SACRED HEART COLLEGE (AUTONOMOUS)

Department of Mathematics

BACHELOR OF SCIENCE IN MATHEMATICS

Course plan

Academic Year 2018-19

Semester 5

COURSE PLAN

PROGRAMME	BACHELOR OF SCIENCE MATHEMATICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRMAT05: MATHEMATICAL	CREDIT	4
HOURS/WEEK	ANALYSIS	HOURS/SEM	90
FACULTY NAME	PROF. M.P.SEBASTIAN, Dr.DIDIMOS K V, ANJU WILSON		

COURSE OBJECTIVES
Find the limit points, interior points and closure of a set.
Verify the convergence of sequences and series
Determine the limits of functions
Understand theorems on limits

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
MODULE I				
1	Intervals	Lecture		
2	Intervals	Problem solving		
3	supremum, intimum.	Lecture		
4	supremum, infimum.	Problem solving		
5	supremum, infimum.	Lecture		
6	supremum, infimum.	Problem solving		
7	Order completeness in R. Archimedian property of real numbers.	Lecture		
8	Order completeness in R. Archimedian property of real numbers.	Lecture		
9	Order completeness in R. Archimedian property of real numbers.	Lecture		
10	Order completeness in R. Archimedian property of real numbers.	Lecture/Problem solving		
11	Order completeness in R. Archimedian property of real numbers.	Lecture		
12	Order completeness in R. Archimedian property of real numbers.	Lecture/Problem solving		
13	Dedekinds form of completeness property.	Lecture/Problem solving		

		solving		
38	Convergence of sequences. Some theorems,	Lecture/Problem solving		
39	Convergence of sequences. Some theorems,	Lecture/Problem solving		
40	Convergence of sequences. Some theorems,	Lecture/Problem solving		
41	Convergence of sequences. Some theorems,	Lecture/Problem solving		
42	Convergence of sequences. Some theorems,	Lecture/Problem solving		
43	Convergence of sequences. Some theorems,	Lecture/Problem solving		
44	limit points of a sequence. Bolzano weierstrass theorem for sequences. Limit interior and superior.	Lecture/Problem solving		
45	limit points of a sequence. Bolzano weierstrass theorem for sequences. Limit interior and superior.	Lecture/Problem solving		
46	limit points of a sequence. Bolzano weierstrass theorem for sequences. Limit interior and superior.	Lecture/Problem solving		
47	Convergent sequences. Cauchy's general principle of convergence. Cauchy's sequences. Statements of theorem without proof in algebra of sequences.	Lecture/Problem solving		
48	Convergent sequences. Cauchy's general principle of convergence. Cauchy's sequences. Statements of theorem without proof in algebra of sequences.	Lecture/Problem solving		
49	Convergent sequences. Cauchy's general principle of convergence. Cauchy's sequences. Statements of theorem without proof in algebra of sequences.	Lecture/Problem solving		
50	Convergent sequences. Cauchy's general principle of convergence. Cauchy's sequences. Statements of theorem without proof in algebra of sequences.	Lecture/Problem solving		
51	Convergent sequences. Cauchy's general principle of convergence. Cauchy's sequences. Statements of theorem without	Lecture/Problem solving		

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)
1	$12 / 9 / 2018$	Convergence problems

Text Book

0 S.C.Malik, Savitha Arora _ Mathematical analysis. RevisedSecond edition. J.W. Brown and Ruel.V.Churchill _ Complex variables and applications, $8^{\text {th }}$ edition. Mc.Graw Hill.
a) Additional Reading Material:

- Robert G Bartle and Donald R Sherbert -Introduction to real analysis $3^{\text {rd }}$ edition. Wiley
- Richard R Goldberg - Methods of real analysis $3^{\text {rd }}$ edition, Oxford and IBM Publishing Co (1964)
- Shanti Narayan - A Course of mathematical analysis , S Chand and Co Ltd(2004)
- Elias Zako - Mathematical analysis Vol1, Overseas Press, New Delhi(2006)
- J. M .Howie - Real Analysis, Springer 2007
- K.A Ross - Elementary Real Analysis, Springer, Indian Reprint
- M.R Spiegel - Complex Variables, Schaum's Series

COURSE PLAN

PROGRAMME	BACHELOR OF SCIENCE MATHEMATICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRMAT06: DIFFERENTIAL EQUATIONS	CREDIT	4
HOURS/WEEK	6	HOURS/SEM	90
FACULTY NAME	DR JEENU KURIAN		

COURSE OBJECTIVES
Understand the method of solving ordinary differential equations
Understand linear differential equations and its solutions
Compute the solutions of second order linear differential equations using power series method
Understand partial differential equations and method of solving the same

