Sacred Heart College (Autonomous), Thevara

Department of Chemistry

BSc Chemistry

Semester 6

2018 - 19

COURSE STRUCTURE

COURSE CODE	TITLE OF THE COURSE	NO. HRS./ WEEK	CREDITS	TOTAL HRS./SEM
15U6CRCHE09	INORGANIC CHEMISTRY II	3	3	54
15U6CRCHE10	ORGANIC CHEMISTRY IV	4	3	54
15U6CRCHE11	PHYSICAL CHEMISTRY III	3	3	54
15U6CRCHE12	PHYSICAL CHEMISTRY IV	3	3	54
15U6ELCHE1	ADVANCES IN CHEMISTRY	4	3	72

PROGRAMME	BACHELOR OF CHEMISTRY	SEMESTER	6
COURSE CODE AND TITLE	15U6CRCHE09 - Inorganic Chemistry - II	CREDIT	3
HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME Dr. Ramakrishnan S (RKS), Dr. Midhun Dominic C D (MD), Dr. June Cyriac (JUC)			

Course Objective

To describe the process of metallurgy.

To explain the structure and properties of organometallic compounds, metal carbonyls metal clusters and inorganic polymers.

To illustrate the fundamentals of water quality parameters.

To explain the chemistry of s and p block elements.

To discuss the structure and related properties of inorganic solids.

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
Unit – 1:	Metallurgy			
1	Introduction to Metallurgy	Lecture	Quiz	
2	Methods of concentration of ore	PPT/Lecture		
3	Froth flotation and leaching	PPT/Lecture		
4	Calcination and Roasting	Lecture		
5	Reduction to free metal- smelting and electrometallurgy, hydrometallurgy	Lecture		
6	Goldschmidt Thermite Process	Lecture	Video	
7	Refining of metals- electrolytic, ion exchange, zone refining, vapour phase refining and oxidative refining	Lecture		
8	Thermodynamics of the oxidation of metals to metal oxides - Ellingham diagrams	Lecture		
9	Extractive metallurgy of U, Ti ,Th and Ni	Lecture		
Unit - 2:	Metal Carbonyls and Metal clusters			
10	Preparation and properties of mononuclear carbonyls	Lecture		
11	Structures of Mo(CO) ₆ , Fe(CO) ₅ and Ni (CO) ₄	PPT/Lecture		
12	Polynuclear carbonyls, bridged carbonyls and bonding in carbonyls	Lecture		
13	Metal clusters – carbonyl clusters, low	PPT/Lecture		

	nuclearity carbonyl clusters and high nuclearity			
	carbonyl clusters			
14	Metal clusters – halide clusters	Lecture		
15	Electron counting schemes for Rh ₆ (CO) ₁₆ and	PPT/Lecture		
	$[Os_6(CO)_{18}]^{2}$			
16	Metal only clusters (Zintl ions)	Lecture		
17	Quadruple bond – structure of Re ₂ Cl ₈ ²⁻	Lecture		
18	Structures of various metal clusters	Lecture		
Unit - 3:	Inorganic Polymers			
19	Inorganic polymers – general properties,	Lecture		
	comparison with organic polymers			
20	Sulphur based polymers – polymeric sulphur	Lecture		
	nitride and chalcogenic glasses			
21	Phosphorus based polymers -	Lecture		
	polyphosphazenes			
22	Phosphorus based polymers - polyphosphates	Lecture		
23	Silicon based polymers – silicones	Lecture		
24	Silicon based polymers – silicone rubber	Lecture		
	CIA-1			
Unit - 4:	Non aqueous solvents			
25	Classification of solvents, characteristics of	Lecture		
	solvents			
26	Reactions in liquid ammonia	Lecture		
27	Alkali metal solution in liquid ammonia, their	Lecture		
	important properties.			
28	Liquid sulphur dioxide and liquid HF	Lecture		
Unit - 5:	Compounds of s and p block Elements			
29	Macrocyclic ligands:- crown ethers and	PPT/Lecture		
	cryptands			
30	Macrocyclic effect	PPT/Lecture		
31	Alkali metal complexes with crown ethers and	Lecture		
	cryptands, their applications.			
32	Boron hydrides – diborane, B5H9, B4H10	Lecture		
33	Closo carboranes, boron nitride	Lecture		
34	Borazine, boric acid. Peroxy acids of sulphur	PPT/Lecture		
	Oxides and oxy acids of halogens (structure	PPT/Lecture		
35	only),			
36	Superacids, interhalogen compounds	Lecture		
	Pseudohalogens, electropositive iodine,	Lecture		
37	fluorocarbons			
38	Fluorides, oxides and oxy fluorides of xenon	Lecture	Quiz	
Unit - 6:	Structure of Inorganic Solids		[]	
	Close packing of spheres, ccp and hcp	PPT/Lecture		
39	arrangements			
40	Interstitial sites in close packing, Tetrahedral,	PPT/Lecture		

