SACRED HEART COLLEGE (AUTONOMOUS)

Department of Physics

M.Sc. Physics

COURSE PLAN

Semester 1

2016 - 17

PROGRAMME	MASTERS OF PHYSICS	SEMESTER	1
COURSE CODE AND TITLE	16P1PHYT01: MATHEMATICAL METHODS IN PHYSICS – I	CREDIT	4
Theory HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	Prof. ALEX SHINU SCARIA		

COURSE OBJECTIVES

To explain the concepts of different mathematical methods in physics

To apply to solve different physical Problems.

To categorize different types of matrices

To explain the concepts of differential equations to solve physical problems

SESSION	ТОРІС	LEARNING RESOURCES	REMARKS
	MODULE I		-
1&2	Integral forms of gradient, divergence and curl, Line, surface and volume integrals	Lect+ discussion	
3 & 4	Stoke's, Gauss's and Green's theorems	Lect+ discussion	
5&6	Potential theory - scalar, gravitational and centrifugal potentials	Lect	
7 & 8	Orthogonal curvilinear coordinates	Lect+ discussion	
9 & 10	gradient, divergence and curl in Cartesian	Lect + discussion	
11 & 12	gradient, divergence and curl in spherical and cylindrical co-ordinates	Lect	
13 & 14	Equation of continuity - Linear vector spaces	Lect	
15	Hermitian, unitary and projection operators with their properties	discussion	
16, 17	inner product space - Schmidt orthogonalization	Lect	
18	Hilbert space - Schwartz inequality	Lect+ Group Activity	
	MODULE		
	11		
19	Direct sum and direct product of matrices	Lect	
20	diagonal matrices	Lect	
21	Matrix inversion (GaussJordan inversion method)	Group discussion	
22	orthoganal, unitary and Hermitian matrices, normal matrices	Lect	
23	Pauli spin matrices	Lect	

24	Cayley-Hamilton theorem	Group discussion
25 & 26	Similarity transformation - unitary and	Lect
	orthogonal transformation	
27	Eigen values and eigenvectors	Group discussion
28	Diagonalisation using normalized eigenvectors	Lect
29 & 30	Solution of linear equation-Gauss elimination	Lect + discussion
	method	
31	Normal modes of vibrations.	Lect
32 & 33	Elementary probability theory, Random variables	Lect +Group
		discussion
34 & 35	Binomial, Poisson and Gaussian	Lect + discussion
	distributions	
36	central limit theorem.	Lect
27 9. 20	Definition of tonsors, basis properties of tonsors	Loct
20	Covariant, contravariant and mixed tonsors	
39		
40	Metric tensor and its properties	
41 & 42		
43 & 44	Christoffel such als and their transformation laws	
45 & 46	Christoffel symbols and their transformation laws	Lect + discussion
47	covariant differentiation	Lect + discussion
48	geodesic equation	Lect.
49 & 50	Riemann-Christoffel tensor	Lect
51 & 52	Ricci tensor and Ricci scalar.	Lect
MODULE IV		
53	Gamma and Beta functions	seminar +
54 55 0 56		discussion
54, 55 & 56	different forms of beta and gamma functions,	seminar +
	Pieze delte function	
5/ & 58	Dirac deita function	seminar + discussion
59 & 60	Kronecker Delta - properties and applications	cominar +
55 & 00	Roneeker beita properties and applications	discussion
61 & 62	Bessel's differential equation – Bessel and	seminar +
	Neumann functions	discussion
63 & 64	Legendre differential equation - Associated	seminar +
	Legendre functions	discussion
65 & 66	Hermite differential equation	Lect + discussion
67 & 68	Laguerre differential equation	Lect + discussion
69 & 70	Associated Laguerre polynomials. (Generating	Lect + discussion
	function, recurrence relations, and orthogonality	
	condition for all functions)	
71	Rodrigue's formula	Lect + discussion
72	Problems	Group Activity

	Date of completion	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)	
1	Before 1 st Internal	Individual- Graded – 3 sets	
2	Before 2 nd Internal	Individual- Graded -3 sets	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

ASSIGNMENTS– Details & Guidelines – Will be notified prior to the announcement of the assignment – marks will be scaled to 5.

SEMINARS will be given to each student (20 mins duration) - 5 marks ()

Basic Reference:

1) Mathematical Methods for Physicists, G.B. Arfken&H.J. Weber 4th Edition, Academic Press.