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
1	Bridge course - Introduction to differential equations and partial differential equations	PPT		
2	Module 1 - Exact differential equations	Problem solving		
3	Exact differential equations and integrating factors	Lecture		
4	Problems solving	Problem solving		
5	Problems	Lecture		
6	Separable equations	Problem solving		
7	Separable equations and problems	Lecture		
8	equations reducible to separable equations	Lecture		
9	Problems solving	Lecture		
10	Problems	Lecture/Problem solving		
11	linear equations and its solutions	Lecture		
12	Problems on linear equations	Lecture/Problem solving		
13	Bernoulli equations and its solution	Lecture/Problem solving		
14	Problems on Bernoulli equations	Lecture		
15	special integrating factors and	Lecture/Problem		

		solving		
41	Variation of Parameters, method	Lecture/Problem solving		
42	Variation of parameters problem	Lecture/Problem solving		
43	Cauchy Euler Equation and the method of solution	Lecture/Problem solving		
44	Problems on CR equations	Lecture/Problem solving		
45	Problems	Lecture/Problem solving		
46	Revision	Lecture/Problem solving		
47	Revision	Lecture/Problem solving		
48	Test on module 2	Lecture/Problem solving		
49	Test Paper review	Lecture/Problem solving		
50	Introduction to second order linear homogeneous differential equations and examples.	Lecture/Problem solving		
51	Ordinary points of second order linear homogeneous equations and examples.Concept of power series and convergence of power series.	Lecture/Problem solving		
52	Theorem concerning power series solutions\& The method of finding power series solutions.	Lecture/Problem solving		
53	Problems related to power series solutions.	Lecture/Problem solving		
54	Problems related to power series solutions.	Lecture/Problem solving		
55	Problems related to power series solutions.	Lecture/Problem solving		
56	Problems related to power series solutions.	Lecture/Problem solving		
57	Singular points of second order linear homogeneous equations. Classification into regular and irregular singular points.	Lecture/Problem solving		
58	Problems related to classification of singular points.	Lecture/Problem solving		
59	Theorems related to existence of Frobenius series solutions about regular singular points of second order linear homogeneous	Lecture/Problem solving		

	equations.			
60	Method of finding Frobenius series solutions about regular singular points.	Lecture/Problem solving		
61	Problems related to Frobenius series solutions	Lecture/Problem solving		
62	Problems related to Frobenius series solutions	Lecture/Problem solving		
63	Problems related to Frobenius series solutions	Lecture/Problem solving		
64	Problems related to Frobenius series solutions	Lecture/Problem solving		
65	Introducing the Bessel's equation of order zero and order p.	Lecture/Problem solving		
66	Solution of the Bessel's equation of order zero	Lecture/Problem solving		
67	Solution of the Bessel's equation of order zero(Contd.)	Lecture/Problem solving		
68	Solution of the Bessel's equation of order p	Problem solving		
69	Solution of the Bessel's equation of order p(Contd.)	Problem solving		
70	Bessel Fuctions and properties.	Problem solving		
71	CIA - I	Problem solving		
72	Introduction to systems of first order linear equations.	Problem solving		
73	Solving systems of first order linear equations-Elimination Method	Problem solving		
74	Solving systems of first order linear equations-Elimination Method(Contd.)	Problem solving		
75	Solving systems of first order linear equations-Operator Method	Problem solving		
76	Solving systems of first order linear equations-Operator Method(Contd.)	Problem solving		
77	Review of the $3^{\text {rd }}$ Module	Problem solving		
78	Introduction to Partial Differential equations	Problem solving		
79	Origin of Partial Differential Equations	Problem solving		
80	. Forming Partial Differential equations by elimination of arbitrary constants	Problem solving		
81	Forming Partial Differential equations by elimination of arbitrary constants(Contd.)	Problem solving		
82	Forming Partial Differential equations by elimination of arbitrary functions.	Problem solving		
83	Forming Partial Differential equations by elimination of arbitrary functions.(Contd.)	Problem solving		
84	Surfaces and Curves in three dimensions.	Problem solving		

85	Surfaces and Curves in three dimensions.(Contd.)	Problem solving	
86	Method of solution of the differential equation $\frac{\mathrm{dx}}{P}=\frac{\mathrm{dy}}{Q}=\frac{\mathrm{dz}}{R}$ (Contd.	Problem solving	
87	Second CIA	Problem solving	
88	Lagrange's linear first order p.d.e. and solution.	Problem solving	
89	Problems related to Lagranges equation	Problem solving	
90	Problems related to Lagranges equation(Contd.)	Problem solving	

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)
1	$12 / 9 / 2018$	Problems on each methods discussed
2	$15 / 10 / 2018$	Power series solution problems.
3	$15 / 11 / 2018$	Frobenius series solution problems

Basic Reference

1. Shepley L. Ross - Differential Equations, $3^{\text {rd }}$ ed., (Wiley India).
2. Ian Sneddon - Elements of Partial Differential Equation (Tata Mc Graw Hill) Additional Reading List
1.Differential Equations - by G.F.Simmons.

