SACRED HEART COLLEGE (AUTONOMOUS)

Department of Mathematics
M.Sc. Mathematics

Course plan

Academic Year 2016-17

Semester 2

PROGRAMME	MSc Mathematics	SEMESTER	2
COURSE CODE AND TITLE	16P2MATTO6:ABSTRACT ALGEBRA	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	90
FACULTY NAME	JEET KURIAN MATTAM		

COURSE OBJECTIVES

To develop ideas of finitely generated abelian groups, Sylow theorems and applications
To understand the concept of rings of polynomials, factorisation of polynomials and ideal structure
To asssimilate the idea of extension fields, algebraic extensions and geometric constructions.
To develop ideas of automorphisms of fields, isomorphism extension theorem and Galois theory.

Text Book

1.A First Course in Abstract Algebra by John B Fraleigh 3 ${ }^{\text {rd }}$ Edition

Additional references

1) Contemporary Abstract Algebra by Joseph Gallian
2) Topics in Algebra by I.N.Herstein
3) Algebra by Michael Artin
4) Abstract Algebra by David S Dummit and Richard M Foote.

Proofs of theorems to be avoided in bridge course. Only concept and examples required

Sessions	Topic	Method	Remarks
1	Bridge Course: Chapter 1 of text	Group Discussion followed by a Lecture session.	
2	Bridge Course : Chapter 2 of text excluding direct products	Interactive session including GD	
3	Bridge Course: chapter 4 of text.	Lecture session with Examples	
4	Bridge Course: Chapter 5 of text.	Lecture session with Examples	
5	Bridge Course: Section 27.1-27.20	Lecture session	
5	Bridge Course: Section 27.1-27.20	Lecture session	
$\begin{array}{\|l\|} \hline 6 \\ \text { MODUL } \\ \hline \text { E I I } \\ \text { BEGINS } \\ \hline \end{array}$	Definition 11.1, Theorem 11.2 and example 11.3	Lecture session	
7	Example 11.4, Theorem 11.5, Corollary 11.6 and example 11.7	Interactive session and Lecture	
8	Definition 11.8, Theorem 11.9, Example 11.10, Example 11.11	Lecture	
9	Theorem 11.12, Example 11.13, Definition 11.14, Theorem 11.15	Lecture	
10	Theorem 11.16, Theorem 11.17 and selected exercises of Exercise 11	Lecture	
11	Exercise 11 continued	Lecture	
12	Definition 16.1, Example 16.2, Theorem 16.3	Interactive session	
13	Examples 16.4-16.8	Assignment and seminar for the students.	
14	Example 16.11, Theorem 16.12, Definition 16.13 and Theorem 16.14	Lecture	
15	Definition 16.15 and theorem 16.16 and example 16.17	Lecture	
16	Theorem 36.1, Definition 36.2	Lecture	
17	Theorem 36.3 and Corollary 36.4	Lecture	

18	Definition 36.5, Lemma 36.6 and Corollary 36.7	Lecture	
19	The three Sylow Theorems (Statements only) Example 36.12 and Example 36.13	Lecture	
20	Theorem 37.1 and definition 37.2 and example 37.3	Lecture	
21	Theorem 37.4, Lemma 37.5 and Theorem 37.6	Lecture	
22	Theorem 37.7 and Lemma 37.8	Lecture	
23	Example 37.9-Example 37.12	Lecture	
24	Example 37.13-Example 37.15	Lecture	
25	Examples continued and selected exercises of Exercise 37	Lecture	
26	FIRST CIA	Written Test; Descriptive.	
27 MODULE 2 BEGINS	Definition 22.1 and Theorem 22.2	Lecture	
28	Example 22.3, $\mathrm{R}[\mathrm{x}, \mathrm{y}]$, and theorem 22.4	Lecture	
29	Examples 22.6-22.10	Lecture	
30	Theorem 22.11	Seminar	
31	Selected Exercises of Exercise 22	Seminar	
32	Selected Exercises of Exercise 22	Seminar	
33	Theorem 23.1		
34	Example 23.2 and Corollary 23.3	Lecture	
35	Example 23.4 and corollary 23.5	Lecture	
36	Corollary 23.6, Definition 23.7 and Example 23.8	Lecture	
37	Example 23.9, Theorem 23.10, Theorem 23.11 and Corollary 23.12	Lecture	
38	Example 23.13,23.14 and a similar problem in exercises	Lecture	
39	Theorem 23.15 and example 23.16	Lecture	