	Octahedral sites			
	Radius ratio, Limiting radius ratio for trigonal,	Lecture		
41	tetrahedral and octahedral sites			
	Use of limiting radius ratio in the structural	Lecture		
42	determination of ionic crystals			
43	Structure of ionic crystals of NaCl, CsCl, ZnS	Lecture		
44	Defects in crystals	Lecture		
	Consequences of defects. extrinsic and intrinsic	Lecture		
45	defects			
	Impurity defects. semiconductors, n-type, p-	Lecture		
46	type			
47	Superconductivity – an introduction	Lecture		
	CIA - II			
Unit - 7:	Water quality parameters			
48	Standards for drinking water	Lecture		
49	Determination of turbidity	Lecture		
	Determination of pH-determination of total	Lecture		
50	dissolved solids			
	Determination of total hardness-total	Lecture		
51	alkalinity-acidity			
52	Determination of dissolved oxygen (DO), BOD	Lecture		
53	Determination of COD	Lecture		
54	Estimation of coliform count	Lecture		

	Date of	Topic of Assignment & Nature of
	completion	assignment (Individual – Written – Graded)
1	14/1/2019	Structure and bonding in boron compounds

GROUP ACTIVITES – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Group – Presentation – Non- graded)
1	15/2/2019	Water sample analysis

- 1. B.K Sharma Environmental Chemistry, 12th Edn., Goel Publishing House, 2011.
- 2. B. R. Puri, L. R. Sharma, K C Kalia, Principles of Inorganic Chemistry, 31st Edn.Milestone Publishers, New Delhi, 2010.
- 3. A.K Dee, Environmental Chemistry, 3rd Edn., New Age International Pvt. Ltd., 1996.
- 4. Sodhi. G.S., Concepts of Environmental Chemistry, Narsa Publication House, 2009.
- 5. Sindhu. P. S., Environmental Chemistry, New Age International Pvt. Ltd., 2011.

6. Balaram Pani, Environment Chemistry, I. K. International Publishing House Ltd., 2007.

7. Thomas G Spiro, Chemistry of Environment, Prentice Hall of India., 2006.

8. Raghavan Nambiar., Environmental Studies, Scitech Publications (India) Pvt. Ltd., 2008.

PROGRAMME	BACHELOR OF CHEMISTRY	SEMESTER	6
COURSE CODE AND TITLE	15U6CRCHE10 : ORGANIC CHEMISTRY - IV	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	54
ΕΔΟΙΗ ΤΥ ΝΑΜΕ	Dr. Joseph T Moolayil, Dr. V. S Sebastian, Dr. Franklin J,		
	Dr. Grace Thomas		

COURSE OBJECTIVES

To understand the source, structure and functions of natural products erpenoids, alkaloids, vitamins and lipids.

To know the structure and chemical properties of carbohydrates, amino acids, proteins, enzymes and steroids.

To understand the chemical properties and syntheses of heterocyclic compounds.

SESSION	ТОРІС	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I			
1	Natural Products - Terpenoids - isoprene rule.	РРТ	video	
2	Structure elucidation of citral and geraniol.	PPT/Lecture		
3	Alkaloids - general methods of isolation	PPT/Lecture		
4	Classification – structure elucidation and synthesis of conine,	PPT/Lecture		
5	Structure elucidation- piperine	PPT/Lecture		
6	Structure elucidation- nicotine.	PPT/Lecture		
7	Vitamins – classification- structure (elementary idea) of vitamin A, C	Lecture		
8	Vitamins – classification- structure (elementary idea) of vitamin B ₁ , B ₂ , B ₆	Lecture		
9	Lipids – biological functions – oils and fats – common fatty acids	Lecture		
10	Extraction and refining- hydrogenation – rancidity- identification of oils and fats	PPT/Lecture		