2) Mathematical Physics, P.K Chattopadhyay, New Age International (chapter 7)

3) Theory and problems of vector analysis, Murray R. Spiegel (Schaum's outline series)

4) Mathematical methods for Physics and Engineering, K.F. Riley, M.P Hobson, S. J.

Bence, Cambridge University Press (Chapter 24)

5) Introduction to Mathematical Physics, Charlie Harper, PHI

6) Vector analysis and tensors, Schaum's outline series, M.R. Spiegel, Seymour

Lipschutz, Dennis Spellman, McGraw Hill

7) Mathematical Physics, B.S. Rajput, Y. Prakash 9th Ed, PragatiPrakashan (Chapter 10)

8) Tensor Calculus: Theory and problems, A. N. Srivastava, Universities Press

Reference Books:

- 1. Mathematical Physics, B.D. Gupta, VikasPub.House, New Delhi
- 2. Advanced Engineering Mathematics, E. Kreyszig, 7th Ed., John Wiley
- 3. Introduction to mathematical methods in physics, G.Fletcher, Tata McGraw Hill
- 4. Advanced engineering mathematics, C.R. Wylie, & L C Barrett, Tata McGraw Hill
- 5. Advanced Mathematics for Engineering and Physics, L.A. Pipes & L.R. Harvill, Tata McGraw Hill
- 6. Mathematical Methods in Physics, J. Mathew & R.L. Walker, India Book House.
- 7. Mathematical Physics, H.K. Dass, S. Chand & Co. New Delhi.

PROGRAMME	MSc PHYSICS	SEMESTER	1
COURSE CODE AND TITLE	16P1PHYT02: Classical Mechanics	CREDIT	4
Theory HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	NAVYA S L		

COURSE OBJECTIVES

To summarize the concepts of Lagrangian and Hamiltonian formalism, canonical transformation, Poisson bracket

To apply to the problems related to classical mechanics

To explain the concepts of rigid body dynamics

To explain the concepts of principle of equivalence, Einstein's field equations, nonlinear systems

SESSION	ΤΟΡΙϹ	LEARNING RESOURCES	REMARKS	
MODULE I				
1&2	Review of Newtonian and Lagrangian formalism	Lect		
3 & 4	cyclic co-ordinates – conservation theorems and symmetry properties	Lect		
5&6	velocity dependent potentials and dissipation function	Lect		
7	Hamilton's equations of motion	Lect		
8&9	Least action principle – physical significance	Lect+ discussion		
10	Problems	Lect+ discussion		
11	Hamilton's principle	Lect		
12 & 13	calculus of variations	Lect		
14 & 15	examples	Lect + discussion		
16	Lagrange's equations from Hamilton's principle	Lect		
	MODULE II			
17	Stable and unstable equilibrium	Lect+ discussion		
18	two-coupled oscillators	Lect		
19 & 20	Lagrange's equations of motion for small oscillations – normal co-ordinates and normal modes	Lect+ discussion		
21	oscillations of linear tri-atomic molecules	Lect+ discussion		
22	Problems	Lect+ discussion		
23	Equations of canonical transformation	Lect		
24 & 25	examples of canonical transformation – harmonic oscillator	Lect		
26	Poisson brackets - properties	Lect		
27	equations of motion in Poisson bracket form – angular momentum Poisson brackets	Lect		

28	invariance under canonical transformations – Lagrange brackets	Lect
29	Problems	Lect+ discussion
30	Hamilton-Jacobi equation for Hamilton's principal function	Lect
31	harmonic oscillator problem	Lect + discussion
32 & 33	Hamilton - Jacobi equation for Hamilton's characteristic function	Lect
34	action angle variables in systems of one degree of freedom	Lect
35	Hamilton-Jacobi equation as the	Lect
	Schroedinger equation	
36	problems	Lect + discussion
	MODULE III	
37	Reduction to the equivalent one	Lect + discussion
	body problem	
38 & 39	equations of motion and first integrals	Lect + discussion
40 & 41	equivalent one-dimensional problem and classification of orbits	Lect + discussion
42	differential equation for the	Lect + discussion
	orbits	
43	virial theorem	Lect + discussion
44	Kepler problem	Lect + discussion
45	Problems	Lect + discussion
46	Angular momentum - kinetic	Lect + discussion
	energy	
47 & 48	inertia tensor - principal axes	Lect.
49	Euler's angles	Lect
50	infinitesimal rotations	Lect
51	rate of change of a vector - Coriolis force	Lect

