SACRED HEART COLLEGE (AUTONOMOUS)

Department of BOTANY

MASTER OF SCIENCE IN BOTANY

Course plan

Academic Year 2018-19

Semester I

PROGRAMME	M.Sc. BOTANY	SEMESTER	1
COURSE CODE AND TITLE	16P1BOTT01- MICROBIOLOGY AND PHYCOLOGY	CREDIT	4
HOURS/WEEK	6.5	HOURS/SEM	Theory 27 + 45 hrs; Practical 9 + 36 hrs
FACULTY NAME	PRINCY MOL A. P.		

	PROGRAMME OUTCOME
PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development
PO 4	The students possess an ethical view of life, and have a broader (global) perspective transcending the provincial outlook
PO 5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

	PROGRAM SPECIFIC OUTCOMES				
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.				
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.				
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.				
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.				
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation.				

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Appraise the world of microbial diversity and their evolutionary relationships	PO1, PO3, PO5, PSO1, PSO2, PSO3, PSO4	R, U, A, An, E
CO 2	Explain the reproductive behaviour in Algae and other microbes	PO1, PO2, PO5, PSO1, PSO2, PSO3, PSO4	R, U
CO 3	Examine ecological significance of the lower groups of plants and protists	PO1, PO2, PO3, PO4, PO5, PSO1, PSO3,PSO4	R, U, A, An
CO 4	Examine economic significance of the lower groups of plants and protists	PO1, PO2, PSO1, PSO2, PSO3, PSO4, PSO5	R, U, A, An
CO 5	Develop a practice to collect and identify various algal forms	PO1, PO2, PO3, PO4, PO5, PSO2, PSO3, PSO5	R, U, A

CL* Cognitive Level

R - Remember

U - Understand

A- Apply

B- An - Analyze

E - Evaluate

Cr - Create

CO -PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	1	0	2	0	1	2	2	3	2	0
CO 2	2	2	0	0	1	2	3	2	1	0
CO 3	3	3	3	2	2	2	0	3	3	0
CO 4	2	1	0	0	0	2	1	2	2	2
CO 5	1	2	2	3	2	0	2	3	3	2
CO 6	3	0	0	0	0	3	0	3	2	0

Mapping Strength

- 0- No Mapping strength
- 1- Low
- 2- Medium
- 3- High

SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	MICROBIOLO	OGY		
	Introduction to the	ie course		
1	History of Microbiology, Scope of microbiology. Microbial diversity: Microbial taxonomy and phylogeny	Lecture/ Interaction/ PPT		CO1, CO3, CO4
2	Major groups and their characteristics (Five kingdom system and three domain system of classification)	Lecture/ Interaction/ PPT		CO1, CO3, CO4
3	Microbes in everyday life.	Lecture/ Interaction/ PPT		CO1, CO3, CO4
	MODULE I: Bac	teria		
4	(a) Bacterial morphology. Classification of Bacteria according to Bergey's manual of systematic bacteriology	Lecture/ Interaction/ PPT	e resource	CO1, CO3
5	Modern trends in bacterial taxonomy- DNA barcoding.	Lecture/ Interaction/ PPT	e resource, video	CO1
6	(b) Ultra structure of Gram positive and Gram negative bacteria; cell membrane, cell wall	Lecture/ Interaction/ PPT/ Audio visual learning/ Practical	e resource, video	CO3
7	External structures-flagella, pili, fimbriae, capsule (glycocalyx) and slime, Internal/cytoplasmic structures-Nucleoid, ribosome and endospores	Lecture/ Interaction/ PPT/Audio visual learning	e resource	CO1, CO3
8	(c) Major groups of Bacteria: Spirochaetes, Rickettsias, Chlamydias, Mycoplasmas, Actinomycetes, Myxobacteria	Lecture/ Interaction/ PPT/Audio visual learning	e resource, video	CO1, CO3, CO4
9	Archaebacteria. Extremophiles - thermophilic, halophilic, acidophilic and alkalophilic bacteria.	Lecture/ Interaction/ PPT/Audio visual learning/ Assignment	e resource	CO1, CO3, CO4
10	(d) Nutritional types - Photolithotrophs, chemolithotrophs	Lecture/ Interaction/ PPT		CO1, CO3, CO4

	1			T
		Lecture/		
11	Photoorganotrophs, and	Interaction/		CO1, CO3,
	chemoorganotrophs.	PPT		CO4
	(e) Bacterial Genetics: Organization and	Lecture/		
12	replication of genetic material in bacteria –	Interaction/ PPT	e resource	
	bacterial chromosome, plasmid.			CO4
	Recombination in bacteria - conjugation,	Lecture/		
13	transformation and transduction.	Interaction/ PPT	e resource	
	Sexduction.		C . CC C C CC	CO1, CO3, CO4
	Sexuaction.	Lecture/		001, 003, 004
		Interaction/		
14	Application of bacteria in recombinant	PPT/		
	technology and genomics.	Assignment		CO4
	(f) Culture of microorganisms: Methods for			
	isolating pure cultures, types of culture			
15	media, enrichment culture techniques,		e resource	
	maintenance and preservation of pure	Lecture/		
	cultures.	Interaction/ PPT/ Practical		CO3, CO4
	1	FF1/ Flactical		003, 004
	CIA I			
	MODULE II: Applied I	Microbiology		
16	(a) Host-Microbe relationships and diseases	Lecture/ Interaction/ PPT	e resource	CO1, CO3, CO4
	(b) Food Microbiology: food spoilage and	T /		
17	preservation methods, Microbiology of	Lecture/ Interaction/	0 400011400	
17	fermented foods, Microorganisms as source	PPT/	e resource	
	of food-SCP.	Assignment		CO3, CO4
	(c) Agricultural Microbiology: Management	Lecture/		
18	of agricultural soils, bio-fertilizers, bio-	Interaction/	e resource	G04 G04
	pesticides.	PPT/	e resource	CO1, CO3,
	(d) Industrial Microbiology: Production of	Assignment		CO4
	alcohol, vinegar, antibiotics, vitamins,	Lecture/		
19	steroids, vaccines, organic acids and amino	Interaction/	e resource	
	acids.	PPT/		CO1, CO3, CO4
	•	Assignment		CO4
	MODULE III: V	iruses		
20	(a) Nomenclature and classification	Lecture/ Interaction/ PPT	e resource	CO1, CO3
	Distinctive properties of viruses,	meracuon/ FF I		001, 003
21	morphology (symmetry) and a general	<u> </u>	e recource	
	account on different kinds of viruses.		e resource	CO1
		Interaction/ PPT		CO1
22	Capsid and their arrangements, types of	_	o recourse	
22	envelops and their composition. Viral	Lecture/	e resource	CO1
	genome. (b) Structure of hostorianhogos helenging to	Interaction/ PPT		CO1
23	(b) Structure of bacteriophages belonging to		e resource	go: ~
	'T' series. Lytic and Lysogenic phages.	Interaction/ PPT		CO1, CO3
24	I II tuo et maetamo e FTMAX e e d 11137	Lecture/	e resource	G02 G24
	Ultra structure of TMV and HIV	Interaction/ PPT		CO3, CO4

	1	1	1	
25	(c) Sub viral particles – prions, viroids, virusoid	Lecture/ Interaction/ PPT	e resource	CO1,CO3, CO4
26	(d) Pathogenesis of viral infection: Stages of infection	Lecture/ Interaction/ PPT	e resource	CO1,CO3, CO4
27	Epidemiology and transmission of HIV and HPV, Viral oncogenesis	Lecture/ Interaction/ PPT/ Assignment	e resource	CO3, CO4
	PRACTICAL			
28	Preparation and sterilization of various microbial culture media and inoculation.	Lab work		CO3, CO4
29	Differential staining of bacteria using Gram			
30	stain.	Lab work		CO1,CO3, CO4
31	Isolation of Rhizobium from root nodules.	Lab work		CO1,CO3, CO4
32				
33	Isolation of microbes from soil: Serial dilution - pour plate/spread plate method.	Lab work		
34				CO1,CO3, CO4
35	Streak out a bacterial culture on an agar plate and isolation of colonies.	Lab work		CO1,CO3, CO4
36	Antibacterial assay - disc diffusion/agar well method.	Lab work		CO1,CO3, CO4
	PHYCOLOG	Υ		
	MODULE I - Introd	duction		
37	History of algal classification. Detailed study	PPT/		CO1
	of the classification by F. E. Fritsch	Lecturing		
38	Brief account on the classification (Upto	PPT/		CO1
	groups and divisions) by Edward Lee (2008). Gene sequencing and algal systematics	Lecturing		
39	Centers of algal research in India. Contributions of Indian phycologists – M. O. P. Iyengar, G.S. Venkataraman, T. V. Desikachary	PPT/ Lecturing		CO1
40	Centers of algal research in India.	PPT/		CO1
40	Contributions of Indian phycologists – M. O.	•		CO1
	P. Iyengar, G.S. Venkataraman, T. V.	Lecturing		
	Desikachary			
	MODULE II - General fea	tures of Algae		
41	Habit, habitat and distribution of Algae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
42	Major characteristics of Cyanophyceae	PPT/ Lecturing	Original Video and	CO1, CO2, CO3, CO4,

