SACRED HEART COLLEGE (AUTONOMOUS)

Department of Mathematics

M.Sc. Mathematics

Course plan

Academic Year 2016 – 17

Semester 4

COMBINATORICS

TEXT BOOK : CHEN CHUAN-CHONG ,KOH KHEE MENG,PRINCIPLES AND TECHNIQUES IN COMBINATORICS,WORLD SCIENTIFIC,1999.

COURSE OBJECTIVES

To understand permutations and combinations & its applications.

To introduce Pigeonhole principle and Ramsey numbers and its applications.

To understand generating functions and its applications.

To introduce recurrence relation and methods to solve that.

Sessions	Торіс	Method	Remarks/Reference
1	Two basic counting	Lecture,Group	
	principles	discussion	
2	Problems	Group	
		Discussion,Problem	
		solving	
3	Problems, Permutations	Group	
		Discussion, Problem	
		solving	
4	Problems	Group	
		Discussion, Problem	
		solving	
5	Circular permutations	Lecture,Group	
	and Principle of	Discussion, Problem	
	complementation and	solving	
	problems		
6	Problems, Combinations	Lecture,Group	
		Discussion, Problem	
		solving	
7	Problems , S(n, r)	Lecture,Group	
		Discussion, Problem	
		solving	

8	Problems , Injection and	Lecture,Group
	bijection principle	Discussion, Problem
		solving
9	Problems	Group
		Discussion, Problem
		solving
10	Arrangemrnts and	Lecture,Group
	problems	Discussion, Problem
		solving
11	Selection with repetitions	Lecture,Group
		Discussion, Problem
		solving
12	Problems	Lecture,Group
		Discussion, Problem
		solving
13	Distribution problems-	Lecture,Group
	different cases	Discussion, Problem
		solving
14	Problems	Group
		Discussion, Problem
		solving
15	Extra problems from	Group
	exercise	Discussion, Problem
		solving
16	Extra problems from	Group
	exercise	Discussion, Problem
		solving
17	Introduction to binomial	Lecture,Group
	coefficients	Discussion
18	Binomial theorem and	Lecture,Group
	proof	Discussion,
19	Combinatorical identities	Lecture,Group
		Discussion,
20	More identities	Lecture,Group
		Discussion, Problem
		solving
21	Test of Module 1	1 hr

22	The Pascal's triangle	Lecture,Group	
		Discussion, Problem	
		solving	
23	Problems	Group	
		Discussion, Problem	
		solving	
24	Introduction to	Lecture,Group	
	pigeonhole principle	Discussion, Problem	
		solving	
25	Basic problems based on	Lecture,Group	
	PP	Discussion, Problem	
		solving	
26	More examples on PP	Group	
		Discussion, Problem	
		solving	
27	Problems	Lecture,Group	
		Discussion, Problem	
		solving	
28	Ramsey type problems	Group	
		Discussion, Problem	
		solving	
29	More problems and	Lecture,Group	
	Ramsey numbers	Discussion, Problem	
		solving	
30	Problems, Generalised	Lecture,Group	
	Pigeonhole Principle	Discussion,Problem	
		solving	
31	Theorems on Bounds for	Lecture,Group	
	Ramsey numbers	Discussion, Problem	
		solving	
32	Problems	Group	
		Discussion,Problem	
		solving	
33	Extra problems fron	Group	
	exercise	Discussion, Problem	
		solving	
34	CIA-1	1 HR	

