SACRED HEART COLLEGE (AUTONOMOUS)

DEPARTMENT OF COMPUTER SCIENCE BACHELOR OF COMPUTER APPLICATIONS

[MOBILE APPLICATIONS AND CLOUD TECHNOLOGY]

Course plan

Academic Year 2018-19

Semester 2

PROGRAMME OUTCOME

	PROGRAMME OUTCOME
	Critical Thinking: Take informed actions after identifying the assumptions that frame our
PO 1	thinking and actions, checking out the degree to which these assumptions are accurate
101	and valid, and looking at our ideas and decisions (intellectual, organizational, and
	personal) from different perspectives.
	Effective Communication: Speak, read, write and listen clearly in person and through
PO 2	electronic media in English and in one Indian language, and make meaning of the word by
	connecting people, ideas, books, media and technology.
	Effective Citizenship: Demonstrate empathetic social concern and equity centered
PO 3	national development, and the ability to act an informed awareness of issues and
	participate in civic life through volunteering.
PO 4	Environment and Sustainability: Understand the issues of environmental contexts and
FU 4	sustainable development.
PO5	Ethics: Recognise different value systems including your own, understand the moral
FOJ	dimensions of your decisions, and accept responsibility for them.
PO 6	Global Perspective: Understand the economic, social and ecological connections that link
100	the world's nations and people.

BACHELOR OF COMPUTER APPLICATIONS [MOBILE APPLICATIONS AND CLOUD TECHNOLOGY]

	PROGRAM SPECIFIC OUTCOMES			
PSO 1	Apply the theoretical foundations of computer science in modelling and developing			
P30 1	solutions to the complex and real world problems.			
	Comprehend, explore and build up computer programs, applications in the allied areas			
PSO 2	like Algorithms, Multimedia, Web Design and android applications for efficient design of			
	computer-based systems that meet the needs of industry and society.			
PSO 3	Develop skills in android and cloud technology development so as to enable the			
PSU 3	graduates to take up employment/self-employment in global technical market.			
PSO 4	Apply knowledge of layered network models, protocols, technologies, topologies and			
	security policies for building network and internet based applications.			

Course Structure

Course Code	Title Of The Course	No. Hrs./Wee k	Credi ts	Total Hrs./Sem
U2CCENG2	Critical Thinking, Academic Writing &	5	4	90
	Presentation			
U2CPCMT2	Discrete Mathematics and Numerical	4	4	72
	Analysis			
U2CRBCA4	Operating system	4	3	72
U2CRBCA5	OOPS with C++	4	3	72
U2CRBCA6	Data structures using 'C'	4	3	72
U2ARESC1	Environmental Studies	5	4	75

U2PRBCA3	OOPS with C++ - Practical	2	1	36
U2PRBCA4	Data structures using 'C' - Practical	2	1	36

PROGRAMME	BACHELOR OF COMPUTER APPLICATIONS	SEMESTER	2
COURSE CODE AND TITLE	U2CCENG2: CRITICAL THINKING, ACADEMIC WRITING & PRESENTATION	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	90
FACULTY NAME	Bijo Mathew		

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Comprehends fundamental concepts of critical reasoning and develops the capacity to read and respond critically, drawing conclusions, generalizing, differentiating fact from opinion and creating their own arguments.	PO2	U
CO 2	Develops appropriate and impressive writing styles for various contexts.	PO2	A
CO 3	Write and correct structural imperfections and edit what they have written	PO2	U
CO 4	Develops capacity for making academic presentations effectively and impressively.	PO2	An

Sessions	Торіс	Method	Course Outcome	Remark s/Refer ence
1-2	Introduction to Critical Thinking	Lecture	CO 1	
3 – 4	Reasoning and Arguments	Discussion	CO1	
5 – 6	Deductive and Inductive Arguments	Lecture	CO1	
7 – 8	Fallacies	Lecture	CO1	
9 – 10	Inferential Comprehension	Reading Exercises	CO1	
11 – 12	Critical Thinking and Academic Writing	Lecture	CO1	
13 – 14	Critical Thinking and Academic Writing	Exercises	CO1	

