Sacred Heart College (Autonomous)

Department of Chemistry

MSc Chemistry

Course Plan

Academic Year 2016 – 17

Semester 3

	COURSE PLAN				
	ACADEMIC YEAR 2016 - 17				
PROGRAMME	:	MSc Chemistry	LECTURE HOURS	:	72
SEMESTER	:	Ш	CREDITS	:	4
SUBJECT TITLE	:	Structural Inorganic Chemistry	SUBJECT CODE	:	СН3С09
COURSE TEACHERS	:	Dr. Joseph John, Mr. Midhun Dominic C D, Mr. So	Dr. Joseph John, Mr. Midhun Dominic C D, Mr. Senju Devassykutty, Dr.Ramakrishnan		
Instructional Hours	:	4			

Sessions	Topic/Module	Method of teaching *
1-3	Unit 1: Solid State Chemistry (18 hours) (JJ) Structure of solids: Imperfections in solids-point defects, line defects and plane defects.	Conventional Teaching
4-6	Structure of compounds of AX (Zinc blende, Wurtzite), AX2 (Rutile,fluorite, antifluorite), AmX2 (Nickel Arsenide), ABX3 (Perosvskite, Ilmenite). Spinels. Inverse spinel structures.	Conventional Teaching ICT
7-8	Solid state reactions-diffusion coefficient, mechanisms, vacancy diffusion,	Conventional Teaching
9-10	thermal decomposition of solid-Type I reactions, Type II reactions.	Conventional Teaching
11-13	Phase transition in solids: classification of phase transitions-first and second order phase transitions,	Conventional Teaching
14-16	Martensitic transformations, order- disorder transitions and spinodal decomposition. Kinetics of phase transitions, sintering.	Conventional Teaching Assignment

17-18	Growing single crystals-crystal growth from solution, growth from melt and vapor deposition technique.	Conventional Teaching
1-2	Unit 2: Electrical, Magnetic and Optical Properties (18 Hrs) (MD) Kronig-Penney model, Free electron	Conventional Teaching
2-6	theoryZone theory and MO theory of solids. Energy bands-conductors and non-conductors, intrinsic and extrinsic semiconductors	Conventional Teaching
7	Electrons and holes. Mobility of charge carriers. Hall Effect.	Conventional Teaching
8-9	Pyroelectricity, piezo electricity and ferro electricity. Conductivity of pure metals.	Conventional Teaching ASSIGNMENT
10-11	Magnetic properties of transition metal oxides, garnets, spinels, ilmenites and perovskites, magnetoplumbites.	Conventional Teaching
12	Optical properties-photoconductivity, photovoltaic effects, luminescence. Applications of optical properties	Conventional Teaching ICT
13-14	Super conductivity-Type I and Type II superconductors, Frolich diagram, Cooper pairs, theory of low temperature super conductors, junctions using superconductors,	Conventional Teaching

15-16	BCS theory of superconductivity (derivation not required). Super conducting cuprates - YBaCu oxide system, Meisner effect, conventional superconductors, organic superconductors	Conventional Teaching
17-18	fullerenes, carbon nanotubes, high temperature superconductors	Conventional Teaching
1-2	Unit 3: Inorganic Chains and Rings (18 Hrs) (SD) Chains - catenation, heterocatenation.	Conventional Teaching
3-4	Silicate minerals. Structure of silicate common silicates, silicates containing discrete anions, silicates containing infinite chains, silicates containing sheets, framework silicates.	Conventional Teaching
5	Silicones. Zeolites synthesis,structure and applications.	Conventional Teaching
6-7	Isopoly acids of vanadium, molybdenum and tungsten.	Conventional Teaching
8	Heteropoly acids of Mo and W.	Conventional Teaching
9	Condensed phosphates-preparation, structure and applications. Phosphate esters in biological systems.	Conventional Teaching ICT

10	Polythiazil-one dimensional conductors	Conventional Teaching
11	Rings-topological approach to boron hydrides, Styx numbers	Conventional Teaching
12-13	Structure and bonding in borazines, ring silicates and silicones,	Conventional Teaching ASSIGNMENT II
14	phosphorous-nitrogen compounds, phosphazenes.	Conventional Teaching
15-16	Heterocyclic inorganic ring systems- structure and bonding in phosphorous- sulphur and sulphur-nitrogen compounds.	Conventional Teaching
17-18	Homocyclic inorganic ring systems- structure and bonding in sulphur, selenium and phosphorous compounds.	Conventional Teaching
1-2	Unit 4: Inorganic Cages and Metal Clusters (9 Hrs)(RKS) Cages: synthesis, structure and bonding of cage like structures of phosphorous.	Conventional Teaching ICT
3-4	Boron cage compounds-Wade Mingos Lauher rules, MNO rule	Conventional Teaching
5	boranes, carboranes, metallacarboranes.	Conventional Teaching