52 & 53	Euler's equations of motion of a	Lect	
	symmetric top		
54 & 55	heavy symmetric top with one	Lect + discussion	
	point fixed		
56	problems	Lect + discussion	
	MODULE IV		
57	Principle of equivalence - principle of general covariance	PPT+SEMINAR+clas s activity	
58 & 59	motion of a mass point in a gravitational field – the Newtonian approximation – time dilation	PPT+SEMINAR+clas s activity	
60 & 61	rates of clocks in a gravitational field - shift in the spectral lines	PPT+SEMINAR+clas s activity	
62 & 63	energy- momentum tensor- Einstein's field equations	PPT+SEMINAR+clas s activity	
64	Poisson approximation - problems	PPT+SEMINAR+clas s activity	
65	Linear and non-linear systems	PPT+SEMINAR+clas s activity	
66	integration of linear equation: Quadrature method	PPT+SEMINAR+clas s activity	
67	the pendulum equation	PPT+SEMINAR+clas s activity	
68 & 69	phase plane analysis of dynamical systems – phase curve of simple harmonic oscillator and damped oscillator.	PPT+SEMINAR+clas s activity	
70	phase portrait of the pendulum - bifurcation	PPT+SEMINAR+clas s activity	
71	logistic map – attractors - universality of chaos	PPT+SEMINAR+clas s activity	
72	Lyapunov exponent - fractals -	PPT+SEMINAR+clas	
	fractal dimensions -Problems	s activity	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

		Topic of Assignment & Nature of	
	Date of	assignment (Individual/Group –	
	completion	Written/Presentation – Graded or Non-	
		graded etc)	
1	Before 1 st	Individual- Graded – 3 sets	
	Internal		
2	Before 2 nd	Individual- Graded -3 sets	
	Internal		

ASSIGNMENTS– Details & Guidelines – Will be notified prior to the announcement of the assignment – marks will be scaled to 5.

SEMINARS will be given to each student (20 mins duration) - 5 marks ()

Basic Reference:

- 1. Classical Mechanics, H. Goldstein, C.P. Poole & J.L. Safko, Pearson, 3rd Ed.
- 2. Classical Mechanics, S.L. Gupta, V. Kumar & H.V. Sharma, PragatiPrakashan, 2007
- 3. Classical Mechanics, J.C. Upadhyaya, Himalaya, 2010
- 4. Classical Mechanics, G. Aruldhas, Prentice Hall 2009
- 5. Relativistic Mechanics, SatyaPrakash, Pragathiprakashan Pub
- 6. Deterministic Chaos, N Kumar, University Press

Reference Books:

- 1. Classical Mechanics, N.C. Rana and P.S. Joag, Tata McGraw Hill
- 2. Introduction to Classical Mechanics, R.G. Takwale and P.S. Puranik, TMGH.
- 3. Langrangian and Hamiltonian Mechanics, M.G. Calkin, World Scientific Pub.Co Ltd
- 4. Introduction to General Relativity, R. Adler, M. Bazin, M. Schiffer, TMGH.
- 5. An introduction to general relativity, S. K. Bose, Wiley Eastern.
- 6. The Theory of Relativity, R.K. Pathria, Dover Pub. Inc. NY,2003
- 7. Chaos in Classical and Quantum Mechanics, M.C.Gutzwiller, Springer, 1990.
- 8. Classical Mechanics, G. Aruldhas, Prentice Hall 2009
- 9. Chaotic Dynamics, G.L.Baker&J.P.Gollub, Cambridge Uni. Press, 1996
- 10. Mathematical Methods for Physicists, G.B. Arfken&H.J. Weber 4th Edition

PROGRAMME	MASTER OF SCIENCE (PHYSICS)	SEMESTER	1
COURSE CODE AND TITLE	16P1PHYT03: ELECTRODYNAMICS	CREDIT	4
HOURS/WEEK	4	HOURS/SEM	72
FACULTY NAME	MATHEW GEORGE		

COURSE OBJECTIVES
To outline the concepts of electrodynamics.
To apply Maxwell's Equations in various situations
To apply the concepts of relativity in various cases
To apply the concepts of waveguides.