			Photos	CO5
43	Major characteristics of Chlorophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
44	Major characteristics of Chlorophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
45	Major characteristics of Xanthophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
46	Major characteristics of Bacillariophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
47	Major characteristics of Dinophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
48	Major characteristics of Phaeophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
49	Major characteristics of Rhodophyceae	PPT/ Lecturing	Original Video and Photos	CO1, CO2, CO3, CO4, CO5
50	Range of thallus structure	PPT/ Lecturing	Original Photos	CO1, CO2, CO3, CO4, CO5
51	Algal components: Cell wall, flagella, eyespot.	PPT/ Lecturing		CO1, CO2, CO3, CO4, CO5
52	Algal components: pigments, pyrenoid, photosynthetic products.	PPT/ Lecturing		CO1, CO2, CO3, CO4, CO5
53	Reproduction in algae: Vegetative, asexual and sexual reproduction	PPT/ Lecturing		CO1, CO2, CO3, CO4, CO5
54	Major patterns of life cycle and post fertilization stages in Phaeophyceae and Rhodophyceae	PPT/ Lecturing		CO1, CO2, CO3, CO4, CO5
55	Fossil algae	PPT/ Lecturing		CO1, CO2, CO3, CO4, CO5
	MODULE III & IV - Algal ecology and Ec	onomic impor	tance of Algae	
56	Ecological importance of Algae. Primary productivity.	Lecture		CO1, CO2, CO3, CO4
57	Ecological importance of Algae. Algae in symbiotic association, Ultraviolet radiation absorption by algae	PPT/Lecture		CO1, CO2, CO3, CO4
58	Algae as food, fodder, biofertilizer,	PPT/Lecture		CO1, CO2,

	medicine, industrial uses and other useful.		CO3, CO4		
59	Algae in experimental studies. (SCP,	PPT/Lecture	CO1, CO2,		
	Biofuel, Live feeds, EPS.)		CO3, CO4		
	Harmful effects of algae: Algal blooms,	PPT/Lecture			
60	causative organisms, symptoms and toxins		CO1, CO2,		
	of major toxic algal blooms (Amnesic		CO3, CO4		
	Shellfish Poisoning [ASP]				
	Harmful effects of algae: Algal blooms,	PPT/Lecture			
	causative organisms, symptoms and toxins		CO1, CO2,		
61	of major toxic algal blooms: Paralytic				
	Shellfish Poisoning [PSP] and		CO3, CO4		
	Cyanophycean toxins)				
	MODULE V - Algal bio	technology			
62	Methods and techniques of collection,	PPT/Lecture/	CO1, CO2,		
02	preservation and staining of Algae.	Demo	CO3, CO4		
63	Methods and techniques of collection,	PPT/Lecture/	CO1, CO2,		
03	preservation and staining of Algae.	Demo	CO3, CO4		
64	Algal culture: Importance, methods; Algal	PPT/Lecture/	CO1, CO2,		
04	culture media.	Demo	CO3, CO4		
	CIA II				

	ASSIGNMENTS AND SEMINARS					
	Topic	Nature of Assignment	Course Outcome			
	MICR	OBIOLOGY				
1	Archaebacteria		CO1, CO3, CO4			
2	Bacteria in recombinant technology and genomics	Review report on recent research	CO4			
3	Food Microbiology	works in the	CO1, CO4			
4	Agricultural Microbiology	respective fields of	CO1, CO3, CO4			
5	Industrial Microbiology	Microbiology	CO1, CO4			
6	Viral oncogenesis		CO3, CO 4			
	PHY	YCOLOGY				
7	Algal Diversity - Thallus nature, Habitat difference, Habit; Association with other plants and animals	Visit to an Algal research station. Prepare and submit a report of the field work/research station visit	PSO1, PSO4 and PSO5; CO1, CO2, CO3, CO4 and, CO5			

REFERENCES

- 1. Fritsch F. E, 1945. Structure and Reproduction of Algae. Vol.1: Cambridge University Press, London.
- 2. Anand N, 1989. Culturing and cultivation of BGA. Handbook of Blue Green Algae.
- 3. Lee Robert Edward, 2009. Phycology. 4th Edn. Cambridge University Press, New Delhi.
- 4. Sharma O.P, 2004. Text Book of Algae, Tata Mc. Graw Hill Co.

- 5. Vasishta B R, Sinha A.K, Singh V.P, 2004. Botany: Algae. S. Chand & Co. Ltd. New Delhi.
- 6. Chapman, V. J, 1962. The Algae.: Macmillan& co. Ltd, London
- 7. Christian Hoek, 1995. Algae: An Introduction to Phycology, Cambridge University Press.
- 8. John J & Francis M.S, 2013. An Illustrated Algal Flora of Kerala, Vol.I: GCS Books, Cochin.
- 9. Andersen R A (Ed) 2004. Algal Culturing Techniques, Elsevier.
- 10. Fritsch F. E, 1945. Structure and Reproduction of Algae. Vol.1: Cambridge University Press, London.
- 11. Das S K, Adhikary S B (2014). Freshwater Algae of Eastern India. Astral International.
- 12. Reynolds C S (2006). Ecology of phytoplankton, Cambridge University Press
- 13. Black, J. G. (2008). Microbiology: Principles and Explorations (8th edn.), John Wiley & Sons, INC, New York
- 14. Prescott, L. M., Harley, Klein (2002). Microbiology (5th Edition).
- 15. Willey, J. M., Sherwood, L. M. and Woolverton, C. J. (2008). Prescott, Harley, and Klein's Microbiology (7th Edition), Mc Graw Hill
- 16. Madigan, M. T., Matinko, J. M., Bender, K. S., Buckley, D, H. and Stahl, D. A. (2017). Brock Biology of Microorganisms (14th edn.), Pearson India Education Services Pvt. Ltd.
- 17. Bauman, R. W. (2017). Microbiology with diseases by Taxonomy (4th edition), Pearson India Education Services Pvt. Ltd.
- 18. Pelczar, M. J., Chan, E. C. S. and Krieg, N. R. (2007). Microbiology (5th edn.). Tata McGraw Hill, New Delhi
- 19. Salle, A. J. (1943). Fundamental Principles of Bacteriology (2nd edn.), McGraw Hill Book Company, Inc., New York
- **20.** Harvey, R. A., Cornelissen, C. N. and Fisher, B. D. (2007) Lippincott's Illustrated Reviews: Microbiology (3rd edn.), Lippincott Williams and Wilkins
- **21.** Ananthanarayan, R. & Paniker, C. K. J. (editor) (2005) Ananthanarayan and Paniker's Textbook of Microbiology (7th edn.)
- **22**. Brooks, G. F., Carroll, K. C., Butel, J. S. Morse, S. A. and Mietzner, T. A. (2010) Jawetz, Melnick & Adelberg's Medical Microbiology (26th edition), McGraw Hill
- **23**. Betsy, T. and Keogh, J. (2005) Microbiology DeMYSTiFieD a self teaching guide, McGraw Hill, New York
- **24.** Kleyn, J. and Bicknell, M. (2003) Kleyn Bicknell: Microbiology Experiments: A Health Science Perspective (4th edn.), McGraw Hill Companies
- **25**. Lerner, K. L. and Lerner, B. W. (2003). World of Microbiology and Immunology (1st edn.), Thomson Gale, New York
- **26**. Alexander, S. K., Strete, D. and Niles, M. J. (2003). Laboratory exercises in Organismal and Molecular Microbiology
- **27**. Kannan, N. (2002). Laboratory manual in general Microbiology, Panima publishing corporation, New Delhi
- 28. Sharma, K. (2009). Manual of Microbiology Tools & Techniques (2nd edn.), Ane Books Pvt. Ltd., New Delhi
- 29. Mudili, J. (2007). Introductory Practical Microbiology, Narosa Publishing House, New Delhi