15 – 16	Writing Models	Introductory Lecture	CO2
17 – 18	Writing Letters	General Principles	CO2
19 - 20	Writing a Letter to the Editor	Exercise - 1	CO2
21 – 22	Letter to the Editor	Discussion on the	CO2
		Samples done	CO2
23 – 24	Resume	General Guidelines	CO2
25 – 26	Resume Writing	Writing Exercise	CO2
27 – 28	Resume Writing	Discussion on the samples	
29 - 30	Covering Letter	General Introduction and Writing Exercise	CO2
31 – 32	Covering Letter	Discussion on the samples	CO2
33 – 34	Emails	General Instructions and Writing Exercise	CO2
35 – 36	Emails	Discussion on the Samples	CO2
37 – 38	Interview Skills	Discussion on the general principles	CO2
39 – 40	Group Discussion	Practical sessions and Evaluation	CO2
41 – 42	Accuracy in Academic writing	Lecture	СО3
43 – 44	Articles and Determiners	Lecture and discussion	CO3
45 – 46	Nouns and Pronouns	Lecture	CO3
47 – 48	Subject-verb agreement	Lecture and discussion	CO3
49 - 50	Phrasal verbs	Lecture	CO3
51 – 52	Modals	Lecture	CO3
53 - 54	Tenses	Lecture and demonstration	CO3
55 – 56	Conditional clauses	General Instructions and Writing Exercise	CO3
57 - 58	Relative Pronouns	Lecture and demonstration	CO3
59 – 60	Passive Voices	Lecture and illustration	CO3
61 - 62	Conjunctions	Lecture	CO3
63 – 64	Embedded questions	Demonstration	CO3

65 – 66	Punctuations and Abbreviations	General Instructions and Writing Exercise	CO3
67 – 68	Soft skills for academic presentations	Presentation and lecture	CO4
69 – 70	Effective communication skills	Lecture	CO4
71 – 72	How to structure presentation	Lecture and Demonstration	CO4
73 – 74	Flip Charts, OHP, Power point presentation	Demonstration	CO4
75 – 76	Clarity and brevity in presentation	Lecture	CO4
77 – 78	Interaction and persuasion	Lecture	CO4
79 – 81	Interview skills	Face to face interaction, demonstration	CO4
82 – 84	Group Discussion	Demonstration and Lecture	CO4
85 – 87	Group Discussion	Demonstration and Lecture	CO4
88 - 90	Revision	Discussion and revising the topics	CO4

ASSIGNMENT

F			Topic of Assignment & Nature of		
		Data of completion	assignment (Individual/Group –	Course	
		Date of completion	Written/Presentation – Graded or Non-	Outcome	
			graded etc)		
	1	By february	Draft a Resume for applying for the career you	CO 2	
	T	Бутергиату	wish to choose		

REFERENCE

• Marilyn Anderson, Pramod K Nayar and Madhucchandra Sen. Critical Thinking, Academic Writing and Presentation Skills. Pearson Education and Mahatma Gandhi University

PROGRAMME	BACHELOR OF COMPUTER APPLICATIONS	SEMESTER	2
COURSE CODE AND TITLE	U2CPCMT2: DISCRETE MATHEMATICS AND NUMERICAL ANALYSIS	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	SIMI JASIL		

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Apply the basic concepts in combinatorial graph theory in	PSO1	А
	science, business and industry		
CO 2	Apply graph theoretical algorithms to solve problems in daily	PO1, PSO2, PSO3	А
	life.		
CO 3	Apply methods to solve system of equations.	PO1, PO2, PSO1	А
CO 4	Apply numerical methods for solving mathematical problems	PO1, PO2, PSO1,	An
	that arise in Science and Engineering	PSO2,PSO4	
CO 5	Appreciate the need of access control and protection in an	PO1, PO2, PO3,	U
	operating system	PO4, PO5,	
		PSO2, PSO3	

CL* Cognitive Level

	CO - PO/PSO Mapping									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1							3			
CO 2	3							2	2	
CO 3	1	2					3	2		2
CO 4	1	2					2	2		2
CO 5	2	2	2	2	2			2	2	

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	MODULE I			
1	The theory of counting	РРТ	video	CO 1
2	The multiplication rule	PPT/Lecture		CO 1
3	Ordered sample and permutations	PPT/Lecture		CO 1
4	ordered sample and permutations problems	PPT/Lecture	e-resource	CO 1
5	unordered samples without repetition	PPT/Lecture		CO 1
6	unordered samples without repetition problems	PPT/Lecture		CO 1
7	permutations involving indistinguishable objects	Lecture		CO 1

