing
3	Krebs, J. E., Goldstein, E. S. and Kilpatrick, S. T. (2014) Lewin's Genes XI. Jones & Bartlett learning
4	Talaro, K. P. and Chess, B (2012). Foundations in Microbiology (8th edition). Mc Graw Hill
5	Abbas, A. K. and Lichtman, A. H. (2004) Basic Immunology – Functions and

	Disorders of the Immune System (2 nd edition). Saunders - Elsevier
6	Rabson, A., Roitt, I. M. and Delves, P. J. (2005) Really Essential Medical
	Immunology (2nd edition). blackwell publishing
7	Wayne M Becker, Lewis J Kleinsmith, Jeff Hardin (2007). The world of the cell (VI
	Edn). Pearson.
8	Geoffrey M Cooper, Robert E Hausman (2009). The Cell: A molecular approach
	(V Edn). Sinaeur.
9	Harvey Lodish, Arnold Berk, Lawrence Zipursky, Paul Matsudaira, David
	Baltimore, James Darnell (2000). <i>Molecular cell biology</i> (IV Edn). W H Freeman
	& Company.
10	Gerald Karp (2008). Cell and Molecular biology: Concepts and experiments (V
	Edn). John Wiley & Sons.
11	Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts,
	Peter Walter (2002). Molecular biology of the cell (IV Edn). Garland Science,
	Taylor and Francis group.
12	Robert J Brooker (2009). <i>Genetics: analysis and principles</i> (III Edn). McGraw Hill.
13	Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick (2011). Lewin's Genes
	X. Jones and Bartlett Publishers.
14	Bob B Buchanan, Wilhelm Gruissem, Russel L Jones (2000). Biochemistry and
	Molecular biology of plants. I K International Pvt. Ltd.
15	Daniel L Hartl, Elizabeth W Jones (2012). Genetics: Analysis of genes and
	genomes (VII Edn). Jones and Bartlett publishers.
16	James D Watson, Tania A Baker, Stephen P Bell, Alexander Gann, Michael
	Levine, Richard Losick (2009). Molecular biology of the gene (V Edn). Pearson.

COURSE PLAN

PROGRAMME	MASTERS IN BOTANY	SEMESTER	2
COURSE CODE AND TITLE	16P2BOTT08: GENETICS AND BIOCHEMISTRY	CREDIT	3
HOURS/WEEK	6	HOURS/SEM	108
FACULTY NAME	EBIN PJ		

PROGRAMME OUTCOME					
PO 1	Students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.				
PO 2	Students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.				
PO 3	Students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve the environment and work towards sustainable growth and development.				
PO 4	Students possess an ethical view of life and have a broader (global) perspective transcending the provincial outlook.				
PO5	Students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.				

PROG	RAM SPECIFIC OUTCOMES
PSO1	Understand functional and theoretical concepts of the biological world and their relative role in the sustainability of natural habitats and biodiversity
PSO2	Possess knowledge on the evolutionary relationships among the plant
PSO3	Understand the applications of plant biology in various desciplines and communicate effectively with the society.
PSO4	Perform laboratory procedures as per ethics and following standard protocols
PSO5	Synthesize the scientific character of observation, reasoning and apply the knowledge in designing of experiments

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Define Mendelian and Non-Mendelian modes of inheritance that governs passage of genetic traits across generation.	PO 1, PO5, PSO2, PSO1	R
CO 2	Explain the Hardy-Weinberg equilibrium.	PO1 , PO4, PO5, PSO1, PSO3, PSO5	U
CO 3	Analyse and solve problems related to map distance, gene order, coefficient of coincidence, interference and population genetics	PO1, PO2, PSO1, PSO3, PSO5	An
CO 4	Identify and compare the structure and functions of biomolecules.	PO1, PSO2, PO3, PO5, PSO1, PSO3, PSO5	A
CO 5	Explain genetics behind cancer, enzymology, nucleotide metabolism and secondary metabolites.	PO1, PO2 PSO1, PSO3, PSO4, PSO5	U
CO 6	Perceive detailed account on enzymology, nucleotide metabolism and secondary metabolites.	PO1, PO3, PSO1, PSO3, PSO4, PSO5	Е

CL* Cognitive Level; R- Remember, U- Understand, A-Apply, An- Analyze, E- Evaluate, Cr-Create

CO - PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO
										5
CO 1	3	0	0	0	3	3	1	0	0	0
CO 2	3	0	0	3	2	3	0	2	0	3
CO 3	3	1	0	0	0	3	0	2	0	3
CO 4	3	0	3	0	0	3	2	2	0	3
CO 5	3	2	0	0	0	3	0	2	3	3
CO 6	3	0	2	0	2	3	0	2	3	3

