Sacred Heart College (Autonomous)

Department of Chemistry

MSc Applied Chemistry - Pharmaceutical

Course Plan

Academic Year 2016 – 17

Semester 3

Semester: Semester 3 Course: **P3CPHT09– Drug Design and Pharmacology**

Objectives

To enable the students

- To learn in detail drug design and pharmacology
- To have a thorough idea on application of drugs and their mechanism of action
- To understand the functions of enzymes, receptors, proteins and nucleic acids as drug targets
- To study the biotransformation of drugs

Session	Topic/Module	Hour	Teacher/inv ited persons etc.	Method of teaching *	COs
Session 1 Session 2	General Principles of Drug Therapy. Relationship between chemical structure, lipid solubility and biological activity of drugs. Stereochemistry and biological activity.	18 Hrs	Dr. Grace Thomas	Lecture	
Session 3	Drug action-receptor theories.				
Session 4	Drug metabolism-different pathways.				

Session 5	
	Drug design: various factors of drug design, rational drug design.
Session 6	Methods of lead discovery: optimisation of the lead,
Session 7	natural and synthetic sources of lead compounds.
Session 8	
	Bioisosterism.
Session 9	
	Prodrug and soft drug concept. Drug synthesis.
Session 10	Combinatorial synthesis (basic concepts).
Session 11	
	Retrosynthetic analysis of benzocaine,
Session 12	
Session 13	saccharin, salbutamol and benzodiazepines.
Session 14	Basic concepts of CADD,

	_	1	•	1	
Session 15	molecular modeling,				
Session 16	molecular docking.				
Session 17	QSAR physicochemical parameters,				
	introduction to 2D				
Session 18	3D				
	Introduction to 2D				
	3D				
	Pharmacology				
	<i>57</i>				
		6 Hrs	Dr Grace	Lecture	
		OTHS	Thomas	Lecture	
Session 19	General principles of pharmacology:		Thomas		
Session 19	Certer at principles of principles				
Session 20	biological response to drugs,				
Session 20	passage of drugs across membranes.				
	passage of arags across membranes.				
g : 01	Pharmacokinetic principles: absorption,				
Session 21	Thatmacokinetic principles, absorption,				
	distribution, metabolism and excretion of				
Session 22	drugs.				
	urugs.				
	Dose of drugs and routes of administration				
Session 23	Dose of drugs and routes of administration.				
	Dhawaaad waxa a minainlaa daaa waxaa				
Session 24	Pharmacodynamic principles: dose response				
	relationships, mechanism of drug action,				
	unusual and adverse responses of drugs,				
Session 25	structurally specific and nonspecific drugs.				
2 3 3 3 3 3 3 4 3 5	Ferguson's principle				
	Drug interactions-synergism, antagonism,				
	drug addiction and drug dependence, drug				
Session 26	tolerance, drug hypersensitivity.				
Session 20					

	Metallic compounds used in pharmaceutical chemistry			Lastuma	
Session 27	Calcium lactate, calcium gluconate,	9 Hrs	Dr. Rmakrishna n	Lecture	
Session 28	iron gluconate, iron fumerate, ferric ammonium citrate,				
Session 29	ferrous sulphate, aluminium hydroxide gel,				
Session 30	calamin, zinc oxide, zinc stearate,				
Session 31	magnesium stearate, talc,				
Session 32	yellow mercuric oxide, trivalent and pentavalent antomonials,				
Session 33	selenium sulfide, lithium salts, gold,				
Session 34	platinum and bismuth compounds.				
Session 35	Metal toxicity - cadmium, lead, copper and mercury				

Sl No	Topic/Module	Hour/ session	Teacher/inv ited persons etc.	Method of teaching *	Remarks: Books, reference etc
	Drugs acting on CNS				
Session 36	General anaesthetics. Inhalation anaesthetics - ether,	12Hrs	Dr. IGA	Lecture	
Session 37	enflurane, halothane, nitrous oxide, cyclopropane. Intravenous anaesthetics - thiopentone sodium, ketamine.				
Session 38	Hypnotics, sedatives and anxiolytic agents.				
Session 39	Anxiolytic agents-benzodiazepines, buspirone and meprobamate.				
Session 40	Anticonvulsants: convulsions, types of epilepsy, barbiturates-hydantoins, oxazolidinediones, succinimides and benzodiazepines. Analeptics: xanthines, amphetamines,				
Session 41	nikethamide and ethamivan.				