COURSE PLAN

PROGRAMME	BACHELOR OF SCIENCE MATHEMATICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRMAT07: ABSTRACT ALGEBRA	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	JEET KURIAN MATTAM		

COURSE OBJECTIVES
Understand concepts of binary operations and groups
Understand the concepts of subgroups and cyclic group
Understand Lagrange's theorem and its applications.
Understand the concepts of homomorphism and factor groups.
Compute factor groups
Understand the concepts of Rings, Fields, Integral domains
Understand the concepts of prime and maximal ideals

SESSION	TOPIC LEARNING RESOURCES 1 concept Binary Operations: Introduction of the ADDITIONS	VALUE		
2	Examples of operations which are binary operations and counterexamples	Lecture		
3	Representation of Binary Operations using a	Lecture		
4	table			
5	Group: Motivating the definition using an	Lecture		

72	REVISION MODULE 2	Problem solving		
73	REVISION MODULE 3	Problem solving		
74	REVISION MODULE 4	Problem solving		
75	REVISION MODULE 4	Problem solving		

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)
1	$12 / 9 / 2018$	Problems on binary operations
2	$15 / 10 / 2018$	Problems on permutations

Text Book

1.A First Course in Abstract Algebra by John B Fraleigh $3^{\text {rd }}$ Edition

Additional references

1) Contemporary Abstract Algebra by Joseph Gallian
2) Topics in Algebra by I.N.Herstein
3) Algebra by Michael Artin
4) Abstract Algebra by David S Dummit and Richard M Foote

OURSE PLAN

PROGRAMME	BACHELOR OF MATHEMATICS	SEMESTER	5
COURSE CODE AND TITLE	15U5CRMAT8: FUZZY MATHEMATICS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	SANIL JOSE		

COURSE OBJECTIVES
Understand the concept of Fuzzy sets
Interpret the idea of Fuzzy sets to discuss various operations on fuzzy sets
Understand the concept fuzzy numbers
Understand the concept of fuzzy logic

SESSION	TOPIC	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS			
MODULE I						video	
1	Module 1 - Preliminaries Introduction	PPT					
2	Crisp set an overview	Lecture					
3	Fuzzy sets	Lecture					
4	Basic types of fuzzy sets	Lecture					
5	Basic concepts of fuzzy sets	Lecture					
6	Properties of alpha cuts	Lecture					
7	Properties of alpha cuts	Lecture					
8	Theorems on alpha cuts	Lecture					
9	Problems	Lecture					
10	Representation of fuzzy sets	Lecture					
11	first decomposition theorem	Lecture					
12	second decomposition theorem	Lecture					
13	third decomposition theorem	Lecture					
14	Problems	Lecture					
MODULE II							
15	Module II - Operations on fuzzy sets	PPT/Lecture					
16	Types of fuzzy operations	Lecture					
17	Union	Lecture					
18	Intersection	Lecture					
19	Complements	Lecture					
20	Fuzzy complements	Lecture					

21	Problems	Lecture		
22	Theorems	Lecture		
23	Fuzzy t norms	Lecture		
24	De -morgans law	Lecture		
25	Dual triple	Lecture		
26		CIA-1		
27	De-morgans law	Lecture		
28	Dual triple	Lecture		
29	Theorems on dual triple 1	Lecture		
30	Theorems on dual triple 2	Lecture		
31	Theorems on dual triple 3	Lecture		
32	Theorems on combination of operations 1	Lecture		
33	Theorems on combination of operations 2	Lecture		
34	Theorems on combination of operations 3	Lecture		
35	Problems	Lecture/ group work		
36	Problems	Lecture/ group work	Quiz	
37	Problems	Lecture/ group work		
38	Problems	Lecture/ group work		
39	Problems	Lecture/ group work		
40	Problems	Lecture/ group work		
41	Revision and test	Lecture		
42	Seminar	Lecture		
43	Seminar	Lecture		
44	Seminar	Lecture		
45	Seminar	Lecture		
Module III				
47	Module III -Introduction	Lecture		
48	Fuzzy Numbers	Lecture		
49	Arithmetic operations on intervals	Lecture		
50	Addition	Lecture		
51	Subtraction	Lecture		
52	Multiplication	Lecture		
53	Division	Lecture		
54	Arithmetic operations on fuzzy	Lecture		

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)
1	By October	Problems in fuzzy sets 2

Seminar - Details \& Guidelines

	Date of completion	Topic of Seminar \& Nature of Seminar (Individual/Group - Written/Presentation - Graded or Non-graded etc)
$\mathbf{1}$	By October	Fuzzy numbers
$\mathbf{2}$		

