SACRED HEART COLLEGE (AUTONOMOUS) Department of Physics

COURSE PLAN 2018-19

(Semester V)

PROGRAMME	BACHELOR OF PHYSICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRPHY05: CLASSICAL & QUANTUM MECHANICS	CREDIT	4
Theory HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME	Prof. Alex Shinu Scaria & Navya S	L	

COURSE OBJECTIVES
Explain the basic formalisms in classical mechanics
Illustrate the failure of Classical physics and to explain the new emergence of matter wave concept
Illustrate the basic formulations of Quantum Mechanics

SESSIO N	TOPIC	LEARNING RESOURCES	REMARKS
	MODULE I		
1	Introduction – to Classical Mechanics	Lect+discussion	
2	Constraints and degrees of freedom	Lect+discussion	
3	Generalized coordinates – Classification of a dynamical system	Lect+discussion	
4	Principle of virtual work	Lect+discussion	
5	D'Alemberts Principle	Lect+discussion	
6	Lagrange's equations (NO DERIVATION)	Lect+discussion	
7	Linear Harmonic Oscillator	Lect+discussion	
8	Planetary motion	Lect+discussion	

9	Simple Pendulum	Lect+discussion
10 -11	Hamilton's Canonical equations of motion, Advantages of Hamilton's method	Lect+discussion
12	Applications of Hamilton's method - Linear Harmonic oscillator	Lect
13	Applications of Hamilton's method Simple pendulum only .	Lect+discussion
14	Hamilton's Principle of Least Action	Lect+discussion
15 - 16	Derivation of Lagrange's equation from Hamilton's Principle.	Lect+discussion
17	Calculus of Variation	Lect+discussion
18	Problem Discussion	discussion
	MODULE II	
19	Emergence of quantum concepts - Introductory Interacion	Interaction
20	Black body radiation Lect+discussion	
21	Planck's law - Particle nature of radiation –	Lect+discussion
22	Photoelectric effect	Assignment
23 -24	Compton effect - wave nature of matter	Derivation
25	deBroglie hypothesis – Davisson and Germer experiment	Lect+discussion
26	Uncertainty principle	Lect+discussion
27	Probabilistic interpretation of wave function.	Lect+discussion
28 -29	The Schrodinger equation	Lect+discussion
30	Operators - The commutator	Activity
31	Physical Interpretation of wave function – Lect+discussion Normalisation probability current density	
32	Expectation value , Problem Solving	Lect + Activity
33	General eigen value equation – eigen value for momentum operator.	Activity
34	Problem Discussion	Problem Solving
	MODULE III	1

35 -36	Stationary state - Time independent Schrodinger equation	Lecture& Derivation
37	Boundary and continuity condition for wave functions – degeneracy	Lecture
38 -39	Orthogonality of wave function	Lecture& Derivation
40 -41	Particle in a box (one dimensional)	Lecture& Derivation
42,43,44	Energy eigen value and zero point energy (Simple Harmonic oscillator)	Lecture& Derivation
45,46,47	Orbital angular momentum – commutation relations	Lecture& Derivation
48,49,50	Eigen values of L ² , L _z	Lecture& Derivation
51,52,53	Energy eigen values of rigid rotator	Lecture& Derivation
54	Problem Solving	Activity

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

		Topic of Assignment & Nature of
	Date of	assignment (Individual/Group –
	completion	Written/Presentation – Graded or Non-graded
		etc)
1	Before 1 st	Problems (Best of 3)
1	Internal	Froblems (best of 3)
2	Before 2 nd	Problems (Best of 2)
2	Internal	Problems (best of 2)

Text Books:

- 1. Text book: Classical Mechanics by J.C. Upadhyaya-Chapter 2 & 3.
- 2. Classical Mechanics by G. Aruldhas 2. Modern Physics, Kenneth S Krane (2nd Edition) Wiley.
- 3. Concepts of modern Physics, Arthur Beiser (6th Edition)
- 4. A Textbook of Quantum Mechanics- G Aruldhas- (2nd Edition)- PHI