40	Corollary 23.17	Lecture	
41	Definition 27.21, Example 27.22,27.23 and Theorem 27.24	Lecture	
42	Theorem 27.25 and example 27.26	Lecture	
43	Example 27.26 and theorem 27.27 and selected exercises of exercise 27	Lecture	
44	Theorem 23.18, Corollary 23.19 and theorem 23.20	Lecture	
45	Example 23.21 and selected exercises of Exercise 23	Seminar	
46	Example 23.21 and selected exercises of Exercise 23	Seminar	
47	Definition 29.1 and Theorem 29.3	Lecture	
48	Example 29.4, 29.5, Definition 29.6, Examples 29.7-29.10.	Lecture	
49	Definition 29.11 and theorem 29.12, Theorem 29.13	Lecture	
50	Definition 29.14, Example 29.15, Simple Extensions	Lecture	
51	Example 29.16, Definition 29.17 and Theorem 29.18		
52	Example 29.19 and selected exercises of Exercise 29	Lecture	
53	selected exercises of Exercise 29	Seminar	
54	Theorem 30.23, Definition 31.1,31.2	Lecture	
55	Theorem 31.3,31.4	Lecture	
56	$\begin{array}{lll} \text { Corollary } & 31.6,31.7, & \text { Examp;e } \\ 31.8,31.9 \end{array}$	Lecture	
57	Example 31.10, Theorem 31.11	Lecture	
58	Theorem 31.12, Corollary 31.13, Definition 31.14 and Theorem 31.15	Lecture	

59	Corollary 31.16, Theorem 31.17 and theorem 31.18	Lecture	
60	Selected exercises of Exercise 31		
61MOD ULE III BEGINS	Theorem 32.1 and Corollary 32.5	Seminar	
62	Theorem 32.6	Lecture	
63	Corollary 32.8, Theorems 32.932.11	Seminars	
64	Theorem 33.1, Corollary 33.2, Theorem 33.3	Lecture	
65	Definition 33.4, Theorem 33.5, Corollary 33.6 and Example 33.7	Lecture	
66	Lemma 33.8 and Lemma 33.9	Lecture	
67	Theorem 33.10, Corollary 33.11 and Theorem 33.12		
68	Definition 48.1, Example 48.2, Theorem 48.3	Lecture	
69	Corollary 48.5, Corollary 48.6 and Example 48.7	Lecture	
70	Definition 48.8, Example 48.9, 48.10, 48.11 and Definition 48.12	Lecture	
71	Example 48.13, Theorem 48.14, Theorem 48.15, Definition 48.16, Example 48.17		
72	Theorem 48.19, Selected Exercises of Exercise 48		
73	Theorem 49.3(Statement only) and Corollary 49.5		
74	SECOND CIA		
75 MODUL E IV BEGINS	```Definition 50.1, Example 50.2, Theorem 50.3```	Lecture	
76	Definition 50.4, Example 50.5, Corollary 50.6, 50.7	Lecture	

77	Example 50.8 and 50.9. Selected Exercises of Exercise 50.	Lecture	
78	Definition 51.1, Theorem 51.2, Corollary 51.3.	Lecture	
79	Example 51.4, Theorem 51.6, Definition 51.7 and Example 51.8	Lecture	
80	Theorem 51.9 and Corollary 51.10	LECTURE	
81	Lemma 51.11, Definition 51.12 and Theorem 51.13	LECTURE	
82	Theorem 51.14	LECTURE	
83	Theorem 51.15	LECTURE	
84	Definition 53.1, Theorem 53.2	LECTURE	
85	Example 53.3, Definition 53.5	LECTURE	
86	Theorem 53.6	LECTURE	
87	Theorem 53.6 (Continued)	LECTURE	
88	Theorem 53.7 and Example 53.8	LECTURE	
89	REVISION		
90	REVISION		