35	Basic Inclusion and	Lecture,Group	
	Exclusion principle	Discussion, Problem	
		solving	
36	Principle of inclusion and	Lecture,Group	
	exclusion(PIE) and its	Discussion	
	proof		
37	Problems	Group	
		Discussion, Problem	
		solving	
38	Generalisation of PIE and	Lecture,Group	
	problems	Discussion,Problem	
		solving	
39	Generalised Principle of	Lecture,Group	
	inclusion and	Discussion	
	exclusion(GPIE) and proof		
40	Problems	Group	
		Discussion, Problem	
		solving	
41	Extra problems from	Group	
	exercise	Discussion, Problem	
		solving	
42	Shortest route problem	Group	
		Discussion, Problem	
		solving	
43	Integer solutions for an	Group	
	equation	Discussion, Problem	
		solving	
44	More problems	Group	
		Discussion, Problem	
		solving	
45	Surjective mappings	Lecture,Group	
		Discussion, Problem	
		solving	
46	Sterling numbers of	Lecture,Group	
	second kind	Discussion, Problem	
		solving	

47	Derangements and	Lecture,Group	
	problems	Discussion,Problem	
		solving	
48	Generalisation of	Lecture,Group	
	Derangements	Discussion,Problem	
		solving	
49	Problems	Group	
		Discussion, Problem	
		solving	
50	Test	1 hr	
51	Ordinary generating	Lecture,Group	
	functions ,Cauchy	Discussion,	
	product		
52	Examples	Lecture,Group	
		Discussion, Problem	
		solving	
53	Generating functions for	Lecture,Group	
	different sequences	Discussion, Problem	
		solving	
54	Problems	Group	
		Discussion, Problem	
		solving	
55	Some modeling problems	Lecture,Group	
		Discussion, Problem	
		solving	
56	Examples	Group	
		Discussion, Problem	
		solving	
57	Partitions of integers	Lecture,Group	
		Discussion, Problem	
		solving	
58	Theorems based on	Lecture,Group	
	partitions	Discussion	
59	Ferrers Diagram and	Lecture,Group	
	problems	Discussion, Problem	
		solving	

60	Theorems and problems	Lecture,Group	
		Discussion, Problem	
		solving	
61	Exponential generating	Lecture,Group	
	functions and examples	Discussion, Problem	
		solving	
62	Exponential generating	Lecture,Group	
	functions for	Discussion, Problem	
	permutations and	solving	
	examples		
63	More examples	Lecture,Group	
		Discussion, Problem	
		solving	
64	Distribution problems	Lecture,Group	
		Discussion, Problem	
		solving	
65	Problems from exercise	Group	
		Discussion, Problem	
		solving	
66	Introduction to	Lecture,Group	
	recurrence relations	Discussion, Problem	
		solving	
67	Tower of Hanoi problem	Lecture,Group	
		Discussion, Problem	
		solving	
68	Finding number of	Lecture,Group	
	parallelograms in the nth	Discussion, Problem	
	sub-division of an	solving	
	equilateral triangle		
69	Method to solve Linear	Lecture,Group	
	homogenous recurrence	Discussion, Problem	
	relations	solving	
70	Problems	Group	
		Discussion, Problem	
		solving	
71	More problems	Group	
		Discussion, Problem	
		solving	

72	Method to solve General	Lecture,Group	
	Linear recurrence	Discussion,Problem	
	relations	solving	
73	Problems	Group	
		Discussion, Problem	
		solving	
74	Number of ways of	Lecture,Group	
	colouring a circle with n	Discussion, Problem	
	sectors using k colours	solving	
	with certain conditions		
75	Finding the determinant	Lecture,Group	
	of a special type matrix	Discussion, Problem	
	using recurrence relation	solving	
76	Extra problems	Group	
		Discussion, Problem	
		solving	
77	CIA -2	2 hrs	
78	Revision		
79	Revision		

.

OPERATION RESEARCH

COURSE OBJECTIVES To introduce the concept of inventory control, Non-linear programming problem, Dynamic programming, Integer linear programming problem.

Text - 1- K.V. Mital and C. Mohan, Optimization Methods in Operation Research and Systems Analysis, 3rd edition.

Text -2- Ravindran, Philips and Solberg. Operations Research Principle and Practice, 2nd edition, John Wiley and Sons.