PROGRAMME	M. Sc. Botany	SEMESTER	1	
COURSE CODE AND TITLE	MYCOLOGY AND CROP PATHOLOGY (16P1BOTT02)	CREDIT	4	
HOURS/WEEK	4	HOURS/SEM	Theory 27 + 45 hrs; Practical 9 + 36 hrs	
FACULTY NAME	Lesly Augustine			

Programme Outcome

	Programme Outcome
PO 1	The students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability
PO 2	The students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	The students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve environment and work towards sustainable growth and development
PO 4	The students possess an ethical view of life, and have a broader (global) perspective transcending the provincial outlook
PO 5	The students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

	PROGRAM SPECIFIC OUTCOMES				
PSO 1	Encourage a clear, comprehensive and advanced mastery in the field of Botany.				
PSO 2	Comprehend the basic principles of biological sciences with special reference to Botany and its applied branches.				
PSO 3	Develop skills in students to explore the intricacies of life forms at cellular, molecular and nano level.				
PSO 4	Fuel students' motivation and enthusiasm and to help them not only to appreciate the beauty of different life forms but also to inspire them in the dissemination of the concept of biodiversity conservation.				
PSO 5	Develop problem solving skills in students and encourage them to carry out innovative research projects thereby enkindling in them the spirit of knowledge creation.				

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	To enable the students to collect, preserve, identify and	PO1, PO2, PO6,	C
	classify different micro and macro fungi.	PSO2, PSO3	
CO 2	To have a better understanding on different classification	PO1, PSO2, PSO3	Α
	systems and their applications		
CO 3	To enrich the significance of mycotic diseases	PO1, PO2, PSO1	C
CO 4	To have advanced learning about fungal associations, their	PO1, PO2, PSO1,	An
	usefulness and harmfulness	PSO2,PSO4	
CO 5	To develop advanced theoretical and practical knowledge	PO1, PO2, PO3,	U
	about phytopathogens and their control.	PO4, PO5, PSO2,	
		PSO3	

CL* Cognitive Level

R- Remember; U- Understand; A- Apply; An- Analyze; E- Evaluate; Cr- Create

CO - PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	1	1	2	3	0	2	0	3	2	2
CO 2	2	1	1	3	0	3	3	2	2	1
CO 3	2	2	1	2	2	2	1	0	3	3
CO 4	3	0	0	2	3	1	2	3	3	2
CO 5	3	1	2	2	2	3	1	2	2	2

Mapping Strength

- 0. No Mapping strength
- 1. Low
- 2. Medium
- 3. High

MYCOLOGY (Theory 45hrs; Practical 36 hrs)

SESSION	TOPIC	LEARNING	VALUE	COURSE		
SESSION	TOPIC	RESOURCES	ADDITIONS	OUTCOME		
	Introduction to Course					
	Introduction to the Course	PPT/Lecture	video	CO 1		
	General characters of fungi.	PPT/Lecture	Seminar	CO 1		
	Economic importance of fungi.	PPT/Lecture	Seminar	CO 1		
	Ecological importance of fungi.	PPT/Lecture	Seminar	CO 1		
	MODULE I					
1	General characters of Fungi and their	PPT/Lecture		CO 1		
	significance					
2	Principles of classification of fungi	PPT/Lecture		CO 1		
3	Classifications by G C Ainsworth (1973)	PPT/Lecture		CO 1		
4	Classifications by C. J. Alexopoulos	PPT/Lecture		CO 1		
5	Classification of true fungi (down to the level of	PPT/Lecture	Article			
	class) according to the current "AFTOL" scheme		reading	CO 1		
	(Hibbett et al. 2007)					

6	Brief account of DNA barcoding in fungi	. PPT/Lecture		CO 1
	MO	DULE II		
7	Mycelial structure and reproduction of Myxomycota	PPT/Lecture	video	CO 2
8	Mycelial structure and reproduction of Acraciomyctes	PPT/Lecture		CO 2
9	Mycelial structure and reproduction of Hydromyxmycetes	PPT/Lecture		CO 2
10	Mycelial structure and reproduction of Myxomycetes	PPT/Lecture		CO 2
11	Mycelial structure and reproduction of Plasmodiophoromycetes	PPT/Lecture		CO 2
12	Mycelial structure and reproduction of Mastigomycotina	PPT/Lecture		CO 2
13	Mycelial structure and reproduction of Chitridiomycetes	PPT/Lecture		CO 2
14	Mycelial structure and reproduction of Hyphochytridiomycete	PPT/Lecture		CO 2
15	Mycelial structure and reproduction of Oomycetes.	PPT/Lecture		CO 2
16	Mycelial structure and reproduction of Zygomycetes	PPT/Lecture		CO 2
17	Mycelial structure and reproduction of Trichomycetes.	PPT/Lecture		CO 2
18	Mycelial structure and reproduction of Ascomycotina			
19	Mycelial structure and reproduction of Hemiascomycetes	PPT/Lecture	video	CO 2
20	Mycelial structure and reproduction of Pyrenomycetes,	PPT/Lecture	video	CO 2
21	Mycelial structure and reproduction of Plectomycete	PPT/Lecture		CO 2
22	Mycelial structure and reproduction of Discomycetes	PPT/Lecture	video	CO 2
		CIA-1	1	
24	Mycelial structure and reproduction of Laboulbeniomycete	PPT/Lecture		CO 2
25	Mycelial structure and reproduction of Loculoascomycetes	PPT/Lecture		CO 2
26	Mycelial structure and reproduction of Basidiomycotina			
27	Mycelial structure and reproduction of Teliomycetes	PPT/Lecture		CO 2
28	Mycelial structure and reproduction of Hyphomycetes	PPT/Lecture		CO2
29	Mycelial structure and reproduction of Gastromycetes	PPT/Lecture		CO 2

30	Mycelial structure and reproduction of			
30	Deuteromycotina			
31	Mycelial structure and reproduction of			
	Blastomycetes,			
32	Mycelial structure and reproduction of			
	Hyphomycetes			
	Mycelial structure and reproduction of	PPT/Lecture		CO 3
33	Coelomycetes	DDT/Leal as	*-1	60.2
34	Types of fruiting bodies in fungi.	PPT/Lecture		CO 3
35 36	Types of fruiting bodies in fungi. Types of fruiting bodies in fungi.	PPT/Lecture PPT/Lecture	videos video	CO 3
30	MODULE III	PP1/Lecture	viueo	CO 4
37	Fungal associations and their significance	PPT/Lecture		CO 4
37	Symbionts - Lichens, Mycorrhiza, Fungus-insect	Lecture		CO 4
38	mutualism	Lecture	video	004
	Symbionts - Lichens, Mycorrhiza, Fungus-	PPT/Lecture	110.00	CO 4
39	insect mutualism	,	video	
	Parasites - Common fungal parasites of plants,	PPT/Lecture	video	CO 4
40	humans, insects and nematodes			
	Parasites - Common fungal parasites of plants,	PPT/Lecture	video	CO 4
41	humans, insects and nematodes	,		
	1	PPT/Lecture	video	CO 4
42	matter, coprophilous fungi, cellulolytic fungi, lignolytic fungi.			
42	Saprophytes - Fungal decomposition of organic	PPT/Lecture	video	CO 4
	matter, coprophilous fungi, cellulolytic fungi,	11 1/Lecture	Viaco	004
43	lignolytic fungi.			
	Saprophytes - Fungal decomposition of organic	PPT/Lecture	video	CO 4
	matter, coprophilous fungi, cellulolytic fungi,			
44	lignolytic fungi.			
45	Agricultural significance of Fungi	PPT/Lecture	video	CO 4
	Practical			
	Critical study of the following types by	Hands-on		CO 4
46	preparing suitable micropreparations: Stemonitis, Physarum	Session		
40	Saprolegnia, Phytophthora	Hands-on		CO 4
47		Session		
	Albugo, Mucor,	Hands-on		CO 4
48		Session	<u> </u>	
	Aspergillus, Penicillium	Hands-on		CO 4
49		Session		
	Pilobolous, Saccharomyces	Hands-on		CO 4
50	 	Session		60.1
E 1	Taphrina, Xylaria	Hands-on		CO 4
51	Peziza, Phyllochora	Session Hands-on	-	CO 4
52	reziza, riiyilociiola	Session		CO 4
J2		JC331011	I .	