11	Saponification value, acid value, iodine value and RM value	PPT/Lecture	
12	Revision		
	MODULE	<u>II</u>	
13	Classification of carbohydrates		
14	Constitution of glucose	PPT/Lecture	
15	Constitution of fructose.	Lecture	
16	Reactions of glucose and fructose - osazone formation	Lecture	
17	Mutarotation and its mechanism. Epimerisation.	Lecture	Video
18	Configuration of monosaccharides		
19	Cyclic structure. Pyranose and furanose forms	Lecture	
20	Determination of ring size.	PPT/Lecture	
21	Haworth projection formula.	PPT/Lecture	
22	Chain lengthening and chain shortening of aldoses.	PPT/Lecture	
23	Inter conversion of aldoses and ketoses, Disaccharides	PPT/Lecture	
24	Reactions and structure of sucrose and maltose. Ring structure	Lecture	
25	Structure and properties of starch and cellulose. (elementary idea). Industrial applications of cellulose.	Lecture	
26	Revision		
	CIA I		
	MODULE	111	
27	Aromaticity of heterocyclic compounds.	Lecture	Video
28	Preparation, properties and uses of furan	PPT/Lecture	
29	Preparation, properties and uses of pyrrole and thiophene.	PPT/Lecture	
30	Synthesis and reactions of pyridine	PPT/Lecture	
31	Synthesis and reactions of piperidine	PPT/Lecture	
22	Comparative study of basicity of pyrrole,	PPT/Lecture	
32	pyrigine and piperigine with amines.		
	isoquinoline and indole with special reference to	PP1/Lecture	
33	Skraup, Bischler, Napieralskii and Fisher		

	indole synthesis			
34	Continued.	PPT/Lecture		
35	Continued Lecture Quiz			
36	Revision		Q &Ans Session	
	MODULE	IV		
37	Amino acids- classification, Zwitter ion	PPT/Lecture		
38	Peptide- solution phase peptide synthesis.	PPT/Lecture		
39	Classification of proteins based on physical and chemical properties	PPT/Lecture		
40	Classification of proteins based on physiological functions.	Lecture		
41	Primary secondary tertiary and quaternary structure of proteins	PPT/Lecture		
42	Helical and sheet structures	PPT/Lecture		
43	Denaturation of proteins.	PPT/Lecture		
44	Nucleic acids. Types of nucleic acids - RNA and DNA	PPT/Lecture	Video	
45	Polynucleotide chain components - biological functions.	PPT/Lecture		
46	Supramolecular interactions – Significance in nucleic acids and proteins.	PPT/Lecture		
47	Green Fluorescent Proteins	PPT/Lecture		
48	Revision			
	MODULE	V	· · · ·	
49	Nomenclature and classification of enzymes	PPT/Lecture	Video	
50	Chemical nature of enzymes	PPT/Lecture		
51	Mechanism of enzyme action. Substrate specificity of enzymes. Enzyme inhibition.	PPT/Lecture		
	MODULE	VI		
52	Introduction – Diels hydrocarbon			
53	Structure and functions of cholesterol	Lecture		
54	Elementary idea of HDL, LDL, Vitamin D.	PPT/Lecture		
	CIA II			

		Topic of Assignment & Nature of
	Date of	assignment (Individual/Group –
	completion	Written/Presentation – Graded or Non-
		graded etc)
1	9/1/2010	Interpretation of Primary secondary tertiary
1 0/1/2019		and quaternary structure of proteins

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Topic of Assignment & Nature of	
Date of assignment (Individual/Group –		assignment (Individual/Group –
completion Written/Presentation – Graded or Non		Written/Presentation – Graded or Non-
		graded etc)
1 24/2/2010		Interpretation of different Supramolecular
1	24/2/2019	interactions

- 1. L. Finar, Organic Chemistry Volume I & II Pearson Education(Chapters 8,14,17)
- 2. M. K. Jain and S. C. Sharma 'Modern Organic Chemistry', 3rd Edition, Vishal Publishing Company Co. (Chapter-42,43,40,38)
- 3. K. S. Tewari and N. K. Vishnoi, 'Organic Chemistry', 3rd Edition, Vikas Publishing House (Chapter-40,41)
- 4. R. T. Morrison and R.N. Boyd, 'Organic Chemistry', 6th Edition Prentice Hall of India (Chapter-33)
- 5. en.wikipedia.org/wiki/Green_fluorescent_protein
- 6. www.scholarpedia.org/article/fluorescent_protein
- 7. www.conncoll.edu/ccacad/zimmer/GFP-ww/timeline.html
- 8. www.gonda.ucla.edu/bri_core/gfp.htm

PROGRAMME	B.Sc. CHEMISTRY	SEMESTER	6
COURSE CODE AND TITLE	15U6CRCHE11: PHYSICAL CHEMISTRY-III	CREDIT	3
HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME	DR. K B JOSE, Dr. IGNATIOUS ABRAHAM		

Course Objectives

To explain the basics of thermodynamics.