	1			
Centrally acting muscle relaxants: glyceryl				
diazepam and baclofen.				
Antiparkinson's agents: dopamine agonists,				
dopamine releasing agents and synthetic				
anticholinergics.				
Drugs for Alzheimer's disease: cholinergic				
agonists and acetylcholine esterase inhibitors.				
Ketamine,Etomidate, Phenobarbital,				
Diazepam, Chlordiazepoxide,				
Meprobamate, Buspirone, Ethinamide,				
Nikethamide, Ethamivan,				
Trimethadione,Ethosuximide, Denzimol,				
Topiramate, Mephenesin, Levodopa,				
Besiperidine and Tacrine.				
	ethers-mephenesin, alkane diol derivatives- meprobamate, benzodiazepines-librium, diazepam and baclofen. Antiparkinson's agents: dopamine agonists, dopamine releasing agents and synthetic anticholinergics. Drugs for Alzheimer's disease: cholinergic agonists and acetylcholine esterase inhibitors. Synthesis of the following drugs - Enflurane, Ketamine, Etomidate, Phenobarbital, Diazepam, Chlordiazepoxide, Meprobamate, Buspirone, Ethinamide, Nikethamide, Ethamivan, Trimethadione, Ethosuximide, Denzimol, Topiramate, Mephenesin, Levodopa,	ethers-mephenesin, alkane diol derivatives- meprobamate, benzodiazepines-librium, diazepam and baclofen. Antiparkinson's agents: dopamine agonists, dopamine releasing agents and synthetic anticholinergics. Drugs for Alzheimer's disease: cholinergic agonists and acetylcholine esterase inhibitors. Synthesis of the following drugs - Enflurane, Ketamine, Etomidate, Phenobarbital, Diazepam, Chlordiazepoxide, Meprobamate, Buspirone, Ethinamide, Nikethamide, Ethamivan, Trimethadione, Ethosuximide, Denzimol, Topiramate, Mephenesin, Levodopa,	ethers-mephenesin, alkane diol derivatives- meprobamate, benzodiazepines-librium, diazepam and baclofen. Antiparkinson's agents: dopamine agonists, dopamine releasing agents and synthetic anticholinergics. Drugs for Alzheimer's disease: cholinergic agonists and acetylcholine esterase inhibitors. Synthesis of the following drugs - Enflurane, Ketamine,Etomidate, Phenobarbital, Diazepam, Chlordiazepoxide, Meprobamate, Buspirone, Ethinamide, Nikethamide, Ethamivan, Trimethadione,Ethosuximide, Denzimol, Topiramate, Mephenesin, Levodopa,	ethers-mephenesin, alkane diol derivatives- meprobamate, benzodiazepines-librium, diazepam and baclofen. Antiparkinson's agents: dopamine agonists, dopamine releasing agents and synthetic anticholinergics. Drugs for Alzheimer's disease: cholinergic agonists and acetylcholine esterase inhibitors. Synthesis of the following drugs - Enflurane, Ketamine, Etomidate, Phenobarbital, Diazepam, Chlordiazepoxide, Meprobamate, Buspirone, Ethinamide, Nikethamide, Ethamivan, Trimethadione, Ethosuximide, Denzimol, Topiramate, Mephenesin, Levodopa,

		Г	Т	1	T
	Analgesics				
Session 46	Narcotic analgesics - morphine and its analogues, phenyl(ethyl) piperidines,	9 Hrs	Midhun Dominic	Lecture	
Session 47	diphenyl heptanones and benzocaine derivatives.				
Session 48	Antipyretics and NSAIDs: Basic idea of COX I &I I inhibitors, salicylatesaspirin, p-aminophenol derivatives-paracetamol, phenacetin,				
Session 49	pyrazolidinedionesphenyl butazone, oxyphenbutazone, anthranilicacid derivatives-				
Session 50	mefanamic acid, flufenamic acid,indoleacetic acid derivatives-indomethacin, arylacetic/propionic acid derivatives(ibuprofen, ketoprofen,				
Session 51	flubiprofen and diclofenac), oxicams(piroxicam and tenoxicam).				
Session 52	5.3 Drugs used for gout - allopurinol, selective COX II inhibitors				
Session 53	Synthesis of the following drugs-levorphanol, pethidine, methadone,				
Session 54					

phenyl butazone, flufenamic acid, diclofenac, piroxicam, allopurinol and celicoxib.		