Text - 3 - Man Mohan, P.K. Gupta and Kanti Swarup, Operations Research, Sultan Chand and Sons. Module I: INVENTORY MODELS

Sessions	Торіс	Method
1.	Module 1 - Introductory Session	Lecture
2.	Introductory session – Costs associated with inventory	Lecture
3.	Introductory session – Basic notations in inventory control	Lecture
4.	Factors affecting inventory	Lecture,
5.	Economic order quantity	Lecture,
6.	EOQ problems without shortage - equal time period	Lecture,
7.	Characteristics of the model	Lecture,
8.	EOQ problems without shortage - unequal time interval	Lecture, Group Discussion,
9.	Characteristics of the model	Lecture,

10.	EOQ problems without shortage - instantaneous production	Lecture, Group Discussion,
11.	Characteristics of the model	Lecture, Group Discussion,
12.	Deterministic inventory Problems with shortages - Fundamental Problem	Problem Solving
13.	Deterministic inventory Problems with shortages - Fixed time period	Lecture, Group Discussion, Problem Solving
14.	Deterministic inventory Problems with shortages - Instantaneous production	Problem Solving
15.	Characteristics of the model	Lecture
16.	EOQ problem with single price - breaks	Problem Solving
17.	EOQ problem with multiple price - breaks	Lecture,
18.	Problems	Group discussion
19.	Problem solving sessions	Lecture,
20.	Problem solving sessions	Lecture,
21.	Module 2 : Introduction	Lecture,
22.	Basic concepts of NLPP	Lecture,

23.	Taylors series in single variable and two variables	Lecture,
24.	n- dimensional Taylors series	Lecture,
25.	Fibonacci search method	Lecture,
26.	Problems	Lecture,
27.	Golden section search method	Lecture,
28.	Problems	Lecture,
29.	Hooke and Jeeves search algorithm	Lecture,
30.	Problem	Lecture,
31.	Gradient projection method	Lecture,
32.	Problem	Lecture,
33.	Newtons method	Lecture, Group Discussion, Problem Solving

34.	Problems	Problem Solving
35.	Problems	Lecture, Group Discussion, Problem Solving
36.	Kuhn-tucker conditions	Problem Solving
37.	Problems	Lecture, Group Discussion, Problem Solving
38.	Module 3 : Introduction of DPP	Problem Solving
39.	Minimum path problem	Lecture,
40.	Single additive constraint, additively separable return	Lecture,
41.	problems	Problem Solving
42.	Single multiplicative constraints, additively separable return	Lecture,
43.	Problems	Problem Solving
44.	Single additive constraint, multiplicatively separable return	Lecture,
45.	Problems	Lecture,

46.	Examples of failure	Lecture,
47.	Decomposition – backward and forward recursions	Lecture,
48.	Theorems	Lecture,
49.	Systems with more than one constraint	Lecture,
50.	problems	Lecture,
51.	Problem	Lecture,
52.	Problems	Lecture,
53.	Module 4 - Introduction	Lecture,
54.	I.L.P in two dimensional space	Lecture,
55.	 General I.L.P. and M.I.L.P problems 	Lecture,
56.	Theorems	Lecture,
57.	cutting planes - ILP	Lecture,

58.	Problems	Lecture, Group Discussion, Problem Solving
59.	cutting planes - MILP	Lecture, Group Discussion, Problem Solving
60.	Branch and Bound method	Lecture, Group Discussion, Problem Solving
61.	Problems solving	Lecture,
62.	Problems solving	Lecture,
63.	Introduction to Graphs	Lecture,
64.	Definitions and notations	Lecture,
65.	minimum path problem	Lecture,
66.	Problems	Lecture, Group Discussion,
67.	Minimum path problem with arborescence	Lecture,
68.	Problems	Lecture,
69.	Spanning tree of minimum length	Lecture,
70.	Problems	Lecture, Group Discussion,
71.	Problem of minimum potential difference	Lecture,
72.	Problems	Lecture,
73.	scheduling of sequential activities	Lecture,
74.	Maximum flow problem, algorithm	Lecture,

75.	Problems	Lecture,
76.	Theorems	Lecture,
77.	Maximum flow minimum cut theorem	Lecture,
78.	Revision	
79.	Revision	
80.	Revision	
81.	Revision	

References:

- 1. S.S.Rao, Optimization Theory and Applications, 2nd edition, NewAge International Pvt.
- 2. J.K.Sharma, Operations Research : Theory and Applications, Third Edition, Macmillan IndiaLtd
- Hamdy A. Thaha, Operations Research An introduction, 6th edition, Prentice Hall of India Pvt. Ltd.