PROGRAMME	MSc Mathematics	SEMESTER	1
COURSE CODE AND TITLE	16P2MATTO7: ADVANCED TOPOLOGY	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	JEENU KURIAN		

COURSE OBJECTIVES
To understand Urysohn Characterization of Normality , Tietze Characterization of Normality, Products and co-products.
To analyze embedding and Metrisation, Evaluation Functions in to Products, embedding Lemma and Tychnoff Embedding, The Urysohn Metrisation Theorem.
To develop the idea of convergence and related properties of nets and filters.
To understand compactness, variations of compactness.

Sessions	Topic	Method	Remarks
1.	Introductory Session separation axioms	Lecture	
2.	Urysohn characterisation of normality	Lecture	
3.	Definition and proposition	Lecture	
4.	Urysohn's Lemma	Lecture	
5.	Theorem and Lemma	Lecture	
6.	Theorems and Lemma	Lecture	
7.	Tietz characterisation of normality: proposition	Lecture	
8.	Proposition	Lecture	
9.	Definition and proposition	Lecture	
10.	Proposition	Lecture	

11.	Theorem and proposition	Lecture	
12.	Products and co products Cartesian products of family of sets: Basic definitions	Lecture	
13.	Proposition	Lecture	
14.	Proposition	Lecture	
15.	Theorem	Lecture	
16.	Theorem	Lecture	
17.	Definition and Theorem	Lecture	
18.	Product topology - Basic definitions	Lecture Group Discussion, Problem Solving	
19.	Theorems	Lecture	
20.	Theorems and propositions	Lecture	
21.	Propositions and definitions	Lecture	
22.	Productive properties - Basic definitions	Lecture	
23.	Theorems and Lemma	Lecture	
24.	Theorems and Lemma	Lecture	
25.	Theorems and Lemma	Lecture	
26.	Theorems and Lemma	Lecture	
27.	Theorems and Lemma	Lecture	
28.	Module 2 - Embedding and metrisation	Lecture	
29.	Definitions	Lecture Group Discussion, Problem Solving	
30.	Theorems and Propositions on evaluation function	Lecture	
31.	Theorems and Propositions on evaluation function	Lecture	

32.	Theorems and Propositions on evaluation function	Lecture	
33.	Embedding Lemma and Tychonoff embedding - Basic Definitions	Problem Solving	
34.	Theorem	Lecture	
35.	Theorem	Lecture	
36.	Lemma	Lecture	
37.	Proposition	Lecture	
38.	Urysohn metrisation Theorem Basic Definitions and theorem	Lecture	
39.	Corollary and problems	Lecture Group Discussion, Problem Solving	
40.	Module 3 - Nets and filters introduction, Basic definition	Lecture	
41.	Theorems and proposition	Lecture	
42.	Theorems and proposition	Lecture	
43.	Topology and convergence of nets - Basic definitions	Lecture	
44.	Theorems and corollaries	Lecture	
45.	Theorems and corollaries	Lecture	
46.	Theorems and Propositions	Lecture	
47.	Theorems and propositions	Lecture	
48.	Filters and their convergence Basic definitions	Lecture	
49.	Theorems and corollaries	Lecture	
50.	Theorems and Propositions	Lecture	
51.	Theorems and Propositions	Lecture	
52.	Ultrafilter and compactness	Lecture	
53.	Ultrafilter and compactness	Lecture	
54.	Theorems and propositions	Lecture	

55.	Problems	Lecture	
56.	Module 4 - Introduction	Lecture	
57.	Variation of compactness - Basic definitions	Lecture	
58.	Theorems, corollaries and propositions	Lecture	
59.	Theorems, corollaries and propositions	Lecture	
60.	Theorems, corollaries and propositions	Lecture	
61.	Theorems, corollaries and propositions	Lecture	
62.	Theorems, corollaries and propositions	Lecture	
63.	Local compactness - Definitions	Lecture	
64.	Propositions and corollaries	Lecture	
65.	Propositions and corollaries	Lecture	
66.	Propositions and corollaries	Lecture	
67.	Compactification- Basic definitions	Lecture	
68.	Theorems and proposition	Lecture	
69.	Propositions and corollaries	Lecture	
70.	Theorems	Lecture	
71.	Theorems	Lecture	
72.	Propositions	Lecture	
73.	Propositions	Lecture	
74.	Problems	Group discussion	
75.	Problems	Group discussion	
76.	Problems	Group discussion	
77.	Problems	Group discussion	
78.	Problems	Group discussion	