8	permutations involving indistinguishable objects problems	Lecture		CO 1
9	multinomial co-efficient	Lecture		CO 1
10	unordered samples with repetition	Lecture		CO 1
11	unordered samples with repetition problems	PPT/Lecture		CO 1
12	permutation involving indistinguishable objects	PPT/Lecture		CO 1
13	permutation involving indistinguishable objects problems	PPT/Lecture		CO 1
14	Revision			
	MODULE II			
15	Leonhard Euler and the seven bridges of Konigsberg	PPT/Lecture		CO 2
16	trees and spanning trees	Lecture	video	CO 2
17	minimal spanning trees	Lecture		CO 2
18	minimal spanning trees problems	Lecture		CO 2
19	binary trees	Lecture	e-resource	CO 2
20	tree searching	PPT/Lecture		CO 2
21	Planar graphs	PPT/Lecture		CO 2
22	Euler"s theorem	PPT/Lecture		CO 2
23	Euler"s theorem problems	PPT/Lecture		CO 2
24	Problems on planar, euler graphs	Lecture		CO 2
25	Revision			
26	CIA I			
27	The shortest path problem	Lecture		CO 2
28	Dijkstras Algorithm	PPT/Lecture		CO 2
29	two "all-pairs" Algorithm	PPT/Lecture		CO 2
30	Floyd"s Algorithm and	PPT/Lecture		CO 2
31	Marshal"s Algorithm.	PPT/Lecture		CO 2
32	Revision			
	MODULE III			
33	Fixed point iteration: x=g(x) method	PPT/Lecture		CO 3
34	Fixed point iteration: x=g(x) method problem	Lecture		CO 3
35	Fixed point iteration: x=g(x) method problem	Lecture	video	CO 3
36	Newton"s method	Lecture		CO 3
37	Newton"s method problem	Lecture		CO 3
38	Newton"s method problem	PPT/Lecture	e-resource	CO 3
39	Solution of linear system by Gaussian elimination	PPT/Lecture		CO 3
40	Solution of linear system by Gaussian elimination problem	Lecture		CO 3
41	Solution of linear system by Gaussian elimination problem	Lecture		CO 3
42	Gauss-Jordon method –Iterative method	Lecture		CO 3
		Lecture		CO 3
43	Gauss-Jordon method problems	Lecture		05

44	Gauss-Jordon method problems	Lecture		CO 3
45	Gauss-Seidel method	Lecture		CO 3
46	Gauss-Seidel method problems	Lecture		CO 3
47	Gauss-Seidel method problems	Lecture		CO 3
48	Inverse of a matrix by Gauss Jordon method.	Lecture		CO 3
	Inverse of a matrix by Gauss Jordon method	Lecture		CO 3
49	problems			
	Inverse of a matrix by Gauss Jordon method	Lecture		CO 3
50	problems			
51	Revision			
52	Revision			
	MODULE IV			
53	Differentiation using interpolation formulae	Lecture		CO 4
	Differentiation using interpolation formulae	Lecture		CO 4
54	problems			
	Differentiation using interpolation formulae	Lecture		CO 4
55	problems			
56	Numerical integration by trapezoidal rule	Lecture		CO 4
	Numerical integration by trapezoidal rule	Lecture	video	CO 4
57	problems	Lastruca		<u> </u>
58	Numerical integration by trapezoidal rule problems	Lecture		CO 4
		Lecture		CO 4
59	Numerical integration by Simpson [*] s 1/3 rule Numerical integration by Simpson [*] s 1/3 rule	Lecture		CO 4
60	problems	Lecture	e-resource	CO 4
00	Numerical integration by Simpson ^s 1/3 rule	Lecture		CO 4
61	problems	Lecture		
62	Numerical integration by Simpson's 3/8 rule	Lecture		CO 4
_	Numerical integration by Simpson ^s 3/8 rule	Lecture		CO 4
63	problems			
	Numerical integration by Simpson ^s 3/8 rule	Lecture		CO 4
64	problems			
65	Single step methods: Taylor series method	Lecture		CO 4
66	Taylor series method problems	Lecture		CO 4
67	Taylor series method problems	PPT/Lecture		CO 4
68	Euler method for first order equation	PPT/Lecture		CO 4
	Fourth order Runge–Kutta method for solving	PPT/Lecture		CO 4
69	first and second order equations.			
70	Revision			
71	Revision			
72	Revision			