No of			
Sessions	Торіс	Method	Remarks
	Unit-1 Electrostatic fields in matter and		
	Electrodynamics		
4	Review of Electrostatics and Magnetostatics,	lecture/discussion	
1	Time varying fields and Maxwell's equations,	lecture/discussion	
	Potential formulations, Gauge transformations,		
1	boundary conditions,	lecture/discussion	
1	wave equations and their solutions,	lecture/discussion	
1	Poynting theorem,	lecture/discussion	
2	Maxwell's stress tensor.	lecture/discussion	
	Maxwell's equations in phasor notation. Plane		
1	waves in conducting and non-conducting medium,	lecture/discussion	
3	Polarization,	lecture/discussion	
	Reflection and transmission (Normal and Oblique		
2	incidence),	lecture/discussion	
	Dispersion in Dielectrics, Superposition of waves,		
2	Group velocity.	lecture/discussion	
	Unit-2 Relativistic Electrodynamics		

2	Structure of space time:	lecture/discussion	
2	Four vectors, Proper time and proper velocity,	lecture/discussion	
1	Relativistic dynamics - Minkowiski force,	e, lecture/discussion	
2	Magnetism as a relativistic phenomenon,	omenon, lecture/discussion	
2	Lorentz transformation of electromagnetic field,	lecture/discussion	
3	electromagnetic field tensor,	lecture/discussion	
3	electrodynamics in tensor notation,	lecture/discussion	
	Potential formulation of relativistic		
3	electrodynamics.	lecture/discussion	
	Unit-3 EM Radiation		
2	Retarded potentials,	lecture/discussion	
2	Jefimenkos equations,	lecture/discussion	
3	Point charges, Lienard-Wiechert potential,	lecture/discussion	
2	Fields of a moving point charge,	lecture/discussion	
3	Electric dipole radiation,	lecture/discussion	
2	Magnetic dipole radiation,	lecture/discussion	
2	Power radiated by point charge in motion.	lecture/discussion	
2	Radiation reaction,	lecture/discussion	
2	Physical basis of radiation reaction.	lecture/discussion	
	Unit-4 Antenna, Wave Guides and Transmission		
	Lines		
1	Radiation resistance of a short dipole,	lecture/discussion	
	Radiation from quarter wave monopole or half		
2	wave dipole.	lecture/discussion	
3	Antenna parameters.	lecture/discussion	
	Waves between parallel conducting plane TE. TM		
2	and TEM waves.	lecture/discussion	
2	TE and TM waves in Rectangular wave guides,	lecture/discussion	
	Impossibility of TEM waves in rectangular wave		
1	1 guides. lecture/discussion		
	Transmission Lines-Principles-Characteristic		
3	impedance,	lecture/discussion	

2	standing waves-quarter and half wavelength lines	lecture/discussion	
Total 72			
Sessions			

Assignments/seminars: In addition to lectures students will have to submit assignments given, to strengthen their mastery in the subject. There will also be one seminar, to be given by the students.

References: 1. Introduction to Electrodynamics, Griffiths

- 2. Electromagnetic Waves and Radiating Systems, Balmain and Jordan.
- 3. Other books specified in the syllabus.

PROGRAMME	MSC PHYSICS	SEMESTER	1
COURSE CODE AND TITLE	16P1PHYT04- ELECTRONICS	CREDIT	3
Theory HOURS/WEEK	3	HOURS/SEM	54
FACULTY NAME	Dr. Sumod SG		

COURSE OBJECTIVES
To describe the theoretical aspects of OP-amps
To apply the OP-amp circuits for various Amplifiers
To design the op-amp compensating netwroks
To evaluate problems of Op-amps

SESSI ON	ΤΟΡΙϹ	LEARNING RESOURCES	REMARKS
	MODULE I		
1	Introduction	Lect	
	Differential amplifier – Inverting amplifier –		
	Non-inverting amplifier -		
2	Block diagram representations – Voltage series feedback:	Lect	
3	Negative feedback –	Lect	
4	closed loop voltage gain – Difference input voltage ideally zero	Lect	
5	 Input and output resistance with feedback 	Lect	
6	Bandwidth with feedback – Total output offset voltage with feedback –.	Lect	
7	Voltage follower. Voltage shunt feedback amplifier:	Lect	