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)
1	$10^{\text {th }}$ Jan 2017	Assisgnment product topology, Nets and Filters
2	$19^{\text {th }}$ to $25^{\text {th }}$ Feb 2017	Seminar on theorems and problems in Compactness of topological spaces

References:

1. Munkers J.R, Topology - A first course, Prentice Hall of India Pvt.Ltd., New Delhi,2000.
2. J.L.Kelly, General Topology.Van Nostrand, Reinhold Co.,NewYork,1995.
3. Stephen Willard , General Topology,Addison - Wesley.
4. Dugundji, Topology, Universal Book Stall, New Delhi.
5. George F Simmons, introduction to Topology and Modern Analysis, Mc Graw-Hill Book Company,1963.

COURSE PLAN

PROGRAMME	MSC MATHEMATICS	SEMESTER	2
COURSE CODE AND TITLE	16P2MATTO8: ADVANCED COMPLEX ANALYSIS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	$\mathbf{7 2}$
FACULTY NAME	PROF. SANIL JOSE		

Course Prerequisites:

Calculus, Analysis
Guidelines/Suggestions for Teaching Methods and Student Learning Activities:
This course is taught as a lecture course with student participation and use of computers

COURSE OBJECTIVES
To understand the concepts of power series to expand a complex function as Taylors and Laurantz series
To perceive entire functions, Jensen's formula, the genus and order of an entire function, Hadamard Factorization theorem.
To interpret Harmonic functions, Basic properties of harmonic functions and Harmonic functions on the disk and discuss Reiman Mapping theorem
To analyse Elliptic functions and Weistrass function

Basic Reference

1. AHLFORS V. LARS, COMPLEX ANALYSIS, McGRAW- HILL INTERNATIONAL EDITIONS, $3^{\text {RD }}$ EDITION

Sessions	Topic	Method	REMARKS
1	INTRODUCTION	Lecture	
2	ELEMENTARY THEORY OF	Lecture	
3	SOWER SERIES	Lecture Group	
Discussion,			
Problem Solving			

2	SEMINAR/ PROBLEM	Lecture	
20	DEMSCUSSION	DISCUSSION	Lecture

37	SEMINAR/ PROBLEM DISCUSSION	Lecture
38	SEMINAR/ PROBLEM DISCUSSION	Lecture
39	SEMINAR/ PROBLEM DISCUSSION	Lecture
40	THEREIMANN MAPPING THEOREM	Lecture
41	THEREIMANN MAPPING THEOREM	Lecture
42	THEREIMANN MAPPING THEOREM	Lecture Group Discussion, Problem Solving
43	BOUNDARY BEHAVIOUR	Lecture
44	USE OF REFLECTION PRINCIPLE	Lecture
45	ANALYTIC ARCS	Lecture
46	CONFORMAL MAPPING OF POLYGONS	Lecture
47	SCHWARZ CHRISTOFFEL FORMULA	Lecture
48	MEAN VALUE PROPERTY	Lecture
49	MEAN VALUE PROPERTY	Lecture Group Discussion, Problem Solving
50	HARNACK'S PRINCIPLE	Lecture
51	HARNACK'S PRINCIPLE	Lecture
52	HARNACK'S PRINCIPLE	Lecture
53	SUBHARMONIC FUNCTIONS	Lecture
54	SUBHARMONIC FUNCTIONS	Lecture
55	SEMINAR/ PROBLEM DISCUSSION	Lecture

		Lecture Group Discussion, Problem Solving	
56	SEMINAR/ PROBLEM DISCUSSION	Lecture	
57	SEMINAR/ PROBLEM DISCUSSION	SEMINAR/ PROBLEM DISCUSSION	Lecture