References:

- 1. Classical Mechanics 3 rd Edition: Herbert Goldstein, Charles Poole & John Safk, Pub. Pearson Education (Indian Edn.)
- 2. Mechanics, Hans & Puri, TMH
- 3. Classical Mechanics Rana & Joag, TMH
- 4. Classical Mechanics Greiner, Springer International Edn.
- 5. Classical Mechanics- Vimal Kumar Jain Ane Books Pvt. Ltd.
- 6. Quantum Physics Stephen Gasirowicz Pub. Pearson Education (IndianEdn.)
- 7. Quantum Mechanics Greiner, 4 th Edition, Springer International Edn.

- 8. Quantum Mechanics G. Aruldhas, Premtice Hall of India.
- 9. Concepts of Modern Physics Arthur Beiser, Tata Mc Graw Hill. 10. Applied Quantum Mechanics, A F J Levi, Cambridge Univ.

PROGRAMME	BACHELORS OF PHYSICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRPHY06: PHYSICAL OPTICS AND PHOTONICS	CREDIT	3
Theory HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME	Dr. Jimmy Sebastian, Prof. Navya S.L		

COURSE OBJECTIVES

Explain the basic principles of Optics, lasers, holography and fiber technology.

Apply the principles of Optics to Optical systems.

Solve specific problems in optics and lasers.

Analyze Optical systems and phenomenon based on the theory of Optics.

Sessions	Teacher	Topic	Learning Resources	Remarks
1	JS	Light	Lecture + Interaction	
2	JS	Review of basic ideas of interference	Lecture + Interaction	
3	JS	Coherent waves-Optical path and phase change-superposition of waves, condition for bright and dark fringes	Lecture + Interaction	
4	JS	Problem solving session	Lecture + Interaction	
5	JS	Thin film, interference an introduction	Lecture + Interaction	
6	JS	Thin film, interference due in reflected light	Lecture + Interaction	
7	JS	Thin film, interference in transmitted light	Lecture + Interaction	
8	JS	Haidinger fringes and problem-solving session	Lecture + Interaction	
9	JS	Interference in wedge shaped film,	Lecture + Interaction	

		colours in thin films		
10	JS	Newtons rings	Lecture + Interaction	
11	JS	Michelson interferometer, Lecture + Interaction construction and working		
12	JS	Fresnel Diffraction - Huygens- Fresnel Lecture + Interaction theory		
13	JS	Zone plate	Lecture + Interaction	
14	JS	Difference between zone plate and convex lens	Lecture + Interaction	
15	JS	Interference and diffraction comparison	Lecture + Interaction	
16	JS	Problem solving session	Lecture + Interaction	
17	JS	Diffraction pattern due to a straight edge	Lecture + Interaction	
18	JS	single silt diffraction	Lecture + Interaction	
19	JS	Revision of diffraction Lecture + Interaction		
20	JS	Fraunhoffer diffraction at a single slit Lecture + Interaction		
21	JS	Fraunhoffer diffraction at a double slit	Lecture + Interaction	
22	JS	Fraunhoffer diffraction in N slits, theory of plane diffraction grating	Lecture + Interaction	+
23	JS	Problem solving of diffraction	Lecture + Interaction	
24	NV	Concept of polarization – (plane of polarization) Lecture + Interaction		
25	NV	polarization by reflection-Brewster's Lecture + Interaction law		
26	NV	polarization by refraction-pile of Lecture + Interaction plates		
27	NV	Polarization by double refraction- (calcite crystal). Anisotropic crystals – optic axis	Lecture + Interaction	
28	NV	Double refraction-Huygens explanation of double refraction- Positive and Negative crystals	Lecture + Interaction	