6-7	Metal clusters: dinuclear compounds of Re, Cu and Cr, metal-metal multiple bonding in (Re2X8)2	Conventional Teaching
8	trinuclear clusters, tetranuclear clusters, hexanuclear clusters.	Conventional Teaching
9	Polyatomic zintl anion and cations. Infinite metal chains.	Conventional Teaching
1-2	Unit 5: Chemistry of Materials (9 Hrs)(RKS) Glasses, ceramics	Conventional Teaching
3	composites	Conventional Teaching
4-5	nanomaterials-preparative procedures. Sol-gel synthesis,	Conventional Teaching
6	glassy state-glass formers and glass modifiers,	Conventional Teaching
7	ceramic structures mechanical properties,	Conventional Teaching
8	clay products,	Conventional Teaching
9	refractories- characterizations, properties and applications.	Conventional Teaching Assignment

References

01. L.V. Azaroff, Introduction to Solids, Mc Graw Hill, 1984.
02. A.R. West, Solid State Chemistry and its Applications, Wiley-India, 2007.
03. D.K. Chakrabarty, Solid State Chemistry, New Age Pub., 2010.
04. D.M. Adams, Inorganic Solids: An Introduction to Concepts in Solid State
Structural Chemistry, Wiley, 1974.
05. C.N.R. Rao, K.J. Rao, Phase Transitions in Solids, McGraw Hill, 2010.
06. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic
Chemistry, 3rd Edn., John Wiley & sons, 2006.
07. A. Earnshaw, Introduction to Magnetochemistry, Academic Press, 1968.
08. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Harper Collins College Pub., 1993.

	COURSE PLAN				
		ACADEMIC YEAR 2016 - 17			
PROGRAMME	:	M.Sc. Chemistry	LECTURE HOURS	:	72
SEMESTER	:	3	CREDITS	:	4
SUBJECT TITLE	:	Organic Syntheses	SUBJECT CODE	:	P3CHET09
COURSE TEACHERS	:	: Dr. V.S. Sebastian (VSS); Dr. Franklin J (FJ); Dr. Grace Thomas (GT); Dr. Ignatious Abraham (IGA); Dr. June Cyriac (JUC)			
Instructional Hours :					

GT	No. of Session	Session Topic and Discussion Theme	Value additions
	1	Survey of organic reagents and reactions in organic chemistry with special reference to oxidation and reduction.	
ı	2	Metal based and non-metal based oxidations of alcohols to carbonyls (Chromium, Manganese)	
Reduction	3	Metal based and non-metal based oxidations of alcohols to carbonyls (aluminium and DMSO based reagents)	ICT
and l	4	alkenes to epoxides (peroxides/per acids based)-	
lation	5	Sharpless asymmetric epoxidation,	
a Oxid Irs)	6	Jacobsen epoxidation, Shi epoxidation	
hesis via C (18 hours)	7	alkenes to diols	Assignment No:2
Synth (8	(Manganese and Osmium based)-Prevost reaction	
nic L	9	Woodward modification	
UNIT 1 : Organic Synthesis via Oxidation and Reduction (18 hours)	Text Books	 FIRST INTERNAL EXAMIN M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010 F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, <i>Chemistry</i> - Volume I & II - Pearson Education.). and B, 5th Edn., Springer, 2007. s, 4th Edn., Cambridge University Press, 2004.
	10	alkenes to carbonyls with bond cleavage (Manganese and lead based, ozonolysis)	
	11	alkenes to alcohols/carbonyls without bond cleavage	
	12	- hydroboration-oxidation, Wacker oxidation, selenium/chromium based allylic oxidation	

	13	ketones to ester/lactones- Baeyer-Villiger oxidation			
	14	. Catalytic hydrogenation (Heterogeneous: Palladium/Platinum/Rhodium and Nickel. Homogeneous: Wilkinson).			
	15	Metal based reductions- Birch reduction, pinacol formation, acyloin formation			
	16	Hydride transfer reagents from Group III and Group IV in reductions - LiAlH4,.			
	17	DIBAL-H, Red-Al, NaBH4 and NaCNBH3, selectrides			
	18	trialkylsilanes and trialkylstannane. Meerwein-Pondorff-Verley reduction. Baker's yeast			
		SECOND INTERNAL EXAMINATION			
	* N	A.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.			
S	F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007.				
100		W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004.			
♣ J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chem		. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001I. L. Finar, Organic Chemistry			
Text Books	-	Volume I & II - Pearson Education.			