Mapping Strength

- 0- No Mapping strength
- 1- Low
- 2- Medium
- 3- High

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
GENETIC	S	I		
Module 1:	History of Genetics (3 hrs)			
Session 1	Transmission genetics, Molecular genetics and Population genetics (brief introduction). Mendelism – basic principles (brief study).	Transmission genetics, MolecularPPT/Lecturegenetics and Population geneticsSbrief introduction). Mendelism – pasic principles (brief study).S		CO 1
Session 2	n 2 penetrance and expressivity of genes. PPT/Lecture		CO 1	
Session 3	Nonmendelian inheritance – cytoplasmic inheritance. Sex determination in animals and plants.	PPT/Lecture	Seminar	CO 1
Module 2:	Linkage and genetic mapping (6			
hrs)				
Session 4	Linkage and Crossing over - Stern's hypothesis, Creighton and McClintock's experiments	PPT/Lecture	Video	CO3
Session 5	single cross over, multiple cross over, two-point cross, three-point cross, map distances, gene order,	PPT/Lecture		CO3
Session 6	interference and co efficient of coincidence.	PPT/Lecture		CO3
Session 7	Haploid mapping (Neurospora)	PPT/Lecture	video	CO3
Session 8	Mapping in bacteria and bacteriophages	PPT/Lecture	Seminar	CO3
Session 9	Inheritance of traits in humans; pedigree analysis, determination of human genetic diseases by pedigree analysis, genetic mapping in human pedigrees.	PPT/Lecture		CO3
Module 3:	Quantitative genetics (2 hrs)			
Session 10	Polygenic inheritance, QTL,	PP1/Lecture		CO1, CO3
Session 11	effect of environmental factors and artificial selection on polygenic inheritance.	PPT/Lecture		CO1, CO3
Module 4:	Population genetics (7hrs)			
Session 12	Gene pool, allele and genotype frequency	PPT/Lecture		CO2
Session 13	Hardy-Weinberg law and its applications	PPT/Lecture		CO2

	estimation of allele and	PPT/Lecture		
Session	genotype frequency of dominant			CON
14	genes, co-dominant genes, sex-			02
	linked genes and multiple alleles			
Cassion	Genetic	PPT/Lecture		
15	equilibrium, genetic			CO2
15	polymorphism.			
	(b) Factors that alter allelic	PPT/Lecture		
Session	frequencies; (i) mutation (ii)			CO2
16	genetic drift - bottle neck effect			
	and founder effect			
Session	migration (iv) selection (v)	PP1/Lecture		CO2
17	coefficient			02
Session		PPT/Lecture		
18	Balancing of evolutionary forces		Seminar	CO2
Genetics P	ractical (18 hrs)	I		
Session		hands-on		CO1 CO2
19				01,005
Session		hands-on		CO1 CO3
20	-			001,005
Session		hands-on		CO1, CO3
21 Sector		handa an		,
22		nands-on		CO1, CO3
Session	problems related to linkage,	hands-on		
23	crossing over and gene mapping,	nands on		CO1, CO3
Session	human pedigree analysis.	hands-on		CO1 CO2
24				CO1, CO3
Session		hands-on		CO1 CO3
25				001,005
Session		hands-on		CO1 CO3
26	-			001,005
Session		hands-on		CO1, CO3
27 Section		handa an		,
28		nands-on		CO2
Session		hands-on		
29		interior off		CO2
Session	problems related to population	hands-on		C02
30	genetics - gene and genotype			002
Session	frequency, Hardy Wienberg	hands-on		CO2
31	equilibrium			
Session		hands-on		CO2
32		1 1		
Session		hands-on		CO2
33		1	1	