29	NV	Types of polarized light-Retarders or	Lecture + Interaction	
		wave plate - Quarter wave plate - Half		
		wave plate		
30	NV	Production and Detection of	Lecture + Interaction	
		elliptically and circularly polarized light		
31	NV	Optical Activity-Fresnels Explanation	Lecture + Interaction	
		of Optical Rotation		
32	NV	Specific Rotation-Laurents half shade	Lecture + Interaction	
		polarimeter		
33	NV	Problems	Lecture + Interaction	,
34	NV	Absorption and emission of light-	Lecture + Interaction	
		Absorption		
35	NV	spontaneous emission and stimulated	Lecture + Interaction	
		emission-light amplification by		
		stimulated emission		
36	NV	Einstein's relations, condition for light	Lecture + Interaction	
		amplification – population inversion		
37	NV	pumping –pumping methods –optical	Lecture + Interaction	
		pumping – electrical pumping -direct conversion		
38	NV	Active medium-metastable states	Lecture + Interaction	
39	NV	pumping schemes (two level, three	Lecture + Interaction	
		level and four level) Optical resonator		
40	NV	Threshold condition. Types of lasers-	Lecture + Interaction	
		ruby laser		
41	NV	He-Ne laser, Semi-conductor laser	Lecture + Interaction	
42	NV	Applications of lasers-Holography	Lecture + Interaction	
		(principle, recording and reconstruction)		
43	NV	Problems	Lecture + Interaction	
44	JS	Optical fibre introduction	Lecture + Interaction	
45	JS	Optical fibre Critical angle of	Lecture + Interaction	
		propagation		
46	JS	Problems	Interaction	

47	JS	modes of propagation - Acceptance angle	Lecture + Interaction
		ang.e	
48	JS	Fractional refractive index change -	Lecture + Interaction
		Numerical Aperture	
49	JS	Types of Optical fibers -1	Lecture + Interaction
50	JS	Types of Optical fibers -2	Lecture + Interaction
51	JS	Normalized Frequency - pulse dispersion Attenuation	Lecture + Interaction
52	JS	Applications	Lecture + Interaction
53	JS	Fiber optic Communication system - Advantages of Optical fibers.	Lecture + Interaction
54	JS	Problems	Interaction

JS = Jimmy Sebastian, NV = Navya S L

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	Before 1 st Internal	Individual- Graded – Best of 2 sets
2	Before 2 nd Internal	Individual- Graded –Best of 2 sets

ASSIGNMENTS– Details & Guidelines – Will be notified prior to the announcement of the assignment – marks will be scaled to 5.

SEMINARS will be given to each student (20 mins duration) – 5 marks (,)

REFERENCE

- 1. Optics 3 rd edition- Ajoy Ghatak, TMH
- 2. Optical Electronics Ajoy Ghatak and K Thyagarajan, Cambridge
- 3. Optics and Atomic Physics D P Khandelwal, Himalaya Pub. House
- 4. Optics S K Srivastava, CBS Pub. N Delhi

- 5. A Text book of Optics S L Kakani, K L Bhandari, S Chand.
- 6. An introduction to lasers theory and applications.MN Avadhanulu.S.Chand
- 7. Optics by Subramanayam, Brijlal, MN Avadhanalu, S.Chand

PROGRAMME	BACHELOR OF PHYSICS SEMESTER		5
COURSE CODE	15U5CRPHY07	CDEDIT 3	
AND TITLE	Thermal and Statistical Physics	CREDIT 3	
Theory	3	HOURS/SEM	54
HOURS/WEEK	3	HOURS/SEIVI	54
FACULTY	Dr. Bius Augustino & Dr. Boby Charian		
NAME	Dr. Pius Augustine & Dr. Roby Cherian		

COURSE OBJECTIVES

Understand the basic concepts in thermodynamics and the formulations to appreciated various applications which made our life easy and comfortable.

Acquire the skill in describing mathematical formulations in thermodynamics extend it various thermo dynamical phenomena happening in our day to day life.