References

- 01. G. Patrick, Medicinal Chemistry, BIOS. 2001.
- 02. T. Nogrady, D.F. Weaver, Medicinal Chemistry, Oxford University Press, 2005.
- 03. W.O. Foye, T.L. Lemke, D.A. Williams, Principles of Medicinal Chemistry, 4thEdn., Williams & Wilkins, 1995.
- 04. J.P. Remington, Remington's Pharmaceutical Sciences, Vol.13, , 19th Edn., Mack, 1990.
- 05. D. Sriram, P. Yogeswari, Medicinal Chemistry, Pearson Education India, 2010.
- 06. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edn., Jaypee, 2008
- 07. L.S. Goodman, A. Gillman, The Pharmacological Basis of Therapeutics, 10thEdn., McGraw Hill, 2001.
- 08. S.S. Kadam, Principles of Medicinal Chemistry, Vol.I& II, Pragati Books, 2008.
- 09. A. Kar, Medicinal Chemistry, New Age International, 2007.

10. C.O. Wilson, J.M. Beale, J.H. Block, Textbook of Organic Medicinal and Pharmaceutical Chemistry, 12th Edn., Lippincott Williams and Wilkins, 2010

COURSE PLAN						
	ACADEMIC YEAR 2016 - 17					
PROGRAMME	:	M.Sc. Applied Chemistry - Pharmaceutical	LECTURE HOURS	:	72	
SEMESTER	:	3	CREDITS	:	4	
SUBJECT TITLE	:	Organic Syntheses	SUBJECT CODE	:	РЗСРНТ10	
COURSE TEACHERS	:	Dr. V.S. Sebastian (VSS); Dr. Franklin J (FJ); Dr. Gra Dr. Ignatious Abraham (IGA); Dr. June Cyriac (JUC)	ace Thomas (GT) ;			
Instructional Hours	Instructional Hours :					

GT	No. of Session	Session Topic and Discussion Theme	Value additions		
	1	Survey of organic reagents and reactions in organic chemistry with special reference to oxidation and reduction.			
ı	2	Metal based and non-metal based oxidations of alcohols to carbonyls (Chromium, Manganese)			
Reduction	3	Metal based and non-metal based oxidations of alcohols to carbonyls (aluminium and DMSO based reagents)	ICT		
and 1	4	alkenes to epoxides (peroxides/per acids based)-			
lation	5	Sharpless asymmetric epoxidation,			
a Oxid	6	Jacobsen epoxidation, Shi epoxidation			
hesis via O (18 hours)	7	alkenes to diols	Assignment No:2		
Synth (8	(Manganese and Osmium based)-Prevost reaction			
uic S	9	Woodward modification			
UNIT 1: Organic Synthesis via Oxidation and Reduction (18 hours)	Text Books	 FIRST INTERNAL EXAMINATION M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010. F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University P J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001I. L. Chemistry - Volume I & II - Pearson Education. 			
	10	alkenes to carbonyls with bond cleavage (Manganese and lead based, ozonolysis)			
	11	alkenes to alcohols/carbonyls without bond cleavage			
	12	- hydroboration-oxidation, Wacker oxidation, selenium/chromium based allylic oxidation			

	13	ketones to ester/lactones- Baeyer-Villiger oxidation				
	1.4	. Catalytic hydrogenation (Heterogeneous: Palladium/Platinum/Rhodium and Nickel. Homogeneous: Wilkinson).				
	14	and Nickel. Holliogeneous: Wilkinson).				
		Metal based reductions- Birch reduction, pinacol formation, acyloin				
	15	formation				
	16	Hydride transfer reagents from Group III and Group IV in reductions -				
		LiAlH4,.				
	17	DIBAL-H, Red-Al, NaBH4 and NaCNBH3, selectrides				
	18	trialkylsilanes and trialkylstannane. Meerwein-Pondorff-Verley				
	10	reduction. Baker's yeast				
	SECOND INTERNAL EXAMINATION					
	*	M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.				
8	 F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001I. L. Finar, Organic Chemistry, Oxford University Press, 2001I. 					
ok						
Bo						
Text Books		- Volume I & II - Pearson Education.				