Text Book

Fuzzy Sets and Fuzzy Logic Theory and Applications by George J. Klir and BoYuan

Reference Books

1 H.J. Zimmermann, "Fuzzy set theory and its Applications "Allied Publishers Ltd., New Delhi
2 T.J. Ross, John Wiley \& Sons, Fuzzy Logic with Engineering Applications", IInd Ed., 2005.
3 John Yen and Reza Langari, Fuzzy Logic: Intelligence, Control and information, Pearson Education
4 Abbasbandy, S.; Jafarian, A. Steepest descent method for system of fuzzy linear equations. Appl. Math. Comput. 2006, 175, 823-833. [CrossRef]
5 Ineirat, L. Numerical Methods for Solving Fuzzy System of Linear Equations. Master’s Thesis, An-Najah National University, Nablus, Palestine, 2017.

COURSE PLAN

PROGRAMME	BACHELOR OF MATHEMATICS	SEMESTER	5
COURSE CODE AND TITLE	15U5OCMAT1: APPLICABLE MATHEMATICs	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	60
FACULTY NAME	SANIL JOSE		

COURSE OBJECTIVES

Understand the concept of quadratic equations,logarithm, combinatorics
Understand the concepts of probability and differential calculus
Understand the concepts of LCM, HCF, Fractions, Ratio and Proportion and Percentage
Understand the concept of simple interest, compound interest and time and work and elementary algebra.

Text Books:

1

> M. Tyra, \& K. Kundan- CONCEPTS OF ARITHMETIC.

Sessions	Topic	Method	REMARKS
1	Introduction about the course	Lecture + Interaction	
2	Types of numbers	Lecture + Interaction	
3	Solution of quadratic equations with real	Lecture + Interaction	
	roots only		
4	Different methods of solution	Lecture + Interaction	
5	Logarithms	Lecture + Interaction	
6	Properties + problems	Group work	
7	Problems	Group work	
8	Evaluations of exponents	Lecture + Interaction	
9	Exponents laws	Lecture + Interaction	
10	Permuations	Lecture + Interaction	
11	Rules and explanations	Lecture + Interaction	
12	Problems	Lecture + Interaction	
13	Combinations	Lecture + Interaction	
14	Problems	Lecture + Interaction	
15	Trigonometry	Lecture + Interaction	
16	Simple equations	Group work	
17	- T-Values	Lecture + Interaction	
18	Heights and Distance - problems	Group work	
19	Two dimensional geometry	Lecture + Interaction	
20	Plotting of points	Lecture + Interaction	
21	Drawing graph of a straight line	Lecture + Interaction	
22	Probability	Lecture + Interaction	
23	Sample space	Lecture + Interaction	
24	Examples - events	Lecture + Interaction	
25	Differential calculus	Lecture + Interaction	
26	Formulas	Group work	
27	Simple problems	Group work	
28	Problems	Lecture	
29	Integral calculus	Lecture	
30	Simple problems	Group work	
31	Problems	Group work	
32	Hcf of nos	Lecture	
33	Lcm of nos	Lecture	
34	Fractions	Lecture	
35	Square and roots	Lecture	
36	Test		

37	Cube and cube roots	Lecture	
38	Problems	Lecture	
39	Ratio and proportion	Lecture	
40	Percentage	Lecture	
41	Profit and loss	Lecture	
42	problems	Group work	
43	Problems	Lecup work	
44	Simple interest	Lecture	
45	Compound interest	Lecture	
46	Time and work	Lecture	
47	Time and work	Lecture	
48	Work and wage	Lecture	
49	Work and wage	Lecture	
50	Time and distance	Lecture	
51	Elementary mensuration	Lecture	
52	Area and Perimeter	Lecture	
53	Problems on polygons	Lecture	
54	Problems on polygons		
55	Test	Group work	
56	Problems	Group work	
57	Revision	Group work	
58	Revision	Group work	
59	Revision	Group work	
60	Problems		

Further Reading

1-RS Aggarwal, Quantitative Aptitude for Competitive Examinations, S Chand Publishing; Revised edition (21 February 2017)
2-Rajesh Verma, Fast Track Objective Arithmetic, Arihant Publications; Fourth edition (2018)
3-Objective Arithmetic (SSC and Railway Exam Special), S Chand Publishing; 2
Colour edition (2018)
4-Quantitative Aptitude \& Data Interpretation Topic-wise Solved Papers for IBPS/
SBI Bank PO/ Clerk Prelim \& Main Exam (2010-19) 3rd Edition
5-Bank PO Quantitative Aptitude Chapterwise Solved Papers 1999 Till Date 7500+
Objective Question - 2297