FJ							
Unit II	No. of Sessions	Session Topic and Discussion Theme	Value additions				
	1	Baylis-Hillman reaction,					
	2	Henry reaction, Nef reaction,					
	3	Kulinkovich reaction, Ritter reaction,					
	4	Sakurai reaction, Tishchenko reaction, Ugi reaction,					
	5	Noyori reaction. Brook rearrangement.					
gents	7	Tebbe olefination.					
Rea	8	Metal mediated C-C and C-X coupling reactions: Heck,					
s and	9	Stille,					
Modern Synthetic Methods and Reagents (18 Hours)	10	Suzuki,					
tic M (18 I		1 st Internal Examination					
ynthe (11	Suzuki-Miyaura,					
dern S.	12	Negishi-Sonogashira, Nozaki-Hiyama,	Power Point Presentation				
Moo	13	Buchwald-Hartwig, Ullmann and Glaser coupling reactions.					
	14	Wohl-Ziegler reaction. Reagents such as NBS					
	15	DDQ and DCC					
	16	Gilmann reagent.					
		2 nd Internal Examination	n	· · · · · · · · · · · · · · · · · · ·			
	17	Introduction to multicomponent reactions					
	18	Click reaction					
		End Semester Examination)n				

¢S	✤ M	.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.				
Text Books	∻ J.	Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxfor	d University Press.			
<i>xt 1</i>	✤ R.	O.C. Norman, J.M. Coxon, Principles of Organic Synthesis, 3rd Edn., O	Chapmann and Hall, 1993.			
	✤ V.	K. Ahluwalia, L.S. Kumar, S. Kumar, Chemistry of Natural Products, C	CRS			
JUC	1			1		
Unit III	No. of Sessions	Session Topic and Discussion Theme	Value additions			
	1	Different approaches towards the synthesis of three, four, five and six-membered rings.				
Systems	2	Photochemical approaches for the synthesis of four membered rings- oxetanes and cyclobutanes				
lic Ring (3	ketene cycloaddition (inter and intra molecular), Pauson-Khand reaction,	Power Point Presentation			
rocyc	4	Volhardt reaction, Bergman cyclization,				
d Hete trs)	5	Nazarov cyclization, Mitsunobu reaction,				
clic and H (9 Hours)	6	cation-olefin cyclization and radical-olefin cyclization.				
C	I st Internal Examination					
Carbo	7	Inter-conversion of ring systems (contraction and expansion)- Demjenov reaction				
Construction of Carbocyclic and Heterocyclic Ring Systems (9 Hours)	8	Reformatsky reaction. Construction of macrocyclic rings-ring closing metathesis.				
	9	Formation of heterocyclic rings: 5-membered ring heterocyclic compounds with one or more than one hetero atom like N, S or O - pyrrole, furan, thiophene, imidazole, thiazole and oxazole				
		2 nd Internal Examination				

ext Books	 M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010. F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001. P. Novori, Asymptotic Catalysis in Organic Synthesis, John Wiley & Sons, 1004
Tex	 R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.

1 2 3	Protection and deprotection of hydroxy, carboxyl, carbonyl, and amino groups. Chemo and regio selective protection and deprotection. Illustration of protection and deprotection in synthesis.		
	and deprotection.		
3	Illustration of protection and deprotection in synthesis.		
		Power Point Presentation	
4	Protection and deprotection in peptide synthesis.		
5	common protecting groups used in peptide synthesis,	Group Discussion	
6	protecting groups used in solution phase and		
7	solid phase peptide synthesis (SPPS).		
8	Functional equivalence and reactivity Umpolung.		
9	Role of trimethyl silyl group in organic synthesis		
	5 6 7 8	5common protecting groups used in peptide synthesis,5protecting groups used in solution phase and6protecting groups used in solution phase and7solid phase peptide synthesis (SPPS).8Functional equivalence and reactivity Umpolung.	5common protecting groups used in peptide synthesis,Group Discussion6protecting groups used in solution phase and7solid phase peptide synthesis (SPPS).8Functional equivalence and reactivity Umpolung.9Role of trimethyl silyl group in organic synthesis

t Books	 M.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.
	F.A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th Edn., Springer, 2007.
	↔ W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn., Cambridge University Press, 2004.
	✤ J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001.
Text	R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.