To explain the laws of thermodynamics and properties of thermodynamic functions.

To apply the laws of thermodynamics to various physical and chemical processes.

To describe the phase equilibria of one- and two-component systems.

To discuss the fundamentals of chemical kinetics.

To demonstrate the kinetics of various chemical reactions.

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I			
1	Introduction to Thermodynamics	Lecture		
2	Definition of thermodynamic terms	PPT/Lecture	e-resource	
3	intensive and extensive properties	PPT/Lecture		
4	path and state functions	PPT/Lecture	e-resource	
5	exact and inexact differentials	PPT/Lecture		
6	reversible and irreversible processes	PPT/Lecture		
7	spontaneous and non-spontaneous processes	Lecture		
8	internal energy, work and heat	Lecture		
9	zeroth law of thermodynamics	Lecture		
10	First law of thermodynamics	Lecture		
11	Statement and mathematical expression	PPT/Lecture		
12	enthalpy, heat capacity	PPT/Lecture		
13	Cp and Cv relation in ideal gas systems	Lecture	video	
14	change in thermodynamic properties of an ideal gas during (i) isothermal/adiabatic, reversible/irreversible processes	Lecture		

15	Joule-Thomson experiment	Lecture			
16	Joule-Thomson coefficient $\mu_{\text{JT},}$ inversion temperature	PPT/Lecture	ecture		
17	Thermo chemistry	PPT/Lecture			
18	Enthalpies of formation, combustion, neutralization, solution and hydration	Lecture	e-resource		
19	relation between heats of reactions at constant volume and constant pressure	Lecture			
20	Variation of heats of reaction with temperature – Kirchoff's equation	Lecture			
21	Hess's law and its application	Lecture			
22	Second law of Thermodynamics, Limitations of first law – statements of second law	PPT/Lecture	e-resource		
23	Carnot's cycle – efficiency of heat engines	PPT/Lecture			
24	Carnot theorem	Lecture			
25	Entropy – entropy change for various reversible/irreversible processes,	PPT/Lecture	e-resource		
26	Change in entropy of an ideal gas with pressure, volume and temperature	PPT/Lecture			
27	Third law of thermodynamics-statement and significance.	Lecture			
28	Free Energy Functions	Lecture			
29	Helmholtz energy and Gibbs energy – variation of Gibbs energy with T and P	Lecture			
30	Criteria for reversible and irreversible processes, Gibbs-Helmholtz equation	PPT/Lecture			
31	Clausius - Clapeyron equation, applications	PPT/Lecture	e-resource		
32	Partial molar properties – chemical potential	Lecture			
33	Gibbs-Duhem equation,	Lecture			
34	Chemical potential in a system of ideal gases,	Lecture			
35	Concept of activity.	Lecture			
36	Chemical equilibrium: conditions for chemical equilibrium	Lecture			
37	relation between Kc and Kx – Kp	Lecture			
38	Van't Hoff reaction isotherm	Lecture			
39	Temperature dependence of Kp – van't Hoff equation	Lecture			
	MODULE II				
40	The phase rule, equilibrium between	PPT/Lecture			

			1	1
	phases – conditions			
41	One component system – water system, sulphur system	PPT/Lecture		
42	Two component systems – solid-liquid equilibrium – simple eutectic	PPT/Lecture		
43	lead- silver system	Lecture	e-resource	
44	formation of compounds with congruent melting point ferric chloride- water system	Lecture		
45	formation of compounds with incongruent melting point sodium sulphate- water system	PPT/Lecture		
	MODULE III			
45	Rate of reaction, rate equation, order and molecularity of reactions	Lecture		
46	Integrated rate expressions for first and second order reactions	Lecture		
47	Zero order reactions, pseudo-order reactions, half life	Lecture		
48	Theories of chemical kinetics: effect of temperature on the rate of reaction.	PPT/Lecture		
49	Arrhenius equation, concept of activation energy Collision theory, transition state theory	PPT/Lecture	e-resource	
50	Thermodynamic parameters for activation – Eyring equation (no derivation needed)	PPT/Lecture		
51	enthalpy and entropy of activation, Theory of unimolecular reactions – Lindemann theory.	PPT/Lecture		
52	Chain reactions – steady state treatment, hydrogen bromine reaction.	PPT/Lecture		
53	Homogeneous catalysis, enzyme catalysis – Michaelis-Menten equation (no derivation needed).	PPT/Lecture		
54	Heterogeneous catalysis – surface catalysis, uni and bi molecular reactions on surface. Elementary idea about autocatalysis	PPT/Lecture		