74	SEMINAR/ PROBLEM DISCUSSION	Lecture	
75	SEMINAR/ PROBLEM DISCUSSION	Lecture	
76	SEMINAR/ PROBLEM DISCUSSION	Lecture	
77	REVISION	Lecture Group Discussion, Problem Solving	
78	REVISION	Lecture	

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)
1	$4 / 1 / 2017$	PROBLEMS ON POWER SERIES
2	$28 / 1 / 2017$	PROBLEMS IN HARMONIC FUNCTIONS

GROUP ASSIGNMENTS/ACTIVITES - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)
1	$2 / 2 / 2017$	PROBLEMS IN ELLIPTIC FUNCTIONS
2	$9 / 2 / 2017$	PROBLEMS IN MODULE 2

References:

1. John. B. Conway, Functions of Complex Variables, SpringerVerlag, New York, 1973. (Indian Edition: Narosa)
2. S. Lang, Complex Analysis, McGraw Hill (1998).
3. S. Ponnusamy \& H. Silverman, Complex Variables with Applications, Birkhauser
4. A. Priestley, Introduction to Complex Analysis, Oxford University Press Tristan Needham, Visual Complex Analysis, Oxford University Press(1999)
5. V. Karunakaran, Complex Analysis, Narosa Publishing House,

COURSE PLAN- FUNCTIONAL ANALYSIS

Course	FUNCTIONAL ANALYSIS
Course code	16P2MATT09
Semester	2
Total hours	75
Credits	4
Faculty	Prof. M P Sebastian

Course Objectives

To understand the basics of Functional analysis
To apply Functional analysis in the other disciplines.
To understand theory of Operators and Functionals using Linear Algebra.
To discover the link of Functional analysis with geometry , differential equations etc.

SI.No	No. of Session s/hrs	Topics to be taught	Method of teaching	Value addition
1	1	Fundamentals of Linear Algebra and Metric spaces.	Lecture, Seminar, Assignment	
2.	3	Normed space and Banachspace, examples and their properties, problems.	Lecture, assignment	
3	2	Finite dimensional normed spaces and their sub spaces, problems.	Lecture	
4	2	Compactness and finite dimension, problems.	Lecture	
5	2	Linear operators, examples and their properties, problems.	Lecture assignment	
6	2	Test paper.	Bounded and continuous linear operators and examples.	Lecture

8	2	Problems based on bounded linear operators.	Lecture	
9	1	Linear functionals, examples.	Lecture	
10	2	First internal	Bounded linear Functionals and their properties, problems.	Lecture

27	3	Self adjoint, normal and unitary operators, problems.	Lecture, assignment	
28		Test paper on module 3.		
29	2	Zorns Lemma and its applications.	Lecture	
30	2	Hahn Banach theorem for real vector space.	Lecture	
31	2	Generalised Hahn Banach theorem, problems.	Lecture, assignment	
32	3	Hahn Banach theorem for a normed space.	Lecture	
33	3	Problems on Hahn Banach theorems	Lecture seminar	
34	3	Adjoint operator, relation between adjoint operator and Hilbert adjoint.	Lecture	
35	2	Reflexive spaces, canonical mapping.	Lecturesemi nar	
36	2	Important theorems and problems.	Lecture	
37	2	Bairs category theorem, Uniform boundedness theorem.	Lecture, seminar assignment	
38	3	Problems on Uniform boundedness theorem	Lecture, assignment	
39	Model examination			

INDIVIDUAL ASSIGNMENTS/SEMINAR - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)
1	$2 / 1 / 2017$	PROBLEMS FROM MODULE 1
2	$29 / 1 / 2017$	PROBLEMS FROM MODULE 2

GROUP ASSIGNMENTS/ACTIVITES - Details \& Guidelines

	Date of completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non-graded etc)
$\mathbf{1}$	$5 / 2 / 2017$	PROBLEMS FROM MODULE-4

Text book : Introductory Functional Analysis with applications
AUTHOR: ERWIN KREYSZIG, Wiley Classic Library Edition Published 1989
REFERENCES: i) DAY M M , normed linear spaces $3{ }^{\text {rd }}$ edn
ii) TAYLOR A E, introduction to functional analysis

COURSE PLAN-REAL ANALYSIS

PROGRAMME	M.Sc. MATEMATICS	SEMESTER	2
COURSE CODE AND TITLE	16P2MATT10: REAL ANALYSIS	CREDIT	4
HOURS/WEEK	5	HOURS/SEM	75
FACULTY NAME	Dr. DIDIMOS K. V.		