FJ								
Unit II	No. of Sessions	Session Topic and Discussion Theme	Value additions					
	1	Baylis-Hillman reaction,						
	2	Henry reaction, Nef reaction,						
	3	Kulinkovich reaction, Ritter reaction,						
	4	Sakurai reaction, Tishchenko reaction, Ugi reaction,						
	5	Noyori reaction. Brook rearrangement.						
ıgents	7	Tebbe olefination.						
Rea	8	Metal mediated C-C and C-X coupling reactions: Heck,						
ds and	9	Stille,						
Modern Synthetic Methods and Reagents (18 Hours)	10	Suzuki,						
tic [18]	1st Internal Examination							
Synthe	11	Suzuki-Miyaura,						
dern S	12	Negishi-Sonogashira, Nozaki-Hiyama,	Power Point Presentation					
Mo	13	Buchwald-Hartwig, Ullmann and Glaser coupling reactions.						
	14	Wohl-Ziegler reaction. Reagents such as NBS						
	15	DDQ and DCC						
	16	Gilmann reagent.						
	2 nd Internal Examination							
	17	Introduction to multicomponent reactions						
	18	Click reaction						
	End Semester Examination							

sa	* M	.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.		
Text Books	❖ J.	Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxfor	d University Press.	
xt I	❖ R.	O.C. Norman, J.M. Coxon, Principles of Organic Synthesis, 3rd Edn., O	Chapmann and Hall, 1993.	
Te	❖ V.	K. Ahluwalia, L.S. Kumar, S. Kumar, Chemistry of Natural Products, G.	CRS	
JUC				
Unit III	No. of Sessions	Session Topic and Discussion Theme	Value additions	
	1	Different approaches towards the synthesis of three, four, five and six-membered rings.		
Systems	2	Photochemical approaches for the synthesis of four membered rings- oxetanes and cyclobutanes		
ic Ring (3	ketene cycloaddition (inter and intra molecular), Pauson-Khand reaction,	Power Point Presentation	
rocycl	4	Volhardt reaction, Bergman cyclization,		
d Hete	5	Nazarov cyclization, Mitsunobu reaction,		
clic and E	6	cation-olefin cyclization and radical-olefin cyclization.		
cyc		I st Internal Examination		
Carbo	7	Inter-conversion of ring systems (contraction and expansion)- Demjenov reaction		
Construction of Carbocyclic and Heterocyclic Ring Systems (9 Hours)	8	Reformatsky reaction. Construction of macrocyclic rings-ring closing metathesis.		
Constru	9	Formation of heterocyclic rings: 5-membered ring heterocyclic compounds with one or more than one hetero atom like N, S or O - pyrrole, furan, thiophene, imidazole, thiazole and oxazole		
		2 nd Internal Examination		

t Books	M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.
	❖ F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007.
	❖ W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004.
	❖ J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001.
Text	R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.

VSS			
Unit IV	No. of Sessions	Session Topic and Discussion Theme	Value additions
	1	Protection and deprotection of hydroxy, carboxyl,	
Protecting group Chemistry (9 Hours)	2	carbonyl, and amino groups. Chemo and regio selective protection and deprotection.	
	3	Illustration of protection and deprotection in synthesis.	Power Point Presentation
	4	Protection and deprotection in peptide synthesis.	
Protec	5	common protecting groups used in peptide synthesis,	Group Discussion
	6	protecting groups used in solution phase and	

	7	solid phase peptide synthesis (SPPS).					
	8	Functional equivalence and reactivity Umpolung.					
	9	Role of trimethyl silyl group in organic synthesis					
		Ist Internal Examination					
	❖ M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.						
S	❖ F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007.						
Books	W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004.						
	❖ J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001.						
Text	❖ R	. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.					