THEORY OF WAVELETS

COURSE OBJECTIVES

*To study basics of Wavelet theory.

*To identify the areas of application of wavelets

***To** study wavelet theory through Linear algebra

*How the theory of wavelets is linked with data compression , analysis of audio and video signals etc .

Sessions	Topics to be taught	Method adopted	Remark
1	Fundamentals of vector spaces	Seminar , lecture ,	Bridge course
	and metric spaces	group work	
2	Linear transformations and its	Lecture ,	Bridge course
	matrix representations	assignment, group	
		work	
3	I^2 (N) and I^2 (Z_N)	Seminar , lecture ,	Introduction
		assignment	
4	Introduction of the	Lecture	More thrust will be
	orthonormal basis { E ₁ ,		given to examples
	E ₂ , E ₃ ,,E _{N-1} }		
5	The properties of the above	Seminar , lecture	
	basis		
6	Introduction of the fourier	Lecture ,	Examples will be
	basis F	assignment	discussed
7	Introduction of discrete fourier	Lecture	
	transform		
8	Matrix representation of the	Lecture ,	Sufficient number of
	discrete fourier transform	assignments	examples will be
			discussed
9	Inverse discrete Fourier	Lecture , seminar	More importance
	transform and its matrix		will be given for
	representation		examples

10	Translation by k operator and its Fourier transform	Lecture , group discussion	Examples will be discussed
11	Conjugate of a vector and its Fourier transform	Lecture	Examples will be discussed
12	Translation invariant linear transformation	Lecture , assignment	
13	The result saying that a translation invariant linear transformation is diagonalizable	lecture	
14	Convolution of two vectors in $I^2 \left(Z_N \right)$	Lecture	Sufficient number of examples will be discussed
15	Convolution operator and the lemma showing that a convolution operator is translation invarient	lecture	A good number of examples will be discussed
16	The Dirac delta function and its properties	Lecture	
17	The DFT of convolution	Lecture , seminar	
18	Spatially localized and frequency localised bases of I^2 (Z _N)	Assignment , lecture, group discussion	
19	Conjugate reflection and its DFT	lecture	Verification of the results will be done
20	Components of a convolution in terms of inner products	Seminar , lecture	The results will be verified
21	The necessary and sufficient condition for $\{R_k w\}_{k=0}^{N-1}$ to be an orthonormal basis for I^2 (Z_N)	Lecture	
22	Introduction of first stage wavelet basis for $I^2(Z_N)$	lecture	
23	Introduction of z* and its DFT	Lecture, assignments	Examples will be discussed
24	The necessary and sufficient condition for $\{ R_k w \}^{M-1}_{k=0}$ to be an orthonormal set with M elements	lecture	
25	Introduction of the system matrix A(n) of two vectors u and v	Lecture , seminar	Examples will be discussed