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	24/11/2018	Problems on the multiplication rule, unordered samples without repetition, permutations involving indistinguishable objects	CO 2
2	15/12/2018	Problems on Dijkstras Algorithm, two "all- pairs" Algorithm, Floyd"s Algorithm and Marshal"s Algorithm	
3	15/1/2019	Problems on Gauss-Seidel method,Gauss Jordon method, Gaussian elimination method	CO 3
4	18/2/2019	Problems on trapezoidal, Simpson [*] s 1/3 and 3/8 rule,Taylor series method,Fourth order Runge–Kutta method	

REFERENCES

- Engineering Mathematics, N.P. Bali, Manish Goyal
- Petergray Logic, Algebra and databases (chapter 3), Affiliated East West press pvt Ltd.
- Robert J mcEliece, Robert B Ash and Carol Ash Introduction to discrete mathematics (chapter 1,2 and 4), Mc.Graw Hill

PROGRAMME	BACHELOR OF COMPUTER APPLICATIONS	SEMESTER	2
COURSE CODE AND TITLE	U2CRBCA4: OPERATING SYSTEM	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	SANTHOSH KUMAR K P		

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Identify mechanism to handle processes, memory, I/O	PO1,PO2, PO6,	U
	devices, and files and develop an appropriate algorithm for	PSO2, PSO3	
	it.		
CO 2	Discuss issues of Process Management including process	PO1, PSO2,	А
	structure, synchronization, scheduling and communication.	PSO3	
CO 3	Interpret the reasons for deadlock state, and the solution	PO1, PO2, PSO1	U
	methods to handle it		
CO 4	Differentiate type of memory management techniques used	PO1, PO2, PSO1,	An
	by Operating Systems	PSO2,PSO4	
CO 5	Appreciate the need of access control and protection in an	PO1, PO2, PO3,	U
	operating system	PO4, PO5,	
		PSO2, PSO3	

CL* Cognitive Level

	CO - PO/PSO Mapping									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	2				3		2	2	
CO 2	3							2	2	
CO 3	1	2					3			
CO 4	1	2					2	2		2
CO 5	2	1	3	2	2			2	2	

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	VALUE ADDITIONS	COURSE OUTCOME
	MODULE I			
1	Introduction to Operating System	PPT	video	CO 1
2	Objectives and Functions of OS	PPT/Lecture		CO 1
3	Objectives and Functions of OS	PPT/Lecture		CO 1
4	Objectives and Functions of OS	PPT/Lecture	e-resource	CO 1
5	Evolution of OS	PPT/Lecture		CO 1
6	Evolution of OS	PPT/Lecture		CO 1

7	OS Structures	Lecture		CO 1
8	OS Components	Lecture		CO 1
9	OS Services	Lecture		CO 1
10	OS Services	Lecture		CO 1
11	System calls	PPT/Lecture		CO 1
12	System programs	PPT/Lecture		CO 1
13	Virtual Machines	PPT/Lecture		CO 1
14	Revision			001
	MODULE II			
15	Concept of Process	PPT/Lecture		CO 2
16	Process scheduling	Lecture		CO 2
17	Co-operating processes, Operations on	Lecture		CO 2
	processes			
18	Inter process communication	Lecture		CO 2
19	Communication in client-server systems	Lecture		CO 2
20	Introduction to Threads	PPT/Lecture		CO 2
21	Single and Multi-threaded processes and its benefits	PPT/Lecture		CO 2
22	User and Kernel threads	PPT/Lecture		CO 2
23	Multithreading models, Threading issues	PPT/Lecture		CO 2
24	Scheduling criteria, Scheduling Algorithms	Lecture		CO 2
25	Scheduling criteria, Scheduling Algorithms	Lecture		CO 2
26	CIA-1			
27	Multiple Processor Scheduling, Real-time Scheduling	Lecture		CO 2
28	Algorithm Evaluation, Process Scheduling Models	Lecture		CO 2
29	Mutual Exclusion, Critical – section problem, Synchronization hardware	PPT/Lecture		CO 2
30	Semaphores, Classic problems of synchronization	PPT/Lecture		CO2
31	Critical Regions, Monitors, OS Synchronization, Atomic Transactions	PPT/Lecture		CO 2
32	Revision			
	MODULE III			
	Deadlocks: System Model, Deadlock	PPT/Lecture		CO 3
33	characterization			
34	Methods for handling Deadlocks	PPT/Lecture		CO 3
35	Deadlock prevention, Deadlock Avoidance	PPT/Lecture		CO 3
36	Deadlock Detection, Recovery from Deadlock	Lecture	Quiz	CO 3
37	Memory Management: Logical and physical Address Space	Lecture	Q & Ans Session	CO 4
38	Swapping	PPT/Lecture		CO 4
39	Contiguous Memory Allocation	PPT/Lecture		CO 4
40	Paging, Segmentation with Paging	PPT/Lecture	1	CO 4