COURSE PLAN							
ACADEMIC YEAR 2016 - 17							
PROGRAMME	:	M.Sc. Applied Chemistry - Pharmaceutical	LECTURE HOURS	:	72		
SEMESTER	:	3	CREDITS	:	4		
SUBJECT TITLE	:	Physical Chemistry	SUBJECT CODE	:	P3CPHT11		
COURSE TEACHERS	:	Dr Jorphin Joseph, Dr Jinu George, Dr Ignatious Abrho	aham, Dr Abi T G				
COURSE OBJECTIVES : To undertand the basic concepts in Surface Chemistry, Electrochemistry, Photochemistry and Chemical Kinetics							

IGA						
Unit V	No. of Sessions	Session Topic and Discussion Theme	Value additions			
	1	Basic principles and terminology of reterosynthesis: method.				
	2	synthesis of aromatic compounds, one group				
ysis	3	two group C-X disconnections, one group C-C and two group C-C disconnections.				
nal (rs)	4	Amine and alkene synthesis: important strategies of retrosynthesis,				
Retrosynthetic Analysis (9 Hours)	5	functional group transposition, important functional group interconversions.				
ynt	6	important functional group interconversions,				
rosi	7	Enantioselective synthesis of Corey lactone				
Reti	8	longifolene and luciferin.				
	9	Umpolung equivalent – Peterson olefination, enolate formation, Ireland				
	Ist Internal Examination					
Unit VI	No. of Sessions	Session Topic and Discussion Theme	Value additions			
	1	Basic principles of the biosynthesis of terpenes,				
netic	2	steroids, alkaloids,.				
iosynthesis and Biomimetic Synthesis (9 Hours)	3	carbohydrates,				
Bion is s)	4	proteins and nucleic acids. e				
nd hes	5	Biosynthesis of cholesterol,				
sis and Ba Synthesis (9 Hours)	6	α- terpineol, morphine				
thes	7	glucose and phenyl alanine.				
nss	8	Biogenesis of isoprenoids and alkaloids.				
Bio	9	Biomimetic synthesis of progesterone and spatrein				
,	A 3.5	2 nd Internal Examination				
To.		.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.	1 F1 G : 2007			
Text Books		A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5				
T Bc		. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Ed				
	❖ J.	Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford	University Press, 2001.			

	*	R. No	yoı	ri, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.	
Instruction	al Hours	s	:	4 HOURS/WEEK	

	No. of Session	Session Topic and Discussion Theme	Value additions				
	1	Theories of reaction rates : Collision theory-steric factor, potential energy surfaces.					
	2	Conventional transition state theory-Eyring equation,					
IS	3	Comparisonof the two theories.	Assignment				
UNIT 1 CHEMICAL KINETICS I (14 hours)	4	Thermodynamic formulation of the two theories.					
	5	Thermodynamic formulation of the reaction rates.					
NIT	6	Significance of ΔG^* , ΔH^* and ΔS^* . Volume of activation.					
\boldsymbol{U}	7	Effect of pressure and volume on velocity of gas reactions.					
	8	Introduction to Molecular Reaction Dynamics					
	9	FIRST INTERNAL EXAMINATION	N	<u> </u>			
	1. J.	J. Rajaram, J.C. Kuriakose, Kinetics and Mechanisms of Chemical Transformations, Macmillan India, 2000.					
	2. K	K.J. Laidler, Chemical kinetics, 3 rd Edn. Harper & Row, 1987.					
ooks	3. C	C. Kalidas, Chemical Kinetic Methods: Principles of Fast Reaction Techniques and Applications, New Age International, 2005.					
Text Books	4. J.	.W. Moore, R.G. Pearson, Kinetics and Mechanisms, John Wiley & Sons, 1981.					
	5. P	P.W. Atkins, Physical Chemistry, ELBS, 1994.					
	10	Lindemann-Hinshelwood mechanism	ICT				