26	The necessary and sufficient	Lecture	Illustrations will be
	condition for two vectors u		given
	and v to generate a first stage		
	wavelet basis for I^2 (Z_N)		
27	Some examples of first stage	Assignment ,	
	wavelet basis	seminar	
28	Description of first Shannon	lecture	
	basis and first stage real		
	Shannon basis		
29	Introduction with sufficient	Lecture	
	explanations of first stage Haar		
	basis		
30	Lemma 3.12	lecture	
31	Up sampling and down	Lecture , seminar	Examples and
	sampling operators and their		illustrations will be
	properties		discussed
32	Introduction of filter bank	Seminar , lecture	The construction of
	diagram , its analysis phase		filter bank diagram
	and synthesis phase , perfect		will be made clear
	reconstruction in the filter		
	bank		
33	Lemma 3.15	Lecture	
34	The iteration steps in the	lecture	Particular cases will
	construction of filter bank		be discussed to
	diagram		make the concept
			clear
35	Introduction of p th stage	lecture	Particular cases p=2
	wavelet filter sequence		, p=3 will be
			discussed
36	The derivation of the output of	la atuma	
	The derivation of the output of	lecture	Particular cases will
	the p th stage filter bank using	lecture	Particular cases will be discussed
	the p th stage filter bank using down sampling operators	lecture	Particular cases will be discussed
37	the p th stage filter bank using down sampling operators The theory used for the	Lecture , group	Particular cases will be discussed Particular cases like
37	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter	Lecture , group discussion	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be
37	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram	Lecture , group discussion	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed
37	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram representing the	Lecture , group discussion	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed
37	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram representing the reconstruction phase using up	Lecture , group discussion	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed
37	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram representing the reconstruction phase using up sampling operators	Lecture , group discussion	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed
37 38	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram representing the reconstruction phase using up sampling operators Lemma3.18	Lecture , group discussion	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed
37 38 39	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram representing the reconstruction phase using up sampling operators Lemma3.18 Definition of D ⁺ and U ¹	Lecture , group discussion lecture Lecture ,	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed The definitions will
37 38 39	the p th stage filter bank using down sampling operators The theory used for the reconstruction of the filter bank, the diagram representing the reconstruction phase using up sampling operators Lemma3.18 Definition of D ¹ and U ¹ Corollary 3.19	Lecture , group discussion lecture Lecture , assignment	Particular cases will be discussed Particular cases like p=2, p=3 etc . will be discussed The definitions will be made clear

40	Introduction of f_1 , g_1 Definition	Lecture	Examples will be
	3.20		the definitions clear
/1	Lemma 3 21	lecture	
41	Lemma 3.21	lecture	
42	Introduction of n th stage	lecture	
45	wavelet basis for 1^{2}		
44	Lemma3.24	Lecture. seminar	
45	Orthogonal direct sum of two	Assignment.	Separate examples
_	subspaces of an inner product	lecture	will be discussed
	space and a problem from		
	exercise		
46	Lemma 3.26	lecture	
47	The theorem saying that a p th	lecture	
	stage wavelet filter sequence		
	can produce a p th stage		
	wavelet basis . Theorem 3.27		
48	A new symbolic representation	lecture	
	of the p th stage wavelet basis		
49	The folding lemma	Seminar , lecture	
50	Corollary 3.31	lecture	
51	The p th stage Haar system	lecture	
52	The p th stage Shannon wavelet	Lecture ,seminar	
	basis for $I^2(Z_N)$		
53	The p th stage real Shannon	Lecture	
54	wavelet basis		
54	Daubechies's D6 wavelets on	Seminar , lecture	
	$Z_{\rm N}$	Accianment	A comparative study
22) Cauchy Schwarz inequality	Assignment,	A comparative study
	and triangle inequality	lecture	botwoon l^2 ($7_{\rm W}$)
			and $l^2 (7)$
56	Definition of Cauchy sequence	Seminar . lecture	, Some examples will
	, Complete inner product	,	be discussed
	space, Hilbert space ,		
	symmetric partial sum , the		
	convergence of the series in		
	the form $\sum_{n \in Z} w(n)$		
57	Lemma4.7	lecture	
58	Lemma 4.8	lecture	