	Puccinia, Pleurotus	Hands-on		CO 4
53		Session		
	Auricularia, Polyporus,	Hands-on		CO 4
54		Session		
	Lycoperdon, Dictyophora	Hands-on		CO 4
55		Session		
	Geastrum, Cyathus	Hands-on		CO 4
56		Session		
	Fusarium, Alternaria	Hands-on		CO 4
57		Session		
	Pestalotia, Tremella	Hands-on		CO 4
58		Session		
	Entoloma, Marasmius	Hands-on		CO 4
59		Session		
	Hexagonia, Ganoderma	Hands-on		CO 4
60		Session		
	Graphis, Parmelia, Usnea	Hands-on		CO 4
61		Session		
	Isolation of fungi from soil and water by	Hands-on	Video	CO 4
62	culture plate technique.	Session		
	. Estimation of mycorrhizal colonization in root	Hands-on		CO 4
63		Session		
	Collection and identification of common field	Hands-on		CO 4
64	mushrooms (5 types).	Session		
	Field Visit	Experiential		CO 4
65		learning		
	Field Visit	Experiential		CO 4
66		learning		
	Field Visit	Experiential		CO 4
67		learning		
	Field Visit	Experiential		CO 4
68		learning		
	Field Visit	Experiential		CO 4
69		learning		
	Field Visit	Experiential		CO 4
70		learning		
71 – 72	Revision			

References

- C J Alexopoulos, M Blackwell, C W Mims (1996). Introductory Mycology (IV Edn).
- Jim Deacon (2006). Fungal Biology (IV Edn). Blackwell Publishing.
- L N Nair (2010). Methods of microbial and plant biotechnology. New Central Book agency (P) Ltd.
- Kanika Sharma (2005). Manual of microbiology: Tools and techniques.

- G C Ainsworth, K F Sparrow, A S Sussman (1973). The fungi: An advanced treatise.
- H C Dube (1983). An introduction to fungi. Vikas Publ. New Delhi.
- M E Hale (1974). The biology of lichens.
- A Misra, P R Agarwal (1994). Lichens.
- M C Nair, S Balakrishnan (1986). Beneficial fungi and their utilization. Sci. publ.
 Jodhpur.
- V Ahamjian, M E Hale (1973). The Lichens.
- R Dayal (2000). Predaceous Fungi. Commonwealth Publishers.
- Hibbet et al. (2007). A higher-level phylogenetic classification of the fungi.
 Mycological Researcher 111 (2007) pp. 509-547.

CROP PATHOLOGY (Theory 27hrs; Practical 18 hrs)

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	Introduction to Course			
	Introduction to the Course	PPT/Lecture	video	CO 1
	A brief history of plant pathology, Koch"s postulates, Concept of Disease	PPT/Lecture	Seminar	CO 1
	Classification of plant diseases based on (a) Major causal agents - biotic and abiotic, (b) General symptoms, (c) Occurance	PPT/Lecture	Seminar	CO 1
	MODULE I, Process of infection a	 nd pathogene	esis (4 hrs)	
1	(a) Disease triangle, Mazz"s Disease Pyramid (b) Development of disease in plants: disease cycle (survival or persistence of pathogen between crops and during unfavorable seasons, dissemination of the pathogen, inoculation, recognition between host and pathogen, entry of pathogen (prepenetration & penetration), colonization)	PPT/Lecture	vedio	CO 1
2	(c) Strategies used by pathogens to attack plants.(d) Mechanism of infection- Penetration and entry of pathogen into host tissue – mechanical, physiological and enzymatic.	PPT/Lecture	vedio	CO 1

3	(e) Host-parasite interaction (f) Role of	PPT/Lecture					
	biochemicals in pathogenesis: enzymes,						
	toxins (Tabtoxin, Phaseolotoxin, Tentoxin,		CO 1				
	Cercosporin, Victorin, T Toxin, HC Toxin),						
	growth regulators and polysaccharides.						
4	(g) Detoxification of low molecular weight	PPT/Lecture					
	antimicrobial molecules produced by						
	plants, suppression of						
	plant defense responses, Pathogenicity						
	and virulence factors in viruses and viroids						
	(h) Physiology of Parasitism: Effect of						
	pathogens on the following processes of		CO 1				
	the host plant –						
	photosynthesis, transpiration,						
	translocation of water and nutrients,						
	respiration, cell membrane						
	permeability, transcription and						
	translation, growth and reproduction0.						
		 	4 has)				
	Module 2: Defense mechan		4 nrs)				
5	(a) Non-host resistance, horizontal	PPT/Lecture	CO 2				
	resistance, vertical resistance						
6	Pre-existing defense mechanisms:	PPT/Lecture					
	structural and biochemical (Inhibitors						
	released by the plant in its						
	environment, inhibitors present in plant		CO 2				
	cells before infection, Defense through						
	lack of essential						
	factors)						
7	Post-Infection/Induced/Dynamic defense	PPT/Lecture					
	mechanisms: structural (cell wall defense						
	structures,						
	histological defense structures) and						
	biochemical (Defense through Production		CO 2				
	of Secondary						
	Metabolites, Pathogen elicitors,						
	Hypersensitive defense reaction)						
8	Post-Infection/Induced/Dynamic defense	PPT/Lecture	CO 2				
	mechanisms: structural (cell wall defense	, Lecture					
	structures, histological defense structures)						
	and biochemical (Defense through						
	Production of Secondary Metabolites,						
	Pathogen elicitors, Hypersensitive defense						
	reaction)						
	1CIA						
		.11 !!	2 ()				
	Module 3: Transmission of p						
9	Mass action concept by Horsfall;	PPT/Lecture	CO 2				
	Autonomous or direct or active						

	11:	I		
	dissemination (seed, soil & plant organs) &			
	Passive or indirect dissemination(through			
	Animate &inanimate			
	agents)Plasmodiophoromycetes			
10	Spread and transmission of plant diseases	PPT/Lecture		CO 2
	by wind, water, seeds and vectors.			
Mod	ule 4: Effect of environmental factors on the	e developmer	t of plant di	seases (2 hrs)
11	Effect of, temperature, moisture, wind,	PPT/Lecture		CO 2
	light, soil pH, host plant nutrition			
12	Effect of, temperature, moisture, wind,	PPT/Lecture		CO 2
	light, soil pH, host plant nutrition,			
	Module 5: Plant disease ma	anagement (4	hrs)	•
13	(a) Prophylatic methods - Exclusion,	PPT/Lecture		CO 2
	eradication and protection.	,		
14	(b) Therapeutic Method; Chemical means	PPT/Lecture		CO 2
	of disease control – common fungicides,	,		
	antibiotics and nematicides. pesticides,			
	and bactericides, types of pesticides based			
	on toxicity- red, blue, yellow, green labels			
	and residual effect. Method of application,			
	different types of sprayers and their			
	working.			
15	(c) Biological means of disease control -	PPT/Lecture	Group	CO 2
	(Psudeomonas, Trichoderma, Bruvaria,	,	discussion	
	PGPR, VAM)control of fungal plant			
	pathogens by mycofungicides. (d)			
	Production &use of disease resistant			
	hybrids			
16	(e) Immunization of plants against	PPT/Lecture	Group	
	pathogens – defense through	,	discussion	
	plantibodies, induction of plant defenses			
	by artificial inoculation with microbes or			
	by treatment with chemicals (f) Transgenic			
	approaches to disease resistance. Defense			
	through genetically engineering disease			
	resistant plants – Biotechnological			
	approaches to disease resistance			
	Module 6: Major diseases	in plants (10	nrs)	1
17	(a) Cereals: Rice - blast disease, bacterial	PPT/Lecture		CO 2
	blight; Wheat - black rust disease.	,		55 -
18	(b) Vegetables: Chilly - leaf spot; Ladies	PPT/Lecture		CO 2
	finger - vein clearing disease, mosaic	, Lecture		
	disease; Tomato - Damping off, Serpentine			
	leaf miner, fusarium wilt; Cucurbita-			
	Epinauca disease; Root knot in vegetables.			
19	(c) Fruits: Banana - bacterial leaf blight,	PPT/Lecture		CO 2
19	leaf spot, Pseudo stem borer; Mango -	i i i i Lecture		602
<u> </u>	jicai spot, r seddo stelli bolei, Maligo -			