	Date of	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded
completion		or
	•	Non-graded etc)
1 10/02/2019	Numerical Problems – First and Second laws of	
	thermodynamics	
2	05/01/2019	Numerical problems in chemical equilibrium
3	20/12/2018	Numerical problems – Chemical kinetics

PROGRAMME	BACHELOR OF CHEMISTRY	SEMESTER	6
COURSE CODE AND TITLE	15U6CRCHE12 PHYSICAL CHEMISTRY IV	CREDIT	3
HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME	Dr. Thommachan Xavier, Dr Jinu George Rosin (ARJ)	(JG), Dr Ammu	

Course Objectives
To Understand concept of acids, bases and pH of solutions.
To explain the magnetic and spectroscopic properties of systems.
To understand the theory of electrical conductance and its applications.
To explain electromotive force, different electrochemical cells and its applications.

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
	MODULE I			
1	Introduction-concepts of acids and bases	PPT	video	
2	relative strength of acid-base pairs, influence of solvents	PPT/Lecture		
3	Classification of acids and bases as hard and soft acids and bases. Pearson's HSAB concept, applications,.	PPT/Lecture		
4	Dissociation constants – acids, bases, and polyprotic acids.	PPT/Lecture	e-resource	
5	Ostwald's dilution law. Ionic product of water – pH.	PPT/Lecture		
6	Buffer solutions – mechanism of buffer action,	PPT/Lecture		

33	Activity, mean ionic activity and mean ionic	PPT/Lecture		
	MODULE III			
32	revision			
	derivation)			
31	Debye- Hückel-Onsager equation (no	PPT/Lecture		
	and electrophoretic effect.	-		
30	The concept of ionic atmosphere, Asymmetry	PPT/Lecture		
29	Debye-Hückel theory of strong electrolytes	PPT/Lecture		
	method and moving boundary method.			
28	Transport Numbers – determination by Hittorf's	Lecture		
27	theoretical device.	Leciule		
20	CIA-1 Discharge of ions during electrolysis – Hittorf's	Lecture		
26		1		
	hydrogen and hydroxyl ions			
25	Influence of dielectric constant of solvent on	Lecture		
24	Ion conductivity and viscosity – Walden's rule	Lecture		
	Influence of temperature on ion conductivity,			
23	Ionic mobility – relation with ion conductivity,	PPT/Lecture		
22	Kohlrausch's law – applications.	PPT/Lecture		
ļ	concentration.			
	Variation of molar conductivity with			
21	Electrolytic conductivity, molar conductivity -	PPT/Lecture		
	equivalent			
20	electrochemical equivalent, and chemical	PPT/Lecture		
19	Introduction - Faraday's laws of electrolysis	Lecture		
18	Numericals	Lecture		
17	Electron spin resonance (ESR)	Lecture		
16	The chemical shift,	Lecture		
15	NMR spectrometery	PPT/Lecture		
	MODULE II			
14	Revision			
13	Introduction-concepts of acids and bases	PPT/Lecture		
12	Nuclear paramagnetism,	PPT/Lecture		
	molecules,			
11	Dipole moment, magnetic properties of	PPT/Lecture		
10	molar refraction, dielectric constant	Lecture		
	Introduction, optical activity			
9		Lecture		
	ph by indicators, solubility product principle –			
8	Acid-base indicators, theories, determination of	Lecture		
	salt solutions.(contd derivation)			
	hydrolysis constant, degree of hydrolysis, pH of			
7	Henderson equation. Hydrolysis of salts – Lecture			