41	Virtual Management: Demand paging, Process creation	PPT/Lecture		CO 4
42	Page Replacement Algorithms, Allocation of Frames	Lecture		CO 4
43	Thrashing	PPT/Lecture		CO 4
44	Operating System Examples, Page size and other considerations, Demand segmentation	PPT/Lecture		CO 4
45	File-System Interface: File concept, Access Methods, Directory structure	PPT/Lecture		CO 4
46	File- system Mounting, File sharing, Protection and consistency semantics	PPT/Lecture		CO 4
47	File-System Implementation: File-System structure	PPT/Lecture		CO 4
48	File-System Implementations	PPT/Lecture		CO 4
49	Directory Implementation,	PPT/Lecture		CO 4
50	Allocation Methods	PPT/Lecture		CO 4
51	Free-space Management, Efficiency and Performance, Recovery	PPT/Lecture		CO 4
52	Disk Management: Disk Structure, Disk Scheduling	PPT/Lecture	Video	CO 4
53	Disk Management, Swap-Space Management	PPT/Lecture		CO 4
54	Disk Attachment, stable-storage Implementation	PPT/Lecture		CO 4
55	Revision			
56	Protection: Goals of Protection	Lecture	Debate	CO 5
57	Domain of Protection	PPT/Lecture		CO 5
58	Access Matrix	PPT/Lecture		CO 5
59	Implementation of Access Matrix	PPT/Lecture		CO 5
60	Revocation of Access Rights	PPT/Lecture		CO 5
61	Capability- Based Systems	PPT/Lecture		CO 5
62	Language – Based Protection	PPT/Lecture		CO 5
	CIA – II			
63	Security: Security Problem	Lecture	Demo video	CO 5
64	User Authentication	Lecture		CO 5
65	One – Time Password	Lecture	Group discussion	CO 5
66	Program Threats	Lecture		CO 5
67	System Threats	PPT/Lecture		CO 5
68	Cryptography	PPT/Lecture		CO 5
69	Computer – Security Classifications	PPT/Lecture		CO 5
70	Revision			

71	Revision		
72	Revision		

Date of completio		Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	4/1/2019	Process synchronization problems	CO 2
2	28/1/2019	Memory management problems	CO 3

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	2/2/2019	OTP: security (Group Discussion)	CO 5

REFERENCES

- Milan Milonkovic, Operating System Concepts and design, II Edition, McGraw Hill 1992.
- Tanenbaum, Operation System Concepts, 2nd Edition, Pearson Education.
- Silberschatz / Galvin / Gagne, Operating System,6th Edition,WSE (WILEY Publication)

Web resource references:

• https://en.wikipedia.org/wiki/Operating_system

PROGRAMME	BACHELOR OF COMPUTER APPLICATIONS	SEMESTER	2
COURSE CODE AND TITLE	U2CRBCA5: OOPS WITH C++	CREDIT	3
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	CHRISTY JACQUELINE		