COURSE OBJECTIVES

To study functions of bounded variations, rectifiable curves, paths and equivalence of paths.
To develop ideas of Riemann-Stieljes integral and studying integration and differentiation.
To assimilate the ideas of uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation.

To analyse power series, exponential and trigonometric functions.

No of Hours	Topic	Method	Remarks
1	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture Group Discussion, Problem Solving Lecture	
2	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture Group Discussion, Problem Solving Lecture	
3	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture Group Discussion, Problem Solving Lecture	
4	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture Group Discussion, Problem Solving Lecture	
5	A quick review on continuity, uniform continuity, convergence of sequence and series.	Lecture Group Discussion, Problem Solving Lecture	

6	Introduction properties of monotonic functions	Lecture Group Problem Solving	Discussion,	
7	Introduction properties of monotonic functions	Lecture Group Problem Solving	Discussion,	
8	functions of bounded variation	Lecture Group Problem Solving	Discussion,	
9	functions of bounded variation	Lecture Group Problem Solving	Discussion,	
10	total variation	Lecture Group Problem Solving	Discussion,	
11	total variation	Lecture Group Problem Solving	Discussion,	
12	additive property of total variation	Lecture Group Problem Solving	Discussion,	
13	additive property of total variation	Lecture Group Problem Solving	Discussion,	
14	total variation on (a, x) as a functions of x	Lecture Group Problem Solving	Discussion,	
15	total variation on (a, x) as a functions of x	Lecture Group Problem Solving	Discussion,	
16	functions of bounded variation expressed as the difference of increasing functions	Lecture Group Problem Solving	Discussion,	
17	functions of bounded variation expressed as the difference of increasing functions	Lecture Group Problem Solving	Discussion,	
18	continuous functions of bounded variation	Lecture Group Problem Solving	Discussion,	
19	continuous functions of bounded variation	Lecture Group Problem Solving	Discussion,	
20	curves and paths	Lecture Group Problem Solving	Discussion,	
21	curves and paths	Lecture Group Problem Solving	Discussion,	

| 22 | rectifiable path and arc length | Lecture Group Discussion,
 Problem Solving | |
| :--- | :--- | :--- | :--- | :--- |
| 23 | rectifiable path and arc length | Lecture Group
 Problem Solving | Discussion, |,

| 40 | Integration and
 differentiation | Lecture Group Discussion,
 Problem Solving | |
| :---: | :--- | :--- | :--- | :--- |
| 41 | integration of vector valued
 functions | Lecture Group
 Problem Solving | Discussion, |,

| 58 | uniform convergence and
 continuity | Lecture Group
 Problem Solving | Discussion, | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 59 | uniform convergence and
 integration | Lecture Group
 Problem Solving | Discussion, | |,

ASSIGNMENTS/EXERCISES - Details \& Guidelines

	Date of submission/completion	Topic of Assignment \& Nature of assignment (Individual/Group - Written/Presentation - Graded or Non- graded etc)
1.	12 March 2017	Problems on Real analysis

Text Books:

1. Tom Apostol, Mathematical Analysis (second edition), Narosa Publishing House.
2. Walter Rudin, Principles of Mathematical Analysis (Third edition), International Student Edition.

Additional Reading List

1.Royden H.L, Real Analysis, 2nd edition, Macmillan, New York.
2. Bartle R.G, The Elements of Real Analysis, John Wiley and Sons.
3. S.C. Malik, Savitha Arora, Mathematical Analysis, New Age International Ltd.
4. Edwin Hewitt, Karl Stromberg, Real and Abstract Analysis, Springer International, 1978.