	activity coefficients of electrolytes.			
	Ionic strength of a solution, Debye-Hückel	strength of a solution, Debye-Hückel PPT/Lecture		
34	limiting law (no derivation)			
35	Applications of conductance measurements	PPT/Lecture		
	Determinations of degree of dissociation of	Lecture	Quiz	
36	weak electrolytes, ionic product of water			
	Solubility of sparingly soluble salts.	Lecture	Q &Ans	
37			Session	
38	conductometric titrations.	PPT/Lecture		
	Introduction - Galvanic cells, Characteristics of	PPT/Lecture		
39	reversible cells			
	Reversible electrodes – different types,	PPT/Lecture		
40	electrode potential – electrochemical series.			
	Reference electrodes – Standard Hydrogen	PPT/Lecture		
	Electrode, Calomel electrode, electrode			
41	potential – electrochemical series.			
	II CIA			
	Representation of cells – e.m.f of cell, electrode	Lecture		
42	reactions and cell reactions.			
	Thermodynamics of reversible cells and	PPT/Lecture		
	reversible electrodes – Determination of ΔG ,			
43	ΔH and ΔS of cell reaction.			
44	E.M.F and equilibrium constant of cell reaction	PPT/Lecture		
	Effect of electrolyte concentration on	PPT/Lecture		
	electrode potential and e.m.f - Derivation of			
45	Nernst equation.			
	Concentration cells – electrode concentration	PPT/Lecture		
46	cell and electrolyte concentration cells			
	Types of electrolyte concentration cells – with	PPT/Lecture		
47	transference and without transference			
	Liquid junction potential. Fuel cells – the	PPT/Lecture		
48	hydrogen-oxygen fuel cell.			
	Applications of e.m.f measurements –	PPT/Lecture		
49	determination of solubility product			
50	determination of pH using hydrogen electrode	PPT/Lecture		
51	quinhydrone electrode and glass electrode	PPT/Lecture		
	Potentiometric titrations - oxidation reduction	PPT/Lecture	Video	
52	indicators.			
53	Irreversible electrode processes – overvoltage.	PPT/Lecture		
54	Corrosion and prevention	PPT/Lecture		
55	Revision			

		Topic of Assignment & Nature of
	Date of	assignment (Individual/Group –
completion Written/Presentation – Graded or No		Written/Presentation – Graded or Non-
		graded etc)
1	I INT	Electrochemistry in daily life
2	II INT	pH of soil and agriculture

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of	assignment (Individual/Group –	
	completion	on Written/Presentation – Graded or Non-	
		graded etc)	
1	I INT	Corrosion in industry (Group Discussion)	

- 1. K. L. Kapoor, 'A Textbook of Physical Chemistry', Volumes 1, Macmillan India Ltd.
- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, *'Elements of Physical Chemistry'*, Vishal Pub. Co. Jalandhar.
- 3. I. N. Levine, *Physical Chemistry*, Tata Mc Graw Hill.
- 4. K. J. Laidler and J. M. Meiser, '*Physical Chemistry*', 3rd Edition, Houghton Mifflin Comp., New York, International Edition (1999).
- 5. Barrow, G.M. Physical Chemistry, Tata McGraw-Hill (2007).
- 6. Castellan, G.W. Physical Chemistry, 4th Ed. Narosa (2004).
- 7. Kotz, J.C., Treichel, P.M. & Townsend, J.R., *General Chemistry*, Cengage Learning India Pvt. Ltd. New Delhi (2009).
- 8. Mahan, B.H. University Chemistry, 3rd Ed. Narosa (1998).
- 9. Glasstone S, An Introduction to Electrochemistry, East-West Press (Pvt.) Ltd. (2006).
- 10. Gurdeep Raj, Advanced Physical Chemistry, Goel publishing house.
- 11. F A Alberty and R J Silby, *Physical Chemistry*, John Wiley.
- 12. P. W. Atkins, The elements of Physical chemistry, 8thedn, Oxford University Press.
- 13. S. H. Marron and J. B. Lando, Fundamentals of Physical Chemistry, Macmillan Ltd.

PROGRAMME	BACHELOR OF CHEMISTRY	SEMESTER	6
COURSE CODE AND TITLE	15U6ELCHE1- Advances in Chemistry	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	Dr. Grace Thomas, Dr. Ramakrishnan S, Dr. Abi T G, Dr. Ammu Rosin Jose.		

	COURSE OBJECTIVES
То	understand the advanced topics in inorganic chemistry.
To su	understand the advanced topics in organic chemistry like retrosynthesi pramolecular chemistry, green chemistry and polymers.
То	understand the advanced topics in physical and computational chemistry

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	REMARKS
1. Advan	ced Topics in Inorganic Chemistry			-
	MODULE I			
1	Nanomaterials	Conventional Lecture		
2	Synthesis of nanomaterials – chemical precipitation	Lecture with ICT- PPTs		
3	Mechano-chemical method and micro emulsion method	Lecture with ICT- PPTs		
4	Reduction technique, chemical vapour deposition and sol-gel method (brief study)	Lecture with ICT- PPTs		
5	Properties and applications of fullerenes	Lecture with ICT- PPTs	Quiz	
6	Quantum dots	Lecture with ICT- PPTs		
7	Carbon nanotubes	Lecture with ICT- PPTs		
8	Applications of nano materials - nano composites	Lecture with ICT- PPTs		
9	Nano medicines	Lecture with ICT- PPTs	Discussion	
MODULE II				