	Anthracnose; Fruit borer; Citrus - bacterial		
	canker;Papaya – mosaic, mealy bug		
	disease,		
20	(d) Spices: Ginger - rhizome rot; Pepper -	PPT/Lecture	CO 2
	quick wilt; Cardamom - marble mosaic		
	disease.		
21	(e) Oil seeds: Coconut - grey leaf spot, bud		CO 2
	rot disease.		
22	(f) Rubber yielding: Hevea braziliensis -	PPT/Lecture	CO 2
	abnormal leaf fall, powdery mildew.	111/Lecture	602
23	(g) Sugar yielding: Sugarcane - red rot;	PPT/Lecture	CO 2
23	root knot nematode.		CO 2
2.4			60.3
24	(h) Cash crops: Arecanut - nut fall disease.	DDT/L	CO 2
25	(i) Beverages: Tea - blister blight; Coffee -	PPT/Lecture	CO 2
	rust.	,	
26	(j) Ornamental plants: Anthurium –	PPT/Lecture	CO2
	Bacterial wilt; Rose – Fungal Black		
	Spot;Mite attack; Orchids- bud fall		
	CIA - II		
	Practical		
	Make suitable micropreparations and	Hands-on	CO 5
	identify the diseases mentioned with due	Session	
	emphasis on symptoms and causative		
27	organisms.		
	Make suitable micropreparations and	Hands-on	CO 5
	identify the diseases mentioned with due	Session	
	emphasis on symptoms and causative		
28	organisms.		
	Make suitable micropreparations and	Hands-on	CO 5
	identify the diseases mentioned with due	Session	
	emphasis on symptoms and causative	36331011	
29	organisms.		
	Make suitable micropreparations and	Hands-on	CO 5
	identify the diseases mentioned with due	Session	
	emphasis on symptoms and causative	30331011	
30	organisms.		
30	Isolation of pathogens from diseased	Hands-on	CO 5
	· · ·	Session	(0.5
21	tissues (leaf, stem and fruit) by serial dilution method.	36221011	
31		Hands an	60.5
	Isolation of pathogens from diseased	Hands-on	CO 5
22	tissues (leaf, stem and fruit) by serial	Session	
32	dilution method.		22 -
	Isolation of pathogens from diseased	Hands-on	CO 5
	tissues (leaf, stem and fruit) by serial	Session	
33	dilution method.	<u> </u>	
	Isolation of pathogens from diseased	Hands-on	CO 5
34	tissues (leaf, stem and fruit) by serial	Session	
	·	· · · · · · · · · · · · · · · · · · ·	·

	dilution method.		
	Isolation of pathogens from diseased	Hands-on	CO 5
	tissues (leaf, stem and fruit) by serial	Session	
35	dilution method.		
	Collection and preservation of specimens	Hands-on	CO 5
	from infected plants. Submit 5 herbarium	Session	
	sheets/live specimens along with a		
36	report.		
	Collection and preservation of specimens	Hands-on	CO 5
	from infected plants. Submit 5 herbarium	Session	
	sheets/live specimens along with a		
37	report.		
	Collection and preservation of specimens	Hands-on	CO 5
	from infected plants. Submit 5 herbarium	Session	
	sheets/live specimens along with a		
38	report.		
	Tests for seed pathology – seed purity	Hands-on	CO 5
39	test.	Session	
	Tests for seed pathology – seed purity	Hands-on	CO 5
40	test.	Session	
	Tests for seed pathology – seed purity	Hands-on	CO 5
41	test.	Session	
	Calculation of Spore load on seeds using	Hands-on	CO 5
42	Haemocytometer.	Session	
	Calculation of Spore load on seeds using	Hands-on	CO 5
43	Haemocytometer.	Session	
	Calculation of Spore load on seeds using	Hands-on	CO 5
44	Haemocytometer.	Session	

References

- 1. K S Bilgrami, H C Dube (1976). A text book of modern plant pathology.
- 2. Gareth Johnes (1987). Plant pathology: principles and practice.
- 3. R S Mehrotra (2003). Plant Pathology.
- 4. M N Kamat (1953). Practical plant pathology.
- 5. V K Gupta, T S Paul (2001). Fungi and Plant disease.
- 6. Malhotra, Aggarwal Ashok (1986). Plant Pathology.
- 7. Rangaswamy, A Mahadevan (1998). Diseases of crop plants in India.
- 8. B P Pandey (2001). Plant Pathology.
- 9. George N Agrios (2006). Plant pathology (V Edn). Elsevier Academic Press.

SACRED HEART COLLEGE (AUTONOMOUS)

PROGRAMME	M.Sc. BOTANY	SEMESTER	1
COURSE CODE AND TITLE	16P1BOTT03: Ecology, Environmental Biology, Phytogeography & Research Methodology	CREDIT	4
HOURS/WEEK	6	HOURS/SEM	Theory 72 hrs; Practical 36 hrs
FACULTY NAME	Dr. Giby Kuriakose & Mr. Ant		

Programme Outcome

	Programme Outcome				
	Students are capable of exercising their critical thinking in creating new				
PO 1	knowledge				
	leading to innovation, entrepreneurship and employability.				
	Students are able to effectively communicate the knowledge of their study and				
PO 2	research in their respective disciplines to their employers and to the society at				
	large.				
	Students are able to make choices based on the values upheld by the college, and				
PO 3	have the readiness and know-how to preserve the environment and work				
	towards sustainable growth and development.				
PO 4	Students possess an ethical view of life and have a broader (global) perspective				
PO 4	transcending the provincial outlook.				
	Students possess a passion for exploring new knowledge independently for the				
PO5	development of the nation and the world and are able to engage in a lifelong				
	learning process.				

	PROGRAM SPECIFIC OUTCOMES					
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in	the field of Botan	y.			
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.					
PSO 3	PSO 3 Explore the intricacies of life forms at cellular, molecular and nano level.					
PSO 4	Appreciate the beauty of different life forms, be aware of and disseminate the concept of biodiversity conservation.					
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation.					
	COURSE OUTCOMES PO/ PSO CL*					
	Explain the basics of ecology and environmental science.	PO1, PO4, PO5,	U			
CO 1		PSO1, PSO3,				
		PSO4				

	Discover the theoretical and practical knowledge on ecology	PO1, PO4, PO5,	U, A,
CO 2	and environmental science.	PSO1, PSO3,	An
		PSO4	
	Demonstrate with different mathematical and statistical	PO1, PO3, PO4,	U, A,
CO 3	models and indices to explain natural phenomena and	PO5, PSO1,	An
CO 3	theoretical principles with which several ecological processes	PSO3, PSO4	
	are explained.		
	Identify global environment problems and discover the	PO1, PO3, PO4,	U, A,
CO 4	methods of conservation managements of natural ecosystems	PO5, PSO1,	An
CO 4	and rare, endemic and threatened species in the Western	PSO3, PSO4	
	Ghats.		
	Explain origin of the Western Ghats and diversity and	PO1, PO3, PO4,	R, U
CO 5	conservation in the Western Ghats.	PO5, PSO1,	
		PSO3, PSO4	
	Define biodiversity, phytogeography, ecosystem functioning	PO1, PO4, PO5,	U, A,
CO 6	etc. and integrate scientific aptitude and apply methodologies	PSO1, PSO3,	An
	to pursue scientific researches.	PSO4	

CL* Cognitive Level

R- Remember

U- Understand

C- Apply

An- Analyze

E- Evaluate

Cr- Create

CO – PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2				3		1		
CO 2	2	1					3		2	
CO 3	3		2					2		
CO 4	2		1		1		2		1	
CO 5	3	1	1	2	2	1	1	1	1	3
CO6	3			2	1	2	3			1