П

	11	Qualitative idea of RRKM theory		
	No. of Session	Session Topic and Discussion Theme	Value additions	
	12	Chain reactions, free radical and chain reactions		
	13	Steady state treatment, kinetics of H ₂ -Cl ₂ and H ₂ -Br ₂ reactions,	Group Discussion	
		SECOND INTERNAL EXAM	IINATION	
1	14	Rice –Herzfeld mechanism, Branching chains H ₂ -O ₂		
ETICS	15	Semenov-Hinshelwood mechanism of explosive reactions.		
	16	Kinetics of polymerization: mechanism of step growth		
CAL crs.)	17	Ionic and addition polymerization	PowerPoint presentation	
CHEMICAL KINETICS II (14 Hrs.)	18	Kinetics of anionic and cationic polymerization.	PowerPoint presentation	
Unit III	No. of Session	Session Topic and Discussion Theme	Value additions	
×	1	Basic principles of nanochemistry,.		
Unit 4: Nanotechnology and Green Chemistry	2	methods of synthesis of nanomaterials, a brief study of carbon nanotubes, fullerenes, quantum dots and metal nanoparticles. Applications of nanomaterials in medicine: immunogold labelling,		
Nanote een Ck	3	applications in medical diagnosis,		
	4	nanobased drug delivery,		
4. Q	5	biomimetic nanotechnology,		
Unit	6	DNA nanotechnology and structural biomimicry.		

	1 st Internal Examination	on
8	5.2 Principles of green chemistry	
9	basic concepts, atom economy, twelve laws of green chemistry,	Power Point Presentation
Books		
No. of Session		Value additions
10	principles of green organic synthesis.	
11	5.3 Green alternatives of organic synthesis:	Power Point Presentation
12	coenzyme catalysed reactions,	Power Point Presentation
13	green alternatives of molecular rearrangements,	
14	electrophilic aromatic substitution reactions,	Group Discussion
	2 nd Internal Examination	on
15	oxidation-reduction reactions, clay catalysed synthesis,	
16	condensation reactions. Green photochemical reactions.	
17	Microwave assisted organic synthesis.	Individual Assignment: Various intermolecular forces
18	5.4 Green chemistry in the pharmaceutical industry: Ibuprofen manufacture, biocatalysis.	

Reference:

Principles of green chemistry, basic concepts, atom economy, twelve laws of green chemistry, principles of green organic synthesis.

5.3 Green alternatives of organic synthesis: coenzyme catalysed reactions, green alternatives of molecular rearrangements, electrophilic aromatic substitution reactions, oxidation-reduction reactions, clay catalysed synthesis, condensation reactions. Green photochemical reactions. Microwave assisted organic synthesis.

5.4 Green chemistry in the pharmaceutical industry: Ibuprofen manufacture, biocatalysis.

Unit IV	No. of Session	Session Topic and Discussion Theme	Value additions	
	S			

_	1	4.2 Spectroscopic techniques for probing solid surfaces		
'RY	2	Temperature programmed desorption (TPD)		
ISI SG	3	Reflection absorption infrared spectroscopy (RAIRS)		
OU	4	High resolution electron energy lossspectroscopy (HREELS).		
	5	4.3 Surface films -Introduction film pressure		
SURFACE CHEMISTRY AND COLLOIDS	7	criteria for spreading of one liquid on another		
AC.		1 st Internal Examination		
RF.	8	4.4 Adsorption from solutions		
SU	9	Electrostatic adsorption, Gibbs adsorption isotherm (derivation) - verifications.	Power Point Presentation	
Unit	No. of	verifications.		
IV	Session	Session Topic and Discussion Theme	Value additions	
	S			
	10	4.5 Colloids &Micellar systems		
	11	Types of colloids, Electrical properties of colloids	Power Point Presentation	
	12	Electrical double layer, zeta potential	Power Point Presentation	
	13	Miscelles, and miscellisation		
	14	Structure of miscelles - ionic miscelles.	Group Discussion	
		2 nd Internal Examination		
	15	> 5.1Laws of Photochemistry:		
	16	Grothus –Draper Law, Stark-Einstein's Law, Laws of light absorption, Quantum yield. Chemical actinometry		
	17	 Excimers and exciplexes, photosensitization 	Individual Assignment: Various intermolecular forces	
	18	chemiluminescence, bioluminescence, thermo luminescence		