10	Refractory materials	Conventional		
-	,	Lecture -		
		Chalk &		
		Board		
11	Carbides, nitrides, borides	Conventional		
		Lecture -		
		Chalk &		
		Board		
12	Graphite and graphite oxide	Conventional	Seminar	
		Lecture -	Presentation	
		Chalk &	from	
		Board	Students	
13	Intercalation compounds of alkali metals	ICT		
10				
14	Carbon monofluoride	Conventional		
		Lecture -		
		Chalk &		
		Board		
15	Intercalation compounds of graphite with	ІСТ		
	metal Halides, glass			
16	Silicates, zeolites	Conventional		
		Lecture -		
		Chalk &		
		Board		
17	Ultramarines and ceramics	Conventional	Seminar	
		Lecture -	Presentation	
		Chalk &	from	
		Board	Students	
	MODULE III			
10	Thormo analytical mothods			
10				
		ІСТ		
19	Principle of Thermo gravimetry	ICT Conventional		
19	Principle of Thermo gravimetry	ICT Conventional Lecture -		
19	Principle of Thermo gravimetry	ICT Conventional Lecture - Chalk &		
19	Principle of Thermo gravimetry	ICT Conventional Lecture - Chalk & Board		
19 20	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and	ICT Conventional Lecture - Chalk & Board Conventional		
19 20	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis	ICT Conventional Lecture - Chalk & Board Conventional Lecture -		
19 20	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk &		
19 20	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board		
19 20 21	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional		
19 20 21	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture -		
19 20 21	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture - Chalk &		
19 20 21	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board		
19 20 21 22	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications Colorimetry: Principle, Beer's law. Lambert's	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional		
19 20 21 22	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications Colorimetry: Principle, Beer's law, Lambert's law	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture -		
19 20 21 22	Principle of Thermo gravimetry TGA of calcium oxalate monohydrate and Differential thermal analysis Differential scanning calorimetry. Applications Colorimetry: Principle, Beer's law, Lambert's law	ICT Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture - Chalk & Board Conventional Lecture - Chalk &	Seminar	

23	Absorption coefficient, transmittance, opacity	Conventional		
		Lecture -		
		Chalk &		
		Board		
24	Absorbance, optical density, molar absorption	Conventional		
	coefficient	Lecture -		
		Chalk &		
		Board		
25	Principle of estimation of iron, chromium and	Conventional		
	ammonia	Lecture -		
		Chalk &		
		Board		
2 Adva	nced topics in Organic Chemistry			
	MODULE I			
26	Introduction to Supramolecular Chemistry	Conventional		
		Lecture		
27	Molecular Recognition			
		Lecture with		
		ICT- PPTs		
	CIAI	·		
28	Host-guest interactions.	Lecture with		
		ICT- PPTs		
29	Types of non-covalent interactions.	Lecture with		
		ICT- PPTs		
30	Importance of molecular recognition in DNA	Lecture with		
		ICT- PPTs		
31	Importance of molecular recognition in	Lecture with		
	protein structure	ICT- PPTs		
32	Introduction to Supramolecular Chemistry	Lecture with	Saminar	
		ICT- PPTs	Seminar	
	MODULE II			
33	Retrosynthetic analysis and disconnection	Lecture with		
	approach	ICT- PPTs		
34	Basic principles and terminology	Lecture with		
		ICT- PPTs		
35	Retrosynthetic analysis of simple cyclic and	Lecture with		
	acyclic alkenes	ICT- PPTs		
36	Retrosynthetic analysis of alcohols	Lecture with		
		ICT- PPTs		
37	Retrosynthetic analysis of carbonyl	Lecture with		
	compounds	ICT- PPTs		
38	Simple problems of retro synthesis of the	Lecture with	Construction	
	above compounds	ICT- PPTs	Seminar	

	MODULE III			
39	Introduction to Green Chemistry	Lecture with ICT- PPTs		
40	Need for green chemistry	Lecture with ICT- PPTs	Seminar	
41	Twelve principles of green chemistry	Lecture with ICT- PPTs		
42	Examples of Green Chemistry Processes	Lecture with ICT- PPTs		
43	Green polymer	Lecture with ICT- PPTs		
44	Polylactic acid (PLA)	Lecture with ICT- PPTs		
	MODULE IV			
45	Biopolymers	Lecture with ICT- PPTs		
46	Biomaterials	Lecture with ICT- PPTs		
47	Polymers in medical field	Lecture with ICT- PPTs		
48	High temperature ploymers	Lecture with ICT- PPTs		
49	Fire-resistant polymers	Lecture with ICT- PPTs		
50	Silicones	Lecture with ICT- PPTs		
51	Conducting polymers	Lecture with ICT- PPTs		
52	Carbon fibers	Lecture with ICT- PPTs		
53	General discussion about the biopolymers	Lecture with ICT- PPTs	Seminar	
3. Adva	nced Topics in Physical Chemistry			
	MODULE I			
54	Protein structure; Amino acids	Lecture with ICT- PPTs		
55	Primary, secondary and tertiary structure	Lecture with ICT- PPTs	Discussion	
56	Protein folding. Significance of Van der Waals force, hydrogen bond and hydrophobic interactions	Lecture with ICT- PPTs		