59	Complete orthonormal system	Lecture ,	
	, examples	assignment	
60	Theorem 4.10	lecture	
61	Lemma 4.11	lecture	
62	Definition of S_A and P_S (f)	Seminar , lecture	
63	Lemma 4.14	Lecture ,	
		assignment	
64	The Hilbert space L ² ([-	Lecture , seminar	
	π,π)) , Cauchy – Schwarz		
	inequality and triangle		
	inequality		
65	Introduction of	Lecture	Example for the
	$L^{1}([-\pi,\pi)), L^{2}$		inclusion and
	$([-\pi, \pi))$ is a proper subset		example for the
	of L ¹ ([-π,π))		proper inclusion will
		1	be discussed
66	Introduction of the	Lecture	
	proving that it is an		
	arthonormal sat		
67		Locturo	
69		Lecture	
60	Theorem 4.20	Assignment	
70	Theorem 4.21	Locturo	
70	The trigonomotric system is	Lecture	
/1	complete	Lecture	
72	Definition 4.23 and corollary	Seminar lecture	
12	4 74	Seminar, lecture	
73	Bounded linear transformation	Lecture	
, 0	between Hilbert spaces and		
	lemma 4.26		
74	Introduction of translation	Lecture	
	operator and translation		
	invariant linear transformation		
75	Theorem 4.28	Lecture , seminar	
76	FOURIER TRANSFORM ,	Lecture	Additional problems
	INVERSE FOURIER		will be solved
	TRANSFORM and convolution		
	on 1 ² (Z)		
77	Lemma 4.31	Lecture	
78	Definition of summable	Seminar, lecture	
	sequences and the normed		
	space l ¹ (Z)		

79	Lemma 4.34	Lecture	
80	Lemma 4.35	Seminar	
81	The translation operator R_k and translation invariant linear transformation on I^2 (Z), example 4.37	Lecture	
82	The delta function and lemma 4.39	Lecture , assignment	
83	Definition of conjugate reflection of z and lemma 4.41	Lecture , assignment	
84	Lemma 4.42	Lecture	
84	U(z), D(z), U ^m (z), D ^m (z)) and their properties	Lecture , assignment	Particular cases will be discussed , extra problems will be discussed
86	First stage wavelet system for I ² (Z), system matrix of u and v belonging to I ² (Z)	Lecture , seminar	
87	Theorem 4.46	Lecture	
88	Lemma 4.47	Lecture	
89	Lemma 4.48 , corollary 4.49	Lecture	
90	Lemma 4.50	Lecture	
91	Lemma 4.51	Seminar , lecture	
92	Introduction of p th stage wavelet system for I ² (Z) and theorem 5.53	Lecture	
93	Introduction of a complete orthonormal system for I ² (Z) ,Theorem 4.55	Lecture ,group discussion	
94	Haar wavelets on Z	Seminar, lecture	
95	Daubechies, ^s s D6 wavelets on Z	Group discussion	
96	Problems from exercises	Group work	

FUNCTIONAL ANALYSIS

COURSE OBJECTIVES

*To study basics of Functional analysis

*To identify the application of functional analysis in other disciplines

*To equip the students for NET

*To identify counter examples

*To improve the problem solving ability

Sessions	Topics to be taught	Method of teaching and evaluation	Remark
1	Fundamentals of metric space	Lecture , discussion ,seminar , assignment	Bridge course
2	Vector space and its properties	Lecture , problem solving , assignment	Special importance will be given to counter examples and NET oriented problems
3	Normed space , Banach space and their properties	Lecture , seminar , interaction	
4	Problems based on Normed spaces and Banach spaces	Lecture , Group wise problem solving	Importance will be given to counter examples
5	Further properties of Normed spaces,Problems	Lecture, interaction, assignment	Counter examples and NET oriented questions will be discussed
6	Finite dimensional Normed spaces and sub spaces	Lecture, seminar, assignment	
7	Problems based on finite dimensional Normed spaces and subspaces	Lecture,Individual problem solving,	Counter examples will be discussed