COURSE PLAN						
		ACADEMIC YEAR 2016 - 17				
PROGRAMME	:	M.Sc. Chemistry	LECTURE HOURS	:	72	
SEMESTER	:	3	CREDITS	:	4	
SUBJECT TITLE	:	Physical Chemistry	SUBJECT CODE	:	P3CHET11	
COURSE TEACHERS	:	Dr Jorphin Joseph, Dr Jinu George, Dr Ignatious Abrh	aham, Dr Abi T G			
COURSE OBJECTIVES	:	To undertand the basic concepts in Surface Chemistry, Electrochemistry, Photochemistry and Chemical Kinetics				
Instructional Hours	: 4 HOURS/WEEK					

IGA					
Unit V	No. of Sessions	Session Topic and Discussion Theme	Value additions		
	1	Basic principles and terminology of reterosynthesis: method.			
	2 synthesis of aromatic compounds, one group				
ysis	3	two group C-X disconnections, one group C-C and two group C-C disconnections.			
nal (rs)	4	Amine and alkene synthesis: important strategies of retrosynthesis,			
Retrosynthetic Analysis (9 Hours)	5	functional group transposition, important functional group interconversions.			
/ntł	6	important functional group interconversions,			
íso.	7	Enantioselective synthesis of Corey lactone			
Retn	8	longifolene and luciferin.			
μ. Η	9 Umpolung equivalent – Peterson olefination, enolate formation, Ireland				
	I st Internal Examination				
Unit VI	No. of Sessions	Session Topic and Discussion Theme	Value additions		
\$	1	Basic principles of the biosynthesis of terpenes,			
neti	2	steroids, alkaloids,.			
min	3	carbohydrates,			
Bio is	4	proteins and nucleic acids. e			
nd hes our	5	Biosynthesis of cholesterol,			
osynthesis and Biomimetic Synthesis (9 Hours)	6	α- terpineol, morphine			
thes S	7	glucose and phenyl alanine.			
nus	8	Biogenesis of isoprenoids and alkaloids.			
Bio	9	Biomimetic synthesis of progesterone and spatrein			
,	A 3.6	2 nd Internal Examination			
\$.B. Smith, Organic Synthesis, 3rd Edn., Wavefunction Inc., 2010.	E1 G : 2007		
Text Books		A. Carey, R. I. Sundberg, Advanced Organic Chemistry, Part A and B, 5th			
B		. Carruthers, I. Coldham, Modern Methods of Organic Synthesis, 4th Edn.			
	✤ J.	Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford U	University Press, 2001.		

 R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, 1994.

	No. of Session	Session Topic and Discussion Theme	Value additions			
	1	Theories of reaction rates : Collision theory-steric factor, potential energy surfaces.				
	2	Conventional transition state theory-Eyring equation,				
IS	3	Comparisonof the two theories.	Assignment			
UNIT 1 CHEMICAL KINETICS I (14 hours)	4	Thermodynamic formulation of the two theories.				
	5	Thermodynamic formulation of the reaction rates.				
NIT	6	Significance of ΔG^* , ΔH^* and ΔS^* . Volume of activation.				
D	7	Effect of pressure and volume on velocity of gas reactions.				
	8	Introduction to Molecular Reaction Dynamics				
	9	FIRST INTERNAL EXAMINATION	N			
	1. J.	J. Rajaram, J.C. Kuriakose, Kinetics and Mechanisms of Chemical Transformations, Macmillan India, 2000.				
	2. K	.J. Laidler, Chemical kinetics, 3 rd Edn. Harper & Row, 1987.				
ooks	3. C	C. Kalidas, Chemical Kinetic Methods: Principles of Fast Reaction Techniques and Applications, New Age International, 2005.				
Text Books	4. J.	.W. Moore, R.G. Pearson, Kinetics and Mechanisms, John Wiley & Sons, 1981.				
Te	5. P	.W. Atkins, Physical Chemistry, ELBS, 1994.				
	10	Lindemann-Hinshelwood mechanism	ICT			