Unit V	No. of Sessions	Session Topic and Discussion Theme	Value additions				
X	1	pulse radiolysis, hydrated electrons, photo stationary state,					
		dimerization of anthracene.					
IR	2	5.2Photo physical processes in electronically excited molecules,					
PHOTOCHEMISTRY	3	Jablonsky diagram					
	4	Fluorescence and Phosphorescence.					
	5	Quenching of fluorescence and its kinetics					
T	7	Stern-Volmer equation, static and dynamic quenching.					
HO		1st Internal Examination					
五	8	Concentration quenching,					
	9	E-type and P-type. Effect of temperature on emissions,	Power Point Presentation				
	No. of Sessions	Session Topic and Discussion Theme	Value additions				
	10	Two photon absorption spectroscopy					
	11	Principle of utilization of solar energy	Power Point Presentation				
	12	Solar cells and their working.	Power Point Presentation				
	13	Photochemistry of vision.					
	14	delayed fluorescence,	Group Discussion				
	2 nd Internal Examination						
	15 Numericals						
	16	Revision					
	17	Revision	Individual Assignment:				
	17		Various intermolecular forces				
	18	Revision					
	6. D.A. McQuarrie, J.D. Simon, Physiacl chemistry: A Molecular Approach, University Science Books,1997						
Text Books	8. K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, 2 nd Edn. New Age International, 1986.						
	9. G. Aruldhas, Molecular structure and Spectroscopy, PHI Learning, 2007.						
	10. M.R Wright, An Introduction to Chemical Kinetics, John Interscience-2007						
I	11. A.W &Sons, Adamson, A.P. Gast, Physical chemistry of sufaces,6thEdn,John Wiley, 1997						
	12. D.O. Cowan ,R.L. Drisko , Elements of Organic Photochemistry, Plenum Press, 1976						

Programme: M Sc Applied Chemistry - Pharmaceutical

Semester: III Course: **P3CPHT12** Spectroscopic Methods In Chemistry

	Term – I (Before I Internal tests) – 30 % of the syllabus						
Sl No	Topic/Module	Hour/ session	Teacher/invited persons etc.	Method of teaching *	Remarks: Books, reference etc		
1	Unit 1: Drugs acting on ANS 1.1, 1.2, 1.3	6 hrs	Dr Jorphin Joseph	Lecture ICT enabled	D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction		
2	Unit 2: Drugs acting on CVS	6 hrs	Dr. Grace Thomas	Lecture ICT enabled	to Spectroscopy		
3	Unit 3: Chemotherapy 3.1, 3.2	6 hrs	Midhun Dominic C D	Lecture ICT enabled			
4	Unit 4: Antineoplastic Drugs	6 hrs	Senju Devassykutty	Lecture			
5	Unit 6: Miscellaneous class of compounds 6.1, 6.2	6 hrs	June Cyriac	Lecture ICT enabled			

*ICT enabled, Lecture method (conventional)

	$Term-II-40\ \%$ of the syllabus (before the second Internal tests)						
Sl No	Topic/Module	Hour/ session	Teacher/invited persons etc.	Method of teaching *	Remarks: Books, reference etc		
1	Unit 1: Drugs acting on ANS 1.4, 1.5, 1.6	6 hrs	Dr Jorphin Joseph	Lecture ICT enabled	W. Kemp, Organic Spectroscopy, 2nd Edn		
2		6 hrs	Dr. Grace Thomas	Lecture ICT enabled			

3	Unit 3: Chemotherapy 3.3, 3.4	6 hrs	Midhun Dominic C D	Lecture ICT enabled	
4		6 hrs	Senju Devassykutty	Lecture	
5	Unit 6: Miscellaneous class of compounds 6-3, 6.4, 6.5	6 hrs	June Cyriac	Lecture ICT enabled	

	Term – III – 30 % of the syllabus (before the model examination)						
Sl	Topic/Module	Hour/	Teacher/invited	Method of	Remarks: Books,		
No		session	persons etc.	teaching *	reference etc		
1	Unit 1: Drugs acting on ANS	6 hrs	Dr Jorphin Joseph	Lecture ICT enabled	R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectroscopic		
2		6 hrs	Dr. Grace	Lecture ICT	Identification of		
			Thomas	enabled	Organic Compounds,		
					5th Edn.,		
3	Unit 3: Chemotherapy	6 hrs	Midhun	Lecture ICT			
	3.5		Dominic C D	enabled			
4		6 hrs	Senju	Lecture			
			Devassykutty				
5	Unit 6: Miscellaneous class of	6 hrs	June Cyriac	Lecture ICT			
	compounds			enabled			
	6.6, 6.7						