Session 34		hands-on		CO2
Session 35		hands-on		CO2
Session 36		hands-on		CO2
BIOCHEM	IISTRY (Theory 54 hrs; Practical	18 hrs)	1	1
Module 1:	pH and Buffer (5 hrs)			
Session 37	Acids and bases, strength of acids – strong acids, weak acids	PPT/Lecture	Seminar	CO4
Session 38	Ionization of water – Kw, pH. Dissociation of acids – pKa, Henderson-Hasselbalch equation	Kw, pH.PPT/LectureSeminar- pKa,Ich equation		CO4
Session 39	Buffers – definition, chemical composition, requirements for a good buffer	PPT/Lecture	Seminar	CO4
Session 40	buffer action, buffer capacity	PPT/Lecture	Seminar	CO4
Session 41	Measurement of pH – colorimetric methods and electrometric methods		Seminar	CO4
Module 2:	Carbohydrates (3 hrs)			
Session 42	Sugar derivatives:Glycoproteins	PPT/Lecture		CO4
Session 43	proteoglycans, mucoproteins	PPT/Lecture		CO4
Session 44	Lectins.	PPT/Lecture		CO4
Module 3:	Lipids (3 hrs)			
Session 45	Structural lipids – membrane lipids	PPT/Lecture		CO4
Session 46	Lipid biosynthesis	PPT/Lecture		CO4
Session 47	fat breakdown – β oxidation	PPT/Lecture	Video	CO4
Module 4:	Amino acids (3 hrs)			
Session 48	Structure of amino acids	ture of amino acids PPT/Lecture		CO4
Session 49	Classification of amino acids	amino acids PPT/Lecture		CO4
Session 50	Biosynthesis of amino acids	synthesis of amino acids PPT/Lecture		CO4
Module 5: Proteins (8 hrs)				
Session 51	Classification of proteins based on structure and function.	PPT/Lecture	Video	CO4
Session	Oligo- and polypeptides	PPT/Lecture		CO4

52				
Session 53	Primary structure – peptide bond.	PPT/Lecture		CO4
Session 54	Secondary structure – Ramachandran plots, α -helix, β sheet.	PPT/Lecture		CO4
Session 55	Tertiary structure – forces that stabilize tertiary structure	PPT/Lecture		CO4
Session 56	Quaternary structure, domains, motif and folds	PPT/Lecture		CO4
Session 57	Protein sequencing – Edman method.	PPT/Lecture		CO4
Session 58	Functions of proteins. PPT/Lecture			CO4
Module 6:	Protein turnover and amino acid	catabolism (5 hrs		
Session 59	Degradation of proteins to amino acids	PPT/Lecture		CO4
Session 60	Protein turnover and its tight regulation	PPT/Lecture		CO4
Session 61	steps involved in amino acid degradation.	PPT/Lecture		CO4
Session 62	Structure of Proteasome complex	PPT/Lecture		CO4
Session 63	working mechanism of PPT/Lecture Video		Video	CO4
Module 7: Enzymes (15 hrs)				
Session 64	Principles of catalysis: Activation energy of a reaction	PPT/Lecture		CO5, CO6
Session 65	General characters of enzymes - specificity, catalytic power, regulation.	PPT/Lecture		CO5, CO6
Session 66	IUB system of enzyme classification and naming.	PPT/Lecture	Seminar	CO5, CO6
Session 67	Mechanism of enzyme activity: Formation of ES complex	PPT/Lecture		CO5, CO6
Session 68	acid-base catalysis, covalent catalysis, metal ion catalysis	PPT/Lecture		CO5, CO6
Session 69	proximity and orientation effect, strain and distortion theory.	PPT/Lecture		CO5, CO6
Session 70	Factors affecting enzyme activity	PPT/Lecture		CO5, CO6
Session 71	Enzyme Kinetics: Michaelis- Menton kinetics	PPT/Lecture		CO5, CO6

Session 72	Lineweaver-Burk plot.	PPT/Lecture		CO5, CO6
Session 73	Mechanism of multi substrate reaction – Ping Pong, Bi-Bi mechanism.	PPT/Lecture		CO5, CO6
Session 74	Regulation of enzyme activity: Allosteric effect, control proteins, reversible covalent modification, proteolytic activation	PPT/Lecture		CO5, CO6
Session 75	Enzyme inhibition – reversible and irreversible inhibition, competitive, noncompetitive, uncompetitive inhibition, dixon plot	PPT/Lecture		CO5, CO6
Session 76	Cofactors and coenzymes: Essential ions, Coenzymes; structure and role of metabolite coenzymes – ATP;	PPT/Lecture	Seminar	CO5, CO6
Session 77	structure and role of vitamin derived coenzymes – NAD+, NADP+, FAD, FMN, TPP, PLP	PPT/Lecture	Seminar	CO5, CO6
Session 78	Biotin. Isozymes.	PPT/Lecture		CO5, CO6
Module 7:	Nucleotide metabolism (4 hrs)			
Session 79	Structure of nucleotides	PPT/Lecture		CO4
Session 80	Functions of nucleotides	PPT/Lecture		CO4
Session 81	nucleotide biosynthesis by de novo pathway	PPT/Lecture		CO4
Session 82	nucleotide biosynthesis by salvage pathways	PPT/Lecture		CO4
Module 8:8	Secondary metabolites (6 hrs)			
Session 83	Classification of secondary metabolites	PPT/Lecture	Seminar	CO4
Session 84	biosynthesis and functions of terpenoids	PPT/Lecture		CO4
Session 85	biosynthesis and functions of alkaloids	PPT/Lecture		CO4
Session 86	biosynthesis and functions of phenolics	PPT/Lecture		CO4
Session 87	biosynthesis and functions of flavonoids	PPT/Lecture		CO4
Session 88	biosynthesis and functions of coumarins	PPT/Lecture		CO4
Biochemistry Practical (18 hrs)				
Session	Preparation of buffers of various	hands-on		CO4, CO5,