Understand and appreciate the significance of statistical approach to explain the complicated behavior of atoms and molecules in the micro world.

SESSION	TOPIC		REMARKS
MODULE	MODULE I Thermal Physics 18 hrs (Dr. Pius Augustine)		
1.	Introduction to Thermodynamics	Lecture/PP T	
2.	Laws of Thermodynamics: Zeroth law.	Lecture/PPT	
3.	First law- internal energy	Lecture/PPT	
4.	Applications of first law	Lecture/PPT	

5.	Indicator diagram	Lecture/PPT
6.	Work done during isothermal and adiabatic process, slopes, Lecture/PP	
0.	relation between them	Lecture/FF1
7. Work done during isothermal and adiabatic process, slopes,		Lecture/PPT
,. 	relation between them	Lecture/111
8.	cooling due to Adiabatic reversible processes	Lecture/PPT
9.	Reversible and irreversible processes and Problem solving	Lecture/PPT
10.	Second law	Lecture/PPT
11.	Heat Engines	Lecture/PPT
12.	Carnot cycle and theorem	Lecture/PPT
13.	Work done by the engine per cycle	Lecture/PPT
14.	efficiency, Otto Engine	Lecture/PPT
15.	Petrol engine	Lecture/PPT
16.	Diesel Engine	Lecture/PPT
	Third law of thermodynamics -Unattainability of absolute	
17.	zero	Lecture/PPT
18.	Revision and Problem solving	Lecture/PPT
	II (18 hrs) Thermodynamic relations and Heat Transmission Dr. Piu	·
19.	Entropy	Lecture/PPT
	Littopy	zeeta.e, i i
20.	Entropy changes in reversible and irreversible processes	Lecture/PPT
21	Entropy – temperature diagrams and equations	Lecture/PPT
22	Physical significance of entropy	Lecture/PPT
23	Clausius Clepeyron Equation	Lecture/PPT
24	Thermodynamic potentials	Lecture/PPT
25.	Enthalpy	Lecture/PPT
26.	Gibbs and Helmholtz functions	Lecture/PPT
27.	Revision and Problem solving	Lecture/PPT
28.	Maxwell's relations and applications	Lecture/PPT
29.	Concepts of adiabatic and isothermal elasticity	Lecture/PPT
30.	Revision and Problem solving	Lecture/PPT
31.	Modes of heat transfer	Lecture/PPT
32.	Searle's & Lee's experiment	Lecture/PPT
33.	black body radiation	Lecture/PPT
34.	StefanBoltzmann Law	Lecture/PPT
	Wein's displacement law, Rayleigh -Jean's Law, Planck's law	
35.	(no	Lecture/PPT
	derivation).	,
36.	Revision and Problem Solving	Lecture/PPT
Module	III (18 hrs) Statistical Mechanics (18hrs) Dr. Roby Cherian	
37.	Micro and Macro states	Lecture/PPT
38.	thermodynamic probability	Lecture/PPT
50.	energy states, energy levels	Lecture/PPT
39	degenerate energy levels	Lecture/PPT
40	degenerate energy levels degenerate gas	Lecture/PPT
41	First Internal Exam	Lecture/FFI
42	1 HSt HIGHAI DAAIII	Lecture/PPT
44		Lecture/PPT

	phase space	
43	concept of entropy and thermodynamic probability	Lecture/PPT
44	Classical Statistics: Maxwell-Boltzmann Distribution law	Lecture/PPT
45	thermodynamics of an ideal monoatomic gas	
46	Second Internal Exam	Lecture/PPT
47	Classical entropy expression, Gibbs' paradox	Lecture/PPT
48	Quantum Statistics: Need of quantum statistics- In-distinguishability of particles Lecture/PPT	
49	Spin and StatisticsIdeas of Bose Einstein distribution law	Lecture/PPT
50	Spin and StatisticsIdeas of Bose Einstein distribution law and its application to black body radiation	Lecture/PPT
51	Fermi Dirac Statistics and its application to electron gas	Lecture/PPT
52	Fermi Dirac Statistics and its application to electron gas	Lecture/PPT
53	Revision	Lecture/PPT
54	Exams.	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	Make a comprehensive analysis of various thermodynamical processes taking place in our kitchen – Kitchen Physics	Presentation in groups and submission of report and ppt. Video recording
2	Seminar/assignment on conduction, convection and radiation on a broader scale. Video record your presentation and make available in Youtube.	Presentation in groups and submission of report and ppt.