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	Understand the basic concepts of OOPS.	PO1,PO2, PO6,	U
		PSO2, PSO3	
CO 2	Discuss real world problems and simulate using OOPS	PO1, PSO2,	А
	concepts.	PSO3	
CO 3	Apply the concepts of Object oriented programming	PO1, PO2, PSO1	А
CO 4	Illustrate the process of data file manipulations using c++	PO1, PO2, PSO1,	А
		PSO2,PSO4	
CO 5	Apply concepts of templates and exception handling	PO1, PO2, PO3,	А
		PO4, PO5,	
		PSO2, PSO3	

CL* Cognitive Level

	CO - PO/PSO Mapping									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	2				3		2	2	
CO 2	3							2	2	
CO 3	1	2					3			
CO 4	1	2					2	2		2
CO 5	2	2	2					2	2	

SESSION	ΤΟΡΙϹ	LEARNING	VALUE	COURSE
	MODULE	RESOURCES	ADDITIONS	OUTCOME
1	MODULE I	DDT		CO 1
1	Introduction to Programming concepts	PPT		CO 1
2	Comparison between Procedure versus Object oriented programming	PPT/Lecture		CO 1
3	Data types and its classification	PPT/Lecture		CO 1
4	Input and Output statements	PPT/Lecture		CO 1
5	Control statements	PPT/Lecture		CO 1
6	Decision and Looping statements	PPT/Lecture		CO 1
7	Introduction to Structures	Lecture		CO 1
8	Unions	Lecture		CO 1
9	Class	Lecture		CO 1
10	Access Specifier	Lecture		CO 1
11	Arrays, Class and Structures comparison	PPT/Lecture		CO 1
12	OOPS concepts	PPT/Lecture		CO 1
13	Class concept	PPT/Lecture	E-resource	CO 1
14	Enumerated data type and usage	PPT/Lecture		
	MODULE II	L ·	I	
15	Class definition	PPT/Lecture		CO 2
16	Objects as function arguments	Lecture		CO 2
17	Returning objects from function	Lecture		CO 2
18	Scope resolution operator	Lecture		CO 2
19	Member function defined outside the class	Lecture		CO 2
20	Structure and class	PPT/Lecture		CO 2
21	Functions in c++	PPT/Lecture		CO 2
22	Built in functions	PPT/Lecture		CO 2
23	Call by value and call by reference	PPT/Lecture		CO 2
24	Overload function	Lecture		CO 2
25	Storage class	Lecture		CO 2
26	CIA-1	•		
27	Constructor	Lecture		CO 2
28	Types of constructor	Lecture		CO 2
29	Dynamic constructor	PPT/Lecture		CO 2
30	Constructor overloading	PPT/Lecture		CO2
31	Copy constructor	PPT/Lecture		CO 2
32	Destructor, Manipulating private data members	5		
	MODULE III			
33	Defining operator overloading	PPT/Lecture		CO 3
34	Overloading unary operator and binary operator	PPT/Lecture		CO 3
	Manipulation of string using overloaded	PPT/Lecture		CO 3
35	operator		Qui-	<u> </u>
36	Data conversion	Lecture	Quiz	CO 3

37	Conversion between basic types	Lecture		CO 3
38	Conversion between objects and basic types	PPT/Lecture		CO 3
39	Conversion between objects of different classes	PPT/Lecture		CO 3
40	Base class and derived class	PPT/Lecture		CO 3
41	Defining derived class	PPT/Lecture		CO 3
42	Protected, public and private inheritance	Lecture		CO 3
43	Constructors and destructors in derived class	PPT/Lecture		CO 3
44	Levels of inheritance	PPT/Lecture		CO 3
45	Single Inheritance	PPT/Lecture		CO 3
46	Multiple and Multilevel	PPT/Lecture	E-resource	CO 3
47	Hierarchical inheritance	PPT/Lecture		CO 3
48	Hybrid Inheritance	PPT/Lecture		CO 3
	MODULE IV			
49	Pointers	PPT/Lecture		CO 4
50	Pointer declaration and access	Lecture		CO 4
51	Pointer to void and arrays	PPT/Lecture		CO 4
52	Pointer constant and constant pointer	PPT/Lecture	Video	CO 4
53	Pointers and functions	PPT/Lecture		CO 4
54	Pointer arrays	PPT/Lecture		CO 4
55	Arrays of pointer to string	Lecture		CO 4
56	Memory Management	Lecture	Quiz	CO 4
57	New and delete, pointer to object	PPT/Lecture		CO 4
58	Referencing members using pointers	PPT/Lecture		CO 4
59	Self containing class	PPT/Lecture		CO 4
60	This pointer concepts	PPT/Lecture		CO 4
61	Virtual Function concepts	PPT/Lecture		CO 4
62	Friend function and static function	PPT/Lecture		CO 4
	CIA – II			
	MODULE V			
63	Templates concepts	Lecture	Demo video	CO 5
64	Types of templates	Lecture		CO 5
65	Member function templates	Lecture	Quiz	CO 5
66	Template arguments	Lecture		CO 5
67	Exception handling	PPT/Lecture		CO 5
68	C++ stream and C++ stream classes	PPT/Lecture		CO 5
69	Unformatted I/O operators	PPT/Lecture		CO 5
70	Manipulators	Lecture		CO 5
71	Revision			
72	Revision			