89	strength and pH		(CO6
Session		hands-on		CO4, CO5,
90				CO6
Session		hands-on		CO4, CO5,
91	Differentiating sugars based on		(CO6
Session	osazone formation.	hands-on		CO4, CO5,
92			(CO6
Session	Quantitative estimation of reducing sugar using Dinitro	hands-on		CO4, CO5,
93			(CO6
Session		hands-on		CO4, CO5,
94	salleyne acid (DIVS) of Anthrone.		(CO6
Session		hands-on		CO4, CO5,
95	Separation and analysis of lipids		(CO6
Session	and amino acids by TLC.	hands-on		CO4, CO5,
96			(CO6
Session		hands-on		CO4, CO5,
97	Quantitative estimation of protein		(CO6
Session	by Lowry's method.	hands-on		CO4, CO5,
98			(CO6
Session	Preparation of molal molar	hands-on		CO4, CO5,
99	normal and percentage solutions		(CO6
Session	and their dilutions	hands-on		CO4, CO5,
100			(CO6
Session		hands-on		CO4, CO5,
101	Estimation of purity of DNA (By		(CO6
Session	DNA protein ratio).	hands-on		CO4, CO5,
102			(CO6
Session		hands-on		CO4, CO5,
103	Estimation of catalase activity		(CO6
Session	Estimation of catalase activity.	hands-on		CO4, CO5,
104			(CO6
Session	Isolation and assay of amylase	hands-on		CO4, CO5,
105	enzyme from germinating Pea		(CO6
Session	seeds/appropriate plant material	hands-on		CO4, CO5,
106			(CO6

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	Course Outcome
1	Bv	Enzyme mechanism	CO 5, CO 6
2	February	Hardy-Weinberg law	CO 2

References

1. Benjamin Lewin (2000). Genes VII. Oxford university press.

2. Gardner E J, Simmons M J, Snustad D P (1991). Principles of Genetics (III Edn). John Wiley and Sons Inc.

3. Snustad D P, Simmons M J (2000). Principles of Genetics (III Edn). John Wiley and Sons.

4. Strickberger (2005). Genetics (III Edn). Prentice Hall of India Pvt. Ltd.

5. William S Klug, Michael R Cummings (1994). Concepts of Genetics. Prentice Hall.

6. Robert J Brooker (2009). Genetics: Analysis and principles (III Edn). McGraw Hill.

7. Daniel L Hartl, Elizabeth W Jones (2009). Genetics: Analysis of genes and genomes (VII Edn). Jones and Bartlett publishers.

8. D Peter Snustad, Michael J Simmons (2010). Principles of genetics (V Edn). John Wiley and Sons.

References

1. David T Plummer (1998). An introduction to practical biochemistry. Tata Mc Graw Hill.

2. Jeremy M Berg, John L Tymoczko, LubertStryer, Gregory J Gatto Jr. (2007). Biochemistry. W H Freeman and company.

3. Michael M Cox, David L Nelson (2008). Lehninger Principles of biochemistry (V Edn). W H Freeman and company.

4. Donald Voet, Judith G Voet (2011). Biochemistry (IV Edn). John Wiley & Sons Inc.

5. Carl Branden, John Tooze (1999). Introduction to protein structure (II Edn). Garland Publishing.

6. Reginald H Garrett, Charles M Grisham (2005). Biochemistry. Thomson Brooks/Cole.

7. Robert K Murray, David A Bender, Kathleen M Botham, Peter J Kennelly, Victor W Rodwell, P Anthony Weil (2009). Harper's Illustrated Biochemistry (XXVIII Edn). Mc Graw Hill.

8. H Robert Horton, Laurence A Moran, Raymond S Ochr, J David Rawn, K Gray Scrimgeour (2002).

Principles of Biochemistry (III Edn). Prentice Hall.

9. Bob B Buchanan, Wilhelm Gruissem, Russel L Jones (2000). Biochemistry and molecular biology of plants. L K International Pvt. Ltd.

10.S Sadasivam, AManickam (1996). Biochemical methods (II Edn). New age international Publishers.