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

Books for references

- 1. Heat and Thermodynamics, Mark W Zemaskay and Richard H Dittman, Tata McGraw-Hill Publishing Co. (Special Indian Edition)
- 2. Thermodynamics and Statistical Mechanics, Greiner, Springer
- 3. Berkeley Physics Course Volume 5; Statistical Physics; Frederick Reif. McGraw Hill.

- ${\bf 4.\ A\ Treatise\ on\ Heat;\ Saha\ and\ Srivastava,\ The\ Indian\ Press,\ Allahabad.}$
- 5. Statistical Mechanics, R.K. Pathria, Pergamon press, Oxford

PROGRAMME	BACHELOR OF PHYSICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRPHY8: Digital Electronics	CREDIT	3
Theory HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME Dr. Sumod SG & Dr. Roby Cherian			

COURSE OBJECTIVES	
Describe the basic understanding of number systems and	
logic circuits	
Use the methods of systematic reduction of Boolean	
algebra expressions including Karnaugh maps	
Explaining the basic sequential and Combinational circuits	

SESSION	ТОРІС	LEARNING RESOURCES	REMARKS
	r	MODULE I	
1.	Introduction	Lecture/PPT	
2.	Digital and analog systems	Lecture/PPT	
3.	Importance of Number systems	Lecture/PPT	
4.	Radix and position value	Lecture/PPT	
5.	Conversion of Different number systems-	Lecture/PPT	
6.	Decimal & binary	Lecture/PPT	
7.	octal and hexadecimal	Lecture/PPT	
8.	Addition, Subtraction	Lecture/PPT	
9.	1's complementary method	Lecture/PPT	

10.	2's complementary method	Lecture/PPT
11.	BCD code, ASCII code	Lecture/PPT
12.	Primary and Secondary memory	Lecture/PPT
	1	MODULE II
13.	Introduction – Digital electronics	Lect
14.	Binary logic- AND,OR and NOT operators	PPT and hands on session
15.	Laws of	Activity
16.	Boolean algebra- Demorgan's theorem	PPT and hands on session
17.	Duality theorem	PPT and hands on session
18.	Boolean functions	Activity
19.	Complement of a function- Reducing Boolean	PPT and hands on session
20.	expressions	Activity
21.	Group Activity	PPT and hands on session
22.	Problems	Activity
23.	Canonical and standard	PPT and hands on session
24.	form	Activity
25.	CIA-I	PPT and hands on session
26.	Discussing the CIA problems	PPT and hands on session
27.	Conversion between truth table,	PPT and hands on session
28.	Boolean expressions and Logic diagrams	PPT and hands on session
29.	Simplification of Boolean functions using Karnauh	PPT and hands on session