Mapping Strength

- 0. No Mapping strength
- 1. Low
- 2. Medium
- 3. High

SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	Module 1 Int	roduction to Ecology	•	•
1	Definition, history and scope of			CO1, CO3 &
	ecology, sub divisions of ecology	Lecture/ Interaction/ PPT		CO4,
2	Ecology vs environmental science.		e-resources	
	Interdisciplinary nature of			
	environmental science	Lecture/ Interaction/ PPT		CO1, CO2
3	Scope of ecology; interdisciplinary			CO1, CO2
3	aspects of ecology			GO1 0 GO6
4		Lecture/ Interaction/ PPT	2 #23 2 3 4 2 2	CO1 & CO6,
4	Applications of ecology in		e-resource	
	different fields (EIA, Research,			
	education, agriculture, healthy life, etc.)	Lastyma / Interestion / DDT		CO1 CO2
		Lecture/ Interaction/ PPT utecological concepts		CO1 CO2
5	Characteristics of populations -	uccorogical concepts		
	ecological amplitude - population			
	size and exponential growth.	Lecture/ / PPT		CO1 & CO5
6	Limits of population growth,	Lecture/ / I I I		CO1 & CO3
	population dynamics	Lecture/ Interaction/ PPT/		CO3 & CO4
7	Life history pattern, fertility rate	Decearcy interaction/ 11 1/		003 & 001
,	and age structure	Lecture/PPT		CO1 & CO3
8		Lecture/ Interaction/	Video, e-	001 & 003
	Competition and coexistence,	PPT/documentary (audio	resource	
_	intra-specific interactions	visual)		CO1, CO3
9	Scramble and contest competition		Video, e-	
	model	Lecture/ PPT/ Assignment	resource	CO1,CO4
10	Mutualism and commensalism,			CO1, CO3,
	prey-predator interactions	Lecture/ Interaction/ PPT		CO5,
11	Genecology - ecads, ecotypes,		e-resources	
12	ecospecies, coenospecies	Lecture/ Interaction/ PPT	T 77 1	CO1, CO2
12	k-selection and r-selection		Video, e-	
	populations, Molecular ecology		resource	
	and conservation genetics	Lecture/ Interaction/ PPT		CO4 & CO8
12		necological concepts	77: 4	
13	Ecological processes of		Video, e-	
	community formation, ecotone,	I / I / DDE	resource	CO1,CO2,
14	edge effect	Lecture/ Interaction/ PPT		CO3, CO4
14	Special plant communities - quantitative, qualitative and			
	synthetic characteristics of plant			
	communities. Important Value			
	Index (IVI).	Lecture/ Interaction/ PPT/ practical/problem solving		CO2, CO3, CO4
15	Species diversity and its	practical/problem sorving	e-resource	
13	measurements - characteristics of	Lastone / Letter of the / DDE/	C-1CSOUICC	GO2 GO2 GO
	plant communities	Lecture/ Interaction/ PPT/ Practical/problem solving		CO2, CO3, CO 4
16	Alpha diversity and Beta diversity;		e-resource	
10	1 6 11			CO1 CO2
	Mergalef's index, Fishers Alpha	Lecture/ Interaction/ PPT/Problem solving		CO1, CO2 CO3, CO4
17	Shannon and Simpson diversity	Lecture/ Interaction/ PPT/	1	CO2, CO3,

	indices) of Alpha diversity with	Assignment/Problem Solving		CO4		
	comparative data.					
18	Beta diversity, Jaccard's		e-resources			
	similarity/dissimilarity index,					
		Lecture/ PPT/		CO1, CO3		
	Evenness index.	Practical/Problem Solving		CO4, CO7		
19	Ecological niche and Guild;					
	functioning and significances in					
	community studies.	Lecture/ Interaction/ PPT/		CO1, CO2,		
		Assignment		CO6		
20	Functional aspects of community;					
	co-existence, resource partitioning,			G04 G02		
	spatial correlates of communities	Lecture/ Interaction/ PPT/		CO1, CO2 CO3, CO4		
21	Inter specific interactions with	Dectare/ Interaction/ 11 1/				
	examples, co evolution and					
	coexistence.	I / I / PDT		CO2, CO3,		
22		Lecture/ Interaction/ PPT		CO8		
22	Community network; competition,					
	Predation, mutualism, symbiosis,	Lecture/ Interaction/ PPT/		CO1, CO2,		
	commensalism and ammensalism.	Assignment		CO6		
23	Dynamic community					
	characteristics – cyclic					
	replacement changes and cyclic			CO1, CO2 &		
	no-replacement changes.	Lecture/ Interaction/ PPT		CO5		
24	Modelling the interspecific					
	interactions by using network	Y /Y / DDTI /		G01 G02 0		
	analysis approach.	Lecture/ Interaction/ PPT/ Assignment		CO1, CO2 & CO7		
Module-4	Ecological Succession	1 1001gmment		1001		
	The concept – autogenic and					
20	allogeneic succession	Lecture/ Interaction/ PPT		CO1 & CO2,		
	primary and secondary,		e-resource	ĺ		
	autotrophic and heterotrophic			CO1, CO4 &		
21		Lecture/ Interaction/ PPT		CO6		
	Retrogressive changes or the					
22	concept of degradation	Lecture/ Interaction/ PPT		CO1		
	Concept of climax or stable		e-resource			
	communities, resilience of					
22	communities, ecological balance			G01 G05		
23	and survival thresholds.	Lecture/ Interaction/ PPT		CO1 CO2		
		sphere and Ecosystem				
30	Comparative study of the major world ecosystems			COL		
30	Different aquatic and terrestrial	PPT/ Lecturing		CO1		
	ecosystems with regard to their					
31	productivity	PPT/ Lecturing		CO1		
32	biodiversity, energy flow	PPT/ Lecturing/Documentary		CO1		
33	food chains and trophic levels	PPT/ Lecturing PPT/ Lecturing	e-resources	CO1		
33	1			1001		
Module-6. Environmental Pollution and Management						

	No. 1 1 C. D. 11 C. C. 4 1	Г		
36	Methods of Pollution Control - bioremediation, Phytoremediation	PPT/ Lecturing	Documentary	CO1, CO2, & CO4, CO5
37	bio-augmentation, bio-films, bio-filters	PPT/ Lecturing		CO1, CO2, CO4
38	bio-scrubbers and trickling filters	PPT/ Lecturing		CO1, CO2 & CO4
39	Use of bioreactors in waste management	PPT/ Lecturing	Documentary	CO1, CO2 & CO4
	Module-7. Climate Change and	d other Global Environm		
	Environmental Pollution and			
	Management:			
	Pollution Control- bioremediation,			
	phytoremediation,			
40	bioaugmentation, biofilms	PPT/ Lecturing	E-resources	CO1, CO2, & CO4
10	Environmental Pollution and	11 1/ Lecturing	Liesources	CO4
	Management:			
	Biofilters, bio scrubbers and			
	trickling filters. Use of bioreactors			CO1 CO2 8
41	_	PPT/ Lecturing	E-resources	CO1, CO2 & CO4
	Climate change and other Global			
	Environmental Issues: Factors			
	responsible for climate change,			
42		PPT/ Lecturing		CO1, CO4,
	Climate change and other Global			, , , , , , ,
	Environmental Issues: Global			
	conventions and protocols on			
	climate change- El-Nino and La			
	Nina phenomenon and its			CO1, CO2 &
43	consequences	PPT/ Lecturing	E-resources	CO4
	Climate change and other Global			
	Environmental Issues:			
	Environmental laws and biosafety,			
	environmental monitoring and bio			
	indicators, environmental safety			
	provisions in Indian constitution,			
	major environmental laws in free			CO1, CO2 &
44	India	PPT/ Lecturing	E-resources	CO4
	Climate change and other Global			
	Environmental Issues: UNEP-IPCC,			CO1, CO2 &
45	UNFCC,	PPT/ Lecturing	Field Visit	CO4
	Climate change and other Global			
	Environmental Issues: Annual			
	environment summits- 1973			
	Stockholm conference to 2015			
	Paris Conference- new			
	developments of annual UNFCC		_	CO1, CO2 &
46	meetings in the coming years-	PPT/ Lecturing	E-resources	CO4

	Future Fauth Duagnamen	<u> </u>	T	T
	Future Earth Programme			
	Environmental Pollution and			
	Management:			
	Pollution Control- bioremediation,			
	phytoremediation,			
47	bioaugmentation, biofilms	PPT/ Lecturing	E-resources	CO1, CO2 & CO4
47	<u> </u>	. Phytogeography	E-resources	CO4
	Definition, principles governing		1	1
	plant distribution, factors affecting			
	plant distribution, theories of			
	species distribution, different types			
	of vegetation on the earth			
	continuous and discontinuous			CO1 CO2
48	distribution	PPT/ Lecturing		CO1, CO2, CO3, CO4
	Phytogeography:			,
	b) Climate vegetation and			
	botanical zones of Indi; Floristic			
	provinces in the world.			CO1, CO2,
49		Discussion	Field Visit	CO1, CO2, CO3, CO4
	b) Climate vegetation and			,
	botanical zones of Indi; Floristic			CO1 CO2
50		PPT/ Lecturing		CO1, CO2, CO3, CO4
	Remote sensing of vegetational	·		
	characteristics – principle, data			
	acquisition; GIS and GPS and their			
	application in vegetation studies			CO1, CO2,
51		PPT/ Lecturing		CO3, CO4
50	Assessment Test		Cl. T. (CO1, CO2,
52		MCQ	Class Test	CO3, CO4
3.2 Cons	ervation Biology - Biodiversity and	its conservation	1	_
	Conservation Biology- Biodiversity			
	and its conservation.			
	Definition- Genetic, Species and			
	ecosystem diversity- alpha beta			
	and gamma diversity.			
	Concept of endemism and hot			
	spots- role of IUCN- rare			
	endangered and threatened			CO1, CO2, &
	species, key stone species,			CO4, CO5,
53	flagship species;			
	Conservation Biology- Biodiversity	PPT/Lecture		
	and its conservation:			
	reasons for biodiversity loss;			
	red data book- basic principles of			
	conservation- ex-situ and in-situ			
	conservation techniques-			CO1, CO2,
54	principles		E-resources	CO4