SI.No	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	27/12/2018	Inheritance and types of inheritance	CO 2
2	15/1/2019	Pointer Concepts	CO 3

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

Sl.No	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	5/2/2019	Templates and Exception Handling	CO 5

REFERENCES

- E. Balaguruswamy: Object Oriented Programming with C++, Tata McGraw Hill. Publications
- Strousstrup: The C++ Programming Language, Pearson Edition, 3rd Edition
- Lafore Robert: Object Oriented Programming in Turbo C++, Galgotia Publications
- Lippman: C++ Primer, 3/e Pearson Education
- C++ completer reference by Herbert Schildt, Tata McGraw Hill Publications.

Web resource references:

• http://homepage.divms.uiowa.edu/~slonnegr/oosd/22Exceptions.pdf

PROGRAMME	BACHELOR OF COMPUTER APPLICATIONS	SEMESTER	2	
COURSE CODE AND TITLE	U2CRBCA6: DATA STRUCTURES USING C	CREDIT	3	
HOURS/WEEK	4	HOURS/SEM	72	
FACULTY NAME	TY NAME SHAILESH S			

	COURSE OUTCOMES	PO/ PSO	CL
CO 1	The concept of elementary data organization, Dynamic	PO1,PO2	U
	memory allocation, Pointer, recursion and string operation		
CO 2	Algorithm and its efficiency measure by means of asymptotic	PO1, PSO2,	An
	notation, analyze algorithms and its correctness.	PSO3	
CO 3	Ability to understand different sorting algorithm.	PO1, PO2, PSO1	А
CO 4	Ability to handle operations like searching, insertion,	PO1, PO2, PSO1,	А
	deletion, traversing mechanism etc. on various data	PSO2,PSO4	
	structures- Stack, Queue, Linked List		
CO 5	Ability to have knowledge of tree and graphs concepts.	PO1, PO2, PO3,	An
		PO4, PO5,	
		PSO2, PSO3	

CL* Cognitive Level

CO - PO/PSO Mapping										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	2								
CO 2	3							3		
CO 3	1	2					3			
CO 4	1	2					2	2		2
CO 5	2	2	2	3	3			2	2	