	T	PPT and hands on
30.	map(Two, three and four	session
30.	map(1wo, timee and four	Session
		PPT and hands on
31.	variables)	session
	XOR, XNOR gates- IC digital	Activity
32.	logic families	
	Problem Solving Session +	Lecture
33.	NAND, NOR gates	
33.	in in b, non gates	
		MODULE III
2.4		Trans.
34.	Adders- Half Adder	Lecture
	Full Adder circuits- Four bit	Lecture
35.	adder	
36.	Subtractor-Half Subtractor.	Lecture
30.	Full subtractor	
	Multiplexers -2 to 1	Lecture
37.	multiplexer	
20		Lastura
38.	Encoders	Lecture
39.	LED-7 segment Decoder	Lecture
40.	Decoders	Lecture
	Multiplexer	Lecture
41.	Waterprexe.	
	2 to 1 Multiplexer	Lecture
42.	1C to 1 Naultiplayer	Lastura
43.	16 to 1 Multiplexer	Lecture
	Demultiplexer	Lecture
44.		
45.	1 to 16 Demultiplexer	Lecture
43.	Flip-flops, RS Flip flop	Lecture
46.	ppp	
	Clocked RS Flip flop	Lecture
47.	MSJK FF	Lactura
48.	INION EE	Lecture
	DFF JK, T Flip-flop,	Lecture
49.	- 66	
	Buffer registers- Shift	Lecture
	register	
50.	_	
	Counters- Binary ripple	Lecture
E1	counter-	
51.	<u> </u>	

	BCD ripple counter-	Lecture	
	synchronous binary counter-		
52.			
	Decade counter. D/A converters	Lecture	
	(Ladder type),		
53.			
	A/D Converter (Counter type)	Lecture	
54.			

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completio	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	Before 1 st Internal	Problems of conversion from one to other number system
2	Before 2 nd Internal	Problems-Karnough Mapping

Basic Reference:

- 1. Digital Design- Morris Mano
- 2. Basic Elecronics B.L Theraja

Higher References:

- 1. Electronic Principles-Sahdev (Dhanpat Rai Co.)
- 2. Electronic Devices and Circuit Theory-Robert L Boylestad&Louis Nashelsky, PHI
- 3. Electronic Principles and Applications-Schuler(McGrawHill)
- 4. Foundations of Electronics-D Chattopadhyay,P.C.Rakshit,B Saha,N.N.Purkait(New Age International Publishers)
- 5. Principles of Electronics-V.K.Mehta(S.Chand Co.)
- 6. Electronic Principles-A.P.Malvino 5 th Edition(Tata McGrawHill)
- 7. Electronic Devices and Circuits-Sajeev Gupta(Dhanpat Rai Publications)
- 8. Basic Electronics and Linear Circuits-N.N.Bhargava, D.C.Kulshreshtha & S.C.Gupta (Tata McGraw Hill)
- 9. Introduction to Semiconductor Devices, Kevin, Brennan Cambridge Univ. Press
- 10. Art of Electronics, Thomas C Hayes, Paul Horowitz, Cambridge Univ. Press

PROGRAMME	BACHELOR OF SCIENCE (PHYSICS)	SEMESTER	5
COURSE CODE AND TITLE	15U5OCPHY01: ENERGY AND ENVIRONMENTAL STUDIES	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	MATHEW GEORGE, SIBY MATHEW		

Course Objectives

Understand the various energy sources, particularly the sun and usage of solar energy.

Understand basic ideas on environmental pollution.

Understand the basic ideas of environmental impact assessment and waste management.

Session	Topic	Method	Remarks
1	World's Reserve Of Energy Sources	Lecture/Discussion	
2	Various Forms Of Energy	Lecture/ discussion	
3	Non Renewable Energy Sources	Seminar/ discussion	
4	Coal,Oil, Natural Gas	Seminar/ discussion	
5	Merits And Demerits Of Non Renewable Energy	Seminar/ discussion	
6	Renewable Energy Sources- Introduction	Seminar/ discussion	
7	Solar Energy	Seminar/ discussion	
8	Biomass Energy	Seminar/ discussion	
9	Biogas Energy	Seminar/ discussion	
10	Wind Energy	Seminar/ discussion	
11	Wave Energy	Seminar/ discussion	