	T		ı	
55	Conservation Biology- Biodiversity and its conservation: methods and uses of remote sensing in conservation of natural resources	Lecture	Documentary	CO1, CO2 & CO4
56	Conservation Biology- Biodiversity and its conservation: International convention on biodiversity- CITES		E- resources	CO1, CO2 & CO4
57	National wildlife conservation policy and action plan , national forest policy	PPT/Lecture		CO1, CO2 & CO4
	3.3 The Western (Ghats and the Mangrove	S	
58	Importance, origin, geology, vegetation	PPT/Lecture		
	(a) diversity, resources, Concept of hotspot (The Western Ghats as a biodiversity hotspot).			CO1, CO6 & CO7
59		PPT/Lecture	E- resources	
60	(b)Conservation biology based on case studies from the Western Ghats.(c) Vegetation types of the Western Ghats.			CO1, Co, 2, CO6 & CO7
	(d)Sustainable development based on the resources of the Western Ghats.(e)Mangrove ecosystem and its significance in the western coast of Peninsular India.			CO1, CO6 & CO7
61			E- resources	
62	Revision and Clarification Discussions	Group Discussion/Assignments		
63	Revision and Clarification Discussions			
64	Revision and Clarification Discussions	Group Discussion/Quick Assignments		

	Revision and Clarification		
65	Discussions	Group Discussion/MCQ	
	Revision and Clarification Discussions		
66		Group Discussion	
67	Revision and Clarification Discussions	Group Discussion	
68	Revision and Clarification Discussions	Group Discussion	
69 – 72	Revision	•	
	PR	ACTICAL	
1	Analysis of water quality (a) Dissolved CO2 (b) Dissolved oxygen (c) COD (d) Total dissolved minerals (e) Quantitative estimation of dissolved mineral anions and cations in water (f) Total alkalinity & Salinity (g) conductivity (h) Colorimetric/Spectrophotometric estimation of Nitrogen/Phosphorus in water samples. Quantitative and qualitative community analysis. Carry out a project on species structure and the frequency, abundance, density of different species and similarity index, basal area, IVI and eveness of different communities in a natural system.	Lab work	CO 3, CO 4,
2	Statistical analysis of diversity indices		CO4
	by using apt softwares		CO1, CO3 &
3			CO4
4	Phytoplankton counting using Sedgwick Rafter counter.		CO1, CO3 & CO4
5	Network analysis to find out the possible interspecific interaction in any local plant community		CO1, CO3 & CO4
6	Interpretation of GIS/remote sensing data for landscape differentiation		CO1, CO3 & CO4
7-33	Field visit to natural ecosystem and	Field visit based study	CO1, CO3 &

	identification of trophic levels, food webs and food chains, plant diversity (species and community)		CO4
	CI	A – Model	
34	Revision		
35	Revision		
36	Revision		

	PRACTICAL		
1.	Analysis of water quality (a) Dissolved CO2 (b) Dissolved oxygen (c) COD (d) Total dissolved minerals (e) Quantitative estimation of dissolved mineral anions and cations in water (f) Total alkalinity & Salinity (g) conductivity (h) Colorimetric/Spectrophotometric estimation of Nitrogen/Phosphorus in water samples.	Hands on session	CO 2
2.	Physico-chemical analysis of soil: Total water soluble mineral ions	Hands on session	CO 2
3.	Phytoplankton counting using Sedgwick Rafter counter.	Hands on session	CO 2
4.	Determination of organic 'C' and organic matter (biomass) in different (at least 3) locations (forest, agro ecosystem and polluted area.	Hands on session	CO 2
5.	Interpretation of GIS/remote sensing data for landscape differentiation	Hands on session	CO 2
6.	ommon environmental problems, their consequences and possible solutions	Hands on session	CO 2

- 1. Ahmedullah M, Nayar M P (1987). Endemic plants of India.
- 5. Clarke G L (1954). Elements of Ecology. John Wiley Pub.
- 6. Dash M C (1993). Fundamentals of Ecology. Tata McGraw Hill.
- 10. IUCN (2000). The IUCN red list category. IUCN England.
- 11. IUCN (2007). The 2000 IUCN red list of threatened species. IUCN. England.
- 12. Jain S K, Sastry A R K (1984). The Indian plant red data book. BSI, Calcutta.
- 17. Michael P (1984). *Ecological methods of field and laboratory investigations*. Tata McGraw Hill.
- 19. Odum E P (III Edn) (1991). Fundamentals of ecology. Saunders and Com
- 24. Stiling, P. (2001). Ecology: Theories and Applications. Prentice Hall.
- 28. Walter (1987). Vegetation of the earth. Springer Verlag.

PROGRAMME	MASTERS IN BOTANY	SEMESTER	1
COURSE CODE AND TITLE	16P1BOTT04: CELL BIOLOGY	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	81
FACULTY NAME	KIRAN GEORGE KOSHY		

Programme Outcome

	Programme Outcome
PO 1	Students are capable of exercising their critical thinking in creating new knowledge leading to innovation, entrepreneurship and employability.
PO 2	Students are able to effectively communicate the knowledge of their study and research in their respective disciplines to their employers and to the society at large.
PO 3	Students are able to make choices based on the values upheld by the college, and have the readiness and know-how to preserve the environment and work towards sustainable growth and development.
PO 4	Students possess an ethical view of life and have a broader (global) perspective transcending the provincial outlook.
PO5	Students possess a passion for exploring new knowledge independently for the development of the nation and the world and are able to engage in a lifelong learning process.

	PROGRAM SPECIFIC OUTCOMES					
PSO 1	Demonstrate a clear, comprehensive and advanced mastery in the field of Botany.					
PSO 2	Understand the basic principles of biological sciences with special reference to Botany and its applied branches.					
PSO 3	Explore the intricacies of life forms at cellular, molecular and nano level.					
PSO 4	Appreciate the beauty of different life forms and be aware of the concept of biodiversity conservation.					
PSO 5	Develop problem solving skills and carry out innovative research projects, thereby fostering the spirit of knowledge creation					

COURSE OUTCOMES

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Design the model of a cell, Explain the structures and	PO1, PO2, PSO1,	U
	purposes of basic components of prokaryotic and eukaryotic	PSO3,	
	cells, especially macromolecules, membranes, and organelles.		
CO 2	Understand how the cells interact among themselves and with	PO1, PO2, PSO2,	U
	the environment through signal molecules.		
CO 3	Explain about cytoskeleton, endomembrane system, protein	PO1, PO3, PSO3,	R
	trafficking and cell cycle.		
CO 4	Explain the process of cell damage and death		U
CO 5	Develop basic knowledge to prepare for competitive	PO1, PO5, PSO4,	Α
	examinations in life science.	PSO5	, ,
	examinations in the science.	F303	

CL* Cognitive Level

R- Remember

U- Understand

D- Apply

An- Analyze

E- Evaluate

Cr- Create

CO - PO/PSO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2				3		1		
CO 2	2	1					3		2	
CO 3	3		2					2		
CO 4	2		1		1		2		21	
CO 5	3	1	1	2	2	1	1	1	1	3

Mapping Strength

- 0. No Mapping strength
- 1. Low
- 2. Medium
- 3. High

SESSION	TOPIC	LEARNING	VALUE	COURSE
32331014	10116	RESOURCES	ADDITIONS	OUTCOME
	MODULE I			
1	(a) The chemical composition of	PPT	video	CO1, CO6
2	membranes: Membrane lipids, proteins and	PPT/Lecture		CO1, CO6
3	carbohydrates.	PPT/Lecture		CO1, CO6
4	(b) Membrane lipids and membrane	PPT/Lecture	e-resource	CO1, CO6
5	fluidity: Importance of membrane fluidity,	PPT/Lecture		CO1, CO6
	mechanisms for maintaining membrane			
	fluidity.			
6	(c) The dynamic nature of the plasma	PPT/Lecture		CO1, CO6
7	membrane- dynamic nature of lipids and	Lecture		CO1, CO6