8	Compactness and finite dimension	Lecture, discussion ,seminar , assignment	
9	Problems based on compactness	Lecture ,groupwise problem solving , assignments	NET oriented problems will be discussed
10	Introduction of linear operators, their properties	Lecture , seminar , assignment,discussion	
11	Problems based on linear operators	Lecture, assignment, discussion	Counter examples will be discussed
12	TEST PAPER ON MODULE -1		
13	Bounded and continuous linear operators and their propertis	Lecture , group discussion,assignment ,	
14	Problems based on bounded linear operators	Lecture , seminar, group problems	Counter examples and NET oriented problems will be discussed
15	Linear functionals	Lecture, seminar , assignment , discussion	

	FIRST		
	INTERNAL		
16			
		Lecture, interaction,	
17	Bounded linear	group discussion	
	functional and its		
	properties		
10	Problems based on	Lecture, groupwise	Counter examples will
18	bounded linear	problem solving	be discussed
		,dssignment	
10	functionals on a finito	Lecture, seminar,	
19	dimonsional space	assignments.	
	unitensional space		
	Problems based on	Lecture , assignment,	Counter examples will
	linear operators and	group wise problem	be discussed
	functionals on finite	solving	
20	dimensional spaces		
24	Normed spaces of	Lecture, seminar	
21	operators and	assignment ,	
	Tunctionals,		
22		Lecture assignment	
	Examples of dual		
	spaces		
23			
	TEST PAPER		
	ON MODULE -2		
24		Lecture, seminar,	
		assignment	
	Inner product spaces ,		
	Hilbert spaces		

25	Examples and problems on inner product spaces and Hilbert spaces	Lecture , assignment discussion	Counter examples and NET based questions will be discussed
20	Further properties of inner product spaces,problems	Lecture , assignments ,group discussion	Counter examples will be discussed
27	Orthogonal complement and direct sum, problems	Lecture , seminar ,group problem solving	be discussed
28	Orthogonal sets and sequences	Lecture , seminar, interaction	
29	Bessel inequality, Gram-s chmidt process for orthonormalisation , problems	Lecture , assignment, individual problem solving	
30	Total orthonormal sets and sequences, problems	Lecture , seminar , assignments	
31	Riesz's theorem	Lecture, assignment	
32	Sesqui linear functional and Riesz representation theorem	Lecture , discussion, assignment	

33	Problems based on Riesz theorem and Riesz representation theorem	Lecture, assignments ,	Counter examples will be discussed
34	Hilbert adjoint operator and its properties	Lecture , assignments,interaction	
35	Problems based on Hibert adjoint operator	Lecture , assignment ,group problems	NEToriented questions will be discussed
36	Self adjoint , Normal ,Unitary operators	Lecture , seminar , assignment	
37		Lecture , individual problem solving	NETbased questions will be discussed
38	Problems based on self adjoint , normal , unitary operators		
39	TEST PAPER ON MODULE – 3		
40	Zorn [,] s Lemma and its applications	Lecture, assignment	

	Habn Banach theorem	Locturo cominar group	
	for real vestor areas	discussion	
	for real vector space	discussion	
41			
	Generalised Hahn	Lecture. assignment	
	Banach theorem		
	problems		
42	problems		
42			
	Hahn Banach theorem	Lecture, interaction	
	for Normed space		
43			NETbased problems
			will be discussed
			will be discussed
	Backlass and Usha		
	Problems on Hann	Lecture, assignment	
	banach theorems		
45			
	Adjoint operator ,	Lecture	
	relation between		
	adjoint operator and		
10			
40	Hilbert aujoint	Lecture , seminar,	
		assignments	NET based problems
	Reflexive spaces ,		will be discussed
	canonical		
	mapping, important		
47	theorems, problems	Lecture	
	Bairs category		
18	theorem Uniform		
40		Locturo group	
	boundeaness theorem	Lecture, group	
		problems , interaction	N ET based questions
	Problems based on		will be discussed
	Uniform boundedness		
	theorem		
49			
50	Conclusion of the		
50	Conclusion of the		
	course		

	SECOND INTERNAL	DETAIL STUDY MATERIALWILL BE PROVIDED FOR EACH MODULE
51	Model examination	