12	Tidal Energy	Seminar/ discussion
13	Hydro Energy	Seminar/ discussion
14	Geothermal Energy	Seminar/ discussion
15	Fusion Energy	Seminar/ discussion
16	Hydrogen Energy	Seminar/ discussion
17	Merits And Demerits Of Renewable Energy	Seminar/ discussion
18	Sun As A Source Of Energy	Lecture/discussion
19	Solar Radiation	Lecture/discussion
20	Spectral Distribution	Lecture/discussion
21	Flat Plate Collector	Lecture/discussion
22	Solar Water Heating	Lecture/discussion
23	Different Types Of Solar Water Heaters	Lecture/discussion
24	Solar Pond - Convective Type	Lecture/discussion
25	Solar Pond- Salt Gradient Type	Lecture/discussion
26	Optical Concentrator	Lecture/discussion
27	Solar Desalination	Lecture/discussion
28	Solar Dryer- Direct Type	Lecture/discussion
29	Solar Dryer - Salt Gradient Type	Lecture/discussion
30	Solar Heating Of Buildings	Lecture/discussion
31	Solar Green Houses	Lecture/discussion
32	Solar Photovoltaics	Lecture/discussion
33	Working Principle Of Solar Cell	Lecture/discussion

34	Revision	Lecture/discussion
35	Air Pollution	Lecture/discussion
36	Water Pollution-Causes	Lecture/discussion
37	Water Pollution-Control	Lecture/discussion
38	Soil Pollution -Causes	Lecture/discussion
39	Soil Pollution -Control	Lecture/discussion
40	Ground Water Pollution-Causes	Lecture/discussion
41	Ground Water Pollution -Control	Lecture/discussion
42	Marine Pollution -Causes	Lecture/discussion
43	Marine Pollution -Control	Lecture/discussion
44	Noise Pollution	Lecture/discussion
45	Nuclear Hazards -1	Lecture/discussion
46	Nuclear Hazards -2	Lecture/discussion
47	Pollution, Environmental Hazards -1	Lecture/discussion
48	Pollution, Environmental Hazards -2	Lecture/discussion
49	Case Study, Environmental Pollution	discussion
50	Environmental Impact Assessment - Intro	Lecture/discussion
51	Environmental Impact Assessment - Steps-1	Lecture/discussion
52	Environmental Impact Assessment - Steps -2	Lecture/discussion
53	Environmental Impact Assessment - Case Study	discussion
54	Pollution Control, General Acts	Lecture/discussion
55	Water Act	Lecture/discussion

56	Air Act	Lecture/discussion
57	Environmental Protection Act	Lecture/discussion
58	Other Acts	Lecture/discussion
59	Internal Assessment	exam
60	Waste Minimization, Source Reduction	Lecture/discussion
61	Recycling	Lecture/discussion
62	Conservation	Lecture/discussion
63	Waste Minimization	Lecture/discussion
64	Case Study	Lecture/discussion
65	Hazardous Solid Wastes	Lecture/discussion
66	Municipal Solid Waste	Lecture/discussion
67	Biomedical Solid Waste	Lecture/discussion
68	Waste Treatment And Disposal, Physical Methods	Lecture/discussion
69	Waste Treatment And Disposal, Chemical Methods	Lecture/discussion
70	Waste Treatment And Disposal, Biological Methods	Lecture/discussion
71	Moving Dome Type Biogas Plant	Lecture/discussion
72	Revision	discussion

References

- 1. Essential Environmental Studies S.P Misra, S.N Pandey (Ane Books Pvt Ltd)
- 2. Environmental Science G Tyler Miller (Cengage Learning)
- 3. Introduction to Environmental Science Y Anjaneyulu (B S Publications)
- 4. Introduction to Environmental engineering and science-G.M. Masters and W.P. Ela(PHI Pvt. Ltd)
- 5. Environmental management-B. Krishnamoorthy (PHI Pvt. Ltd)
- 6. Solarenergy-fundamentals and applications-H.P. Garg and J. Prakash (TataMc Graw Hill).
- 7. Solar energy-fundamentals, design, modeling and applications-G.N. Tiwari