8	Closed loop voltage gain – inverting input	Lect	
	terminal and virtual ground -		
9	input and output resistance with feedback –	lect	
5	Bandwidth with feedback -		
10	Total output offset voltage with feedback –	Lect	
11		Lect+ Group	
	Current to voltage converter-	Activity	
12	Inverter, Differential amplifier with one op-	Lect	
	amp		
12			
13	Differential amplifier two op-amps	Lect	
	MODULE II		
14	Input offset voltage –Input bias current –	Lect	
15	input offset current –	Lect	
16	Problems	Lect	
15	Total output offset voltage. Thermal drift –	Loct	
15	Total output onset voltage- mermai unit –		
17	Effect of variation in power supply voltage	Lect	
	on offset voltage –		
18	Change in input offset voltage and input	Lect	
	offset current with time - Noise –		
10	Common mode configuration and CMPP	Loct	
19	Common mode comparation and Clvick.	Lect	
20	DC and AC amplifiers	Lect	
21	 AC amplifier with single supply voltage 	Lect	
22	– Peaking amplifier – Summing	Lect	
23	Scaling, averaging amplifiers –	Lect	
24	Instrumentation amplifier using transducer	Lect	
25	Differential input and differential output	Lect	
	amplifier –		
26	Low voltage DC and AC voltmeter -	Lect	
27	Voltage to current converter with grounded	Lect	
	load –		

28	Current to voltage converter –	Lect	
29	Very high input impedance circuit –	PPT+SEMINAR+cla ss activity	
30	Integrator	PPT+SEMINAR+cla ss activity	
31	Differntiator	PPT+SEMINAR+cla ss activity	
	MODULE III		
32	Frequency response –	Group Activity	
33	Compensating networks –	PPT+SEMINAR+cla ss activity	
34	Frequency response of internally compensated and non compensated op-amps –	PPT+SEMINAR+cla ss activity	
35	High frequency op-amp equivalent circuit –	PPT+SEMINAR+cla ss activity	
36	Open loop gain as a function of frequency	PPT+SEMINAR+cla ss activity	
37	 Closed loop frequency response – Circuit stability - slew rate 	Lect.	
38	Active filters –	Lect	
39	First order LPBWF	Lect	
40	second order low pass Butterworth filter	Lect	
41	- First order HPBWF	Lect	
42	and second order high pass Butterworth filter-	PPT+SEMINAR+cla ss activity	
43	wide band pass filter	PPT+SEMINAR+cla ss activity	
44	narrow band pass filter - wide and	PPT+SEMINAR+cla ss activity	
45	narrow band reject filter- All pass filter –	Group Activity	

46	Oscillators: Phase shift and Wien-bridge oscillators –	PPT+SEMINAR+cla ss activity	
47	square, triangular and	PPT+SEMINAR+cla ss activity	
48	sawtooth wave generators- Voltage controlled oscillator	PPT+SEMINAR+cla ss activity	
49	Problems	PPT+SEMINAR+cla ss activity	
50	Basic comparator- Zero crossing detector- Schmitt Trigger –	Lect.	
51	Comparator characteristics- Limitations of op-amp as comparators-	Lect	
52	Peak detector– Sample and Hold circuit	Lect	
53	Problems	Lect	
54	Revision	Lect	

INDIVIDUAL ASSIGNMENTS/SEMINAR – Details & Guidelines

	Date of completio n	Topic of Assignment & Nature of assignment (Individual/Group – Written/Presentation – Graded or Non-graded etc)
1	Before 1 st Internal	Individual- Graded – 3 sets
2	Before 2 nd Internal	Individual- Graded -3 sets

ASSIGNMENTS– Details & Guidelines – Will be notified prior to the announcement of the assignment – marks will be scaled to 5.

SEMINARS will be given to each student (20 mins duration) - 5 marks (,)

Basic Reference:

1. Op-amps and linear integrated circuits R.A. Gayakwad 4th Edn. PHI.

Reference Books:

- 1. Electronic Devices (Electron Flow Version), 9/E Thomas L. Floyd, Pearson
- 2. Fundamentals of Electronic Devices and Circuits 5th Ed. David A. Bell, Cambridge.
- 3. Linear Integrated Circuits and Op Amps, S Bali, TMH