8	proteins	Lecture	CO1, CO6
9		Lecture	CO1, CO6
10		Lecture	CO1, CO6
11	(d) Transport of molecule across cell	PPT/Lecture	CO1, CO6
12	membrane: Simple diffusion – factors	PPT/Lecture	CO1, CO6
13	affecting diffusion, Facilitated diffusion -	PPT/Lecture	CO1, CO6
14	Carrier proteins, properties of carrier		CO1, CO6
	proteins, uniport, antiport and symport,		
	Channel proteins – ion channels, porins and		
	aquaporins, Active transport – direct and		
	indirect mechanisms, ATPases.		
	MODULE II	I nome	
15	(a) Extracellular matrix and its	PPT/Lecture	CO2, CO6
16	composition: collagens, elastin,	Lecture	CO2, CO6
17	proteoglycans, fibronectin, laminin,	Lecture	CO2, CO6
18	dystrophin.	Lecture	CO2, CO6
19		Lecture	CO2, CO6
20	(b) Proteins in cell-cell interaction:	PPT/Lecture	CO2, CO6
21	cadherins, immunoglobulin super family,	PPT/Lecture	CO2, CO6
22	integrins, and selectins.	PPT/Lecture	CO2, CO6
23	(c) Cell-cell interactions: adhesion	PPT/Lecture	CO2, CO6
24	junction, tight junctions, gap junctions and	Lecture	CO2, CO6
25	plasmodesmata.	Lecture	CO2, CO6
26			
	MODU	LE III	
27	(a) Structure of eukaryotic nucleus:	Lecture	CO1
	Nuclear Envelope, Nuclear Pore Complex.		
28	(b) Transport into and out of the	Lecture	CO1
29	Nucleus: Nuclear-Localization Signals,	PPT/Lecture	CO1
	Nuclear-Export Signals, Ran-GTP and Ran-		
	Independent Mechanisms.		
30	- 1 · · · · · · · · · · · · · · · · · ·	PPT/Lecture	CO1
31	bacterial chromosome – Muk B and SMC	PPT/Lecture	CO1
32	proteins.		CO1
	(d) Structure of chromatin and		
	chromosomes: histones and nonhistone		
	proteins, nucleosome, higher levels of chromatin structure. Heterochromatin and		
	Euchromatin.		
	(e) Molecular structure of the		
	Centromere and Telomere.		
	MODULE IV	<u>l</u>	
33	(a) Phases of cell cycle.	PPT/Lecture	CO3
34	(b) Cell cycle checkpoints: DNA damage	PPT/Lecture	CO3
35	checkpoints, Spindle assembly checkpoint	PPT/Lecture	CO3
36		<u> </u>	Quiz CO3

	(c) Master controllers of the cell cycle:	Lecture	Q & Ans	CO3
37	Cyclins and cyclin dependent kinases		Session	
38	(CDKs), Types of CDK and cyclins	PPT/Lecture		CO3
39		PPT/Lecture		CO3
40	(d) Regulation of CDK Activity,	PPT/Lecture		CO3
	Regulation of Cyclin Levels, CDK Inhibitors	PPT/Lecture		CO3
41	(CKIs)			
	MODULE V		1	602
42	(a) Introduction: outline of	Lecture		CO3
	endomembrane system. (b) The endoplasmic reticulum: smooth	PPT/Lecture		CO3
	and rough endoplasmic reticulum, synthesis			
	of proteins on membrane-bound and free			
43	ribosomes and processing.			
44	(c) The Golgi complex: glycosylation,	PPT/Lecture		CO3
45	movement of materials through the Golgi	PPT/Lecture		CO3
	complex.	PPT/Lecture		CO3
	(d) Types of vesicle transport and their			
46	functions.	_		
47	(e) Lysosomes.	PPT/Lecture		CO3
48	(f) Peroxisomes.	PPT/Lecture		CO3
49	(g) Plant cell vacuoles	PPT/Lecture		CO3
50		PPT/Lecture		CO3
51	(h) Targeting of proteins to	PPT/Lecture		CO3
52	mitochondria, chloroplasts and	PPT/Lecture	Video	CO3
53	peroxisomes. (i) The endocytic pathway:	PPT/Lecture		CO3
54	(i) The endocytic pathway: endocytosis and phagocytosis.	PPT/Lecture		CO3
34	MODULE VI			
	(a) Overview of the major functions of	1		
55	the cytoskeleton			
	(b) Microtubules: microtubule	Lecture	Debate	CO3
	structure and organization, microtubule			
	dynamics, microtubule-based motor			
56	proteins: kinesins and dyneins.			
57	(c) Microfilaments: microfilaments and	PPT/Lecture		CO3
	actin structures, dynamics of actin	PPT/Lecture		CO3
	filaments, actin-based motor proteins:			
58	myosins	DDT/: :		002
	(d) Intermediate filaments:	PPT/Lecture		CO3
	intermediate filament assembly and			
59	disassembly, types and functions of intermediate filaments.			
33	MODULE VI	l		1
60	(a) Cell signaling - modes of cell-cell	PPT/Lecture		CO2
- 00	signaling.	PPT/Lecture		CO2
61	(b) Signaling molecules and their	rritecture		CO2
	1/-/	i		

	1		4	
	receptors: Steroid hormones and the			
	nuclear receptor superfamily, Nitric oxide			
	and carbon monoxide, Neurotransmitters,			
	Peptide hormones and growth factors,			
	Eicosanoids, Plant hormones.			
62		PPT/Lecture		CO2
	CIA - II		1	
	(c) Cell Surface Receptors: G protein-	Lecture	Demo	CO2
63	coupled receptors, Receptor protein-		video	
64	tyrosine kinases, Cytokine receptors and	Lecture		CO2
	nonreceptor protein-tyrosine kinases,	Lecture	Group	CO2
	Receptors linked to other enzymatic		discussion	
	activities.			
	(d) Pathways of Intracellular Signal			
	Transduction: cAMP pathway, Cyclic GMP,			
65	Phospholipids and Ca2+.			
	MODULE VII	l		
66	(a) Programmed cell death	Lecture		CO 5
67	(b) Extrinsic and Intrinsic Pathway of	PPT/Lecture		CO 5
68	Apoptosis	PPT/Lecture		CO 5
69	(c) Proteins involved in the Apoptotic	PPT/Lecture		CO 5
70	-Pathway			
71 – 72	Revision			
	PRACTICALS		•	
	1. Identification of different stages of	Demonstration/		
73	meiosis from suitable plant material	Hands on		
	(Recorded by photomicrographs). MGU	Demonstration/		
74	2. Identification of different stages of	Hands on		
	mitosis and study of morphology of	Demonstration/		
75	metaphase chromosomes from Onion root	Hands on		
	meristems (Recorded by	Demonstration/		
76	photomicrographs). MGU	Hands on		
	3. Study of mitotic index from suitable	Demonstration/		
77	plant material.	Hands on		
	4. Study on chromosomal	Demonstration/		
78	abnormalities in humans.	Hands on		
		Demonstration/		
79	-	Hands on		
00		Demonstration/		
80	-	Hands on Demonstration/		
		L Demonstration/	1	
01				
81		Hands on		
		Hands on Demonstration/		
81		Hands on Demonstration/ Hands on		
		Hands on Demonstration/		

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of	assignment (Individual/Group –	Course
	completion	Written/Presentation - Graded or Non-	Outcome
		graded etc)	
1	D. Octobor	Extracellular matrix	CO 2
2	By October	Cytoskeleton	CO 3

References

- Gerald Karp (2013). Cell and Molecular biology: Concepts and experiments (VII Edn). John Wiley &Sons.
- Harvey Lodish, Arnold Berk, Lawrence Zipursky, Paul Matsudaira, David Baltimore,
 James Darnell (2013). Molecular cell biology (VII Edn). W H Freeman & Company.
- Geoffrey M Cooper, Robert E Hausman (2013). The Cell: A molecular approach (VI Edn). Sinaeur.
- Wayne M Becker, Lewis J Kleinsmith, Jeff Hardin (2012). The world of the cell (VIII Edn). Pearson
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2008). Molecular biology of the cell (V Edn). Garland Science, Taylor and Francis group.
- Leland H Hartwell, Leroy Hood, Michael L Goldberg, Ann E Reynolds, Lee M Silver, Ruth C Veres (2011). Genetics from genes to genomes (IV Edn). McGraw Hill.
- Immo E. Scheffler (2008). Mitochondria (II Edn), John Wiley & Sons, Inc., Publication.
- J. Kenneth Hoober (1990). Chloroplasts, Plenum Press · New York and London.