57	Acid-Base equilibrium:Protonation and	Lecture with		
58	Biological significance of pH; Properties of proteins with emphasis on isoelectric pH	Lecture with ICT- PPTs		
59	Henderson and Hasselbalch equation. Titration curves of amino acids & pK values	Lecture with ICT- PPTs		
60	Buffers & Stability of their pH	Lecture with ICT- PPTs		
61	Thermodynamics and Kinetics. Standard free energy change in biochemical reactions, exergonic	Lecture with ICT- PPTs		
	CIA II			
62	Hydrolysis of ATP. Chemical potential. Oxidation/reduction reactions and bioenergetics	Lecture with ICT- PPTs	Seminar	
63	Enzyme catalysis. Michael Menton kinetics	Lecture with ICT- PPTs		
	MODULE II			
64	Scope of Computational chemistry. Building of 3D molecular structures using computer softwares. Coordinate formats	Lecture with ICT- PPTs		
65	Z-matrix, Cartesian coordinate and PDB format. Z-matrix of simple molecules H ₂ O, CO ₂ & NH ₃	Lecture with ICT- PPTs		
66	Introduction to Common computational and visualization softwares	Lecture with ICT- PPTs	Discussion	
67	Brief introduction to Hartree Fock, ab initio, semi empirical methods	Lecture with ICT- PPTs		
68	DFT and molecular mechanics methods	Lecture with ICT- PPTs		
69	Basis sets, STO & GTO basis sets	Lecture with ICT- PPTs		
70	Potential energy surface. Local and Global minima. Single point energy calculations and Geometry optimizations	Lecture with ICT- PPTs		
71	Format of input and output files in Computational Chemistry Calculations	Lecture with ICT- PPTs		
72	Single point and Optimization Calculations in simple molecules such as molecules H ₂ O, CO ₂ & NH ₃ using suitable software package	Lecture with ICT- PPTs		

	Topic of Assignment & Nature of
Date of	assignment (Individual/Group –
completion	Written/Presentation – Graded or Non-
	graded etc)
22/2/2010	Protein: Primary, secondary and tertiary
22/2/2019	structure

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Topic of Assignment & Nature of	
Date of	assignment (Individual/Group –	
completion	Written/Presentation – Graded or Non-	
	graded etc)	
3/3/2019	Synthesis of nanoparticles	

- 1. V. S. Muraleedharan and A. Subramanian, *Nano science and Nanotechnology*, Ane Books Pvt. Ltd. New Delhi, 2009.
- 2. T. Pradeep, Nano; The Essentials, Mc Graw-Hill education, New Delhi, 2006.
- 3. H.H Willard, L.L. Merritt, J.A. Dean, F.A Settle, *Instrumental methods of Analysis*, CBS Publishers And Distributors, Delhi, 1996.
- 4. Helena Dodzuik, *Introduction to Supramolecular Chemistry*, Springer.
- 5. J. M. Lehn, Supramolecular Chemistry, VCH
- 6. Paula Yurkanis Bruice, Organic Chemistry, 2002, (3rd Edition).
- 7. S. Warren, Organic Synthesis, *The disconnection Approach*, John Wiley & Sons, 2004.
- 8. E. J. Corey, X-M. Cheng (1995). The Logic of Chemical Synthesis. New York: Wiley.
- 9. V. K. Ahluwalia, Green Chemistry, Ane Books India.
- 10. Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*, Oxford University Press: New York, 1998, p.30. By permission of Oxford University Press.
- 11. Albert L. Lehninger, Principles of Biochemistry, CBS Publishers & Distributors.
- 12. Narayanan, P (2000), Essentials of Biophysics, New Age Int. Pub. New Delhi.
- 13. Roy R.N. (1999), A Text Book of Biophysics, New Central Book Agency.
- 14. T Clark, Hand book of Computational Chemistry, Wiley, New York.
- 15. F. Jensen, 'Introduction to Computational Chemistry', John Wiley.
- 16. Christopher J. Cramer, 'Essentials of Computational Chemistry' John Wiley,