SESSION	ΤΟΡΙϹ	LEARNING	VALUE	COURSE OUTCOME			
		RESOURCES	ADDITIONS				
	MODULE I	DDT	<u>ь.</u>	00.1			
1	Syllabus Discussion	PPT	Discussion	CO 1			
2	Introduction and classification of data structure & Elementry data organization	PPT/Lecture		CO 1			
3	Introduction to Algorithm & complexity			CO 1			
4	Complexity analysis of algorithm	PPT/Lecture		CO 1			
5	Character array & String processing	PPT/Lecture		CO 1			
6	String processing functions	PPT/Lecture		CO 1			
7	Pointer, Accessing variable and structure pointer.	Lecture		CO 1			
8	Memory allocation	Lecture		CO 1			
9	Dynamic Memory Allocation functions	Lecture		CO 1			
10	Concept of Recursion	Lecture		CO 1			
11	Examples of Recursion	PPT/Lecture		CO 1			
12	Revision						
13	Revision						
14	Revision						
	MODULE II						
15	Introduction to Searching	PPT/Lecture		CO 2, CO3			
16	Linear Search and analysing complexity	Lecture		CO 2, CO3			
17	Binary Search	Lecture		CO 2, CO3			
18	Binary Search complexity analysis	Lecture		CO 2, CO3			
19	Introduction to Sorting Algorithms	Lecture		CO 2, CO3			
20	Insertion sort algorithm & analysis	PPT/Lecture		CO 2, CO3			
21	Insertion sort complexity analysis	PPT/Lecture		CO 2, CO3			
22	Bubble sort algorithm	PPT/Lecture		CO 2, CO3			
23	Bubble sort complexity analysis	PPT/Lecture		CO 2, CO3			
24	Quick sort algorithm	Lecture		CO 2, CO3			
25	Quick sort complexity analysis	Lecture		CO 2			
26	CIA-1						
27	Selection Sort algorithm & analysis	Lecture		CO 2			
28	Selection Sort complexity analysis	Lecture		CO 2			
29	Merge Sort algorithm	PPT/Lecture		CO 2			
30	Merge Sort complexity analysis	PPT/Lecture		CO2			
31	Summary of Module II	PPT/Lecture		CO 2			
32	Revision						
	MODULE III						
33	Introduction to Stack	PPT/Lecture		CO 3			
34	Array representation of stack PPT/Le			CO 3			
35	Application of Stack	PPT/Lecture		CO 3			
36	Infix to Post fix conversion & evaluation	Lecture		CO 3			
37	Infix to Post fix conversion & evaluation	Lecture		CO 3			

	(Implementation)			
38	Queue definition and Application PPT/Lecture			CO 3
39	Array representation PPT/Lecture			
40	Types of queue		CO 3	
41	Types of queuePPT/LectureOperations on QueuePPT/Lecture			CO 3
42	Operations on Queue	Lecture		CO 3
43	Summary of Module III	PPT/Lecture	CO 3	
44	Revision	vision PPT/Lecture		CO 3
	MODULE	IV		
45	Link List	PPT/Lecture		CO 3
46	Types of Link List	PPT/Lecture	E-resource	CO 3
47	Application of Linked list	PPT/Lecture		CO 3
48	LL -advantage & disadvantage	PPT/Lecture		CO 3
49	Operation on singly link list	PPT/Lecture		CO 4
50	Operation on singly link list	Lecture		CO 4
51	Operation on doubly link list	PPT/Lecture		CO 4
52	Operation on doubly link list	PPT/Lecture	Video	CO 4
53	Operation on circular link list	PPT/Lecture		CO 4
54	Summary of Module IV	PPT/Lecture		CO 4
55	Revision	Lecture		CO 4
	CIA			
	MODULE	1		60.4
56	Tree definition and application	Lecture		CO 4
57	Different tree terminology	PPT/Lecture		CO 4
58	Binary tree & its type	PPT/Lecture		CO 4
59	Implementation of Binary tree	PPT/Lecture		CO 4
60		ry Search Tree & its application PPT/Lecture		CO 4
61	BST Travasal	PPT/Lecture		CO 4
62	Implementation of BST	PPT/Lecture		CO 4
63	Heap Tree	Lecture	Demo video	CO 5
64	Graph concept and application	Lecture		CO 5
65	Representation of graph	Lecture	Quiz	CO 5
66	Graph BFS Travasal	Lecture		CO 5
67	Implementation of BFS	PPT/Lecture		CO 5
68	Graph DFS Travasal	PPT/Lecture		CO 5
69	Implementation of DFS	PPT/Lecture		CO 5
70	Summary of Module V	Lecture		CO 5
71	Revision			
72	Revision			

SI.No	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	27/11/2018	Infix to Postfix conversions Problems	CO 4
2	20/12/2018	Postfix evaluation problems	CO 4
3	2/1/2019	Inorder, Preorder, Post order traversal problems	CO 5
4	20/01/2019	DFS traversal problems	CO 5
4	14/02/2019	BFS traversal Problems	CO 5

GROUP ASSIGNMENTS/ACTIVITES – Details & Guidelines

SI.No	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non- graded etc)	Course Outcome
1	5/2/2019	Tree traversal problems	CO 5

REFERENCES

- Yashwant Kanetka Let us C , 6th Edition, PBP Publication.
- Richie and Kenninghan, (2004), The C programming Language , BPB Publication.
- Balaguruswamy (2005), Programming in ANSI C, 3rd Edition, Tata McGraw Hill.