	11	Qualitative idea of RRKM theory				
	No. of Session	Session Topic and Discussion Theme	Value additions			
	12	Chain reactions, free radical and chain reactions				
	13	Steady state treatment, kinetics of H ₂ -Cl ₂ and H ₂ -Br ₂ reactions,	Group Discussion			
		SECOND INTERNAL EXAMINATION				
1	14	Rice –Herzfeld mechanism, Branching chains H ₂ -O ₂				
ETICS	15	Semenov-Hinshelwood mechanism of explosive reactions.				
KIN	16	Kinetics of polymerization: mechanism of step growth				
CAL] rs.)	17	Ionic and addition polymerization	PowerPoint presentation			
CHEMICAL KINETICS II (14 Hrs.)	18	Kinetics of anionic and cationic polymerization.	PowerPoint presentation			
Unit III	No. of Session s	Session Topic and Discussion Theme	Value additions			
Y	1	Basic principles of nanochemistry,.				
Unit 4: Nanotechnology and Green Chemistry	2	methods of synthesis of nanomaterials, a brief study of carbon nanotubes, fullerenes, quantum dots and metal nanoparticles. Applications of nanomaterials in medicine: immunogold labelling,				
C	3	applications in medical diagnosis,				
Nan een	4	nanobased drug delivery,				
Gr 4:]	5	biomimetic nanotechnology,				
Unit and	6	DNA nanotechnology and structural biomimicry.				

		1 st Internal Examination	
	8	5.2 Principles of green chemistry	
	9	basic concepts, atom economy, twelve laws of green chemistry,	Power Point Presentation
Text Books			
	No. of Session s	Session Topic and Discussion Theme	Value additions
	10	principles of green organic synthesis.	
Į	11	5.3 Green alternatives of organic synthesis:	Power Point Presentation
	12	coenzyme catalysed reactions,	Power Point Presentation
	13	green alternatives of molecular rearrangements,	
	14	electrophilic aromatic substitution reactions,	Group Discussion
		2 nd Internal Examination	
	15	oxidation-reduction reactions, clay catalysed synthesis,	
	16	condensation reactions. Green photochemical reactions.	
	17	Microwave assisted organic synthesis.	Individual Assignment: Various intermolecular forces
	18	5.4 Green chemistry in the pharmaceutical industry: Ibuprofen manufacture, biocatalysis.	
5.3 Green substituti Microwa	es of green en alternativ ion reactio ave assisted en chemistr	chemistry, basic concepts, atom economy, twelve laws of green chemistry, ves of organic synthesis: coenzyme catalysed reactions, green alternatives o ons, oxidation-reduction reactions, clay catalysed synthesis, condensation rea d organic synthesis. ry in the pharmaceutical industry: Ibuprofen manufacture, biocatalysis.	of molecular rearrangements, electrophilic aromatic
Unit IV	No. of Session s	Session Topic and Discussion Theme	Value additions

	1	4.2 Spectroscopic techniques for probing solid surfaces					
RY	2	Temperature programmed desorption (TPD)					
ST	3	Reflection absorption infrared spectroscopy (RAIRS)					
IW	4	High resolution electron energy lossspectroscopy (HREELS).					
HE	5	4.3 Surface films -Introduction film pressure					
0 G	7	criteria for spreading of one liquid on another					
DO		1 st Internal Examination					
RFACE CHEMIST AND COLLOIDS	8	4.4 Adsorption from solutions					
SURFACE CHEMISTRY AND COLLOIDS	9	Electrostatic adsorption, Gibbs adsorption isotherm (derivation) - verifications.	Power Point Presentation				
Unit	No. of						
IV	Session	Session Topic and Discussion Theme	Value additions				
	S						
	10	4.5 Colloids & Micellar systems					
	11	Types of colloids, Electrical properties of colloids	Power Point Presentation				
	12	Electrical double layer, zeta potential	Power Point Presentation				
	13	Miscelles, and miscellisation					
	14	Structure of miscelles - ionic miscelles.	Group Discussion				
	2 nd Internal Examination						
	15	> 5.1Laws of Photochemistry:					
	16	Grothus –Draper Law, Stark-Einstein's Law, Laws of light absorption, Quantum yield. Chemical actinometry					
	17	 Excimers and exciplexes, photosensitization 	Individual Assignment: Various intermolecular forces				
	18	chemiluminescence, bioluminescence, thermo luminescence					

Unit VNo. of SessionsSession Topic and Discussion Theme		Session Topic and Discussion Theme	Value additions			
	1	pulse radiolysis, hydrated electrons, photo stationary state,				
X		dimerization of anthracene.				
TR	2	5.2Photo physical processes in electronically excited molecules,				
PHOTOCHEMISTRY	3	Jablonsky diagram				
HIE	4	Fluorescence and Phosphorescence.				
SC	5	Quenching of fluorescence and its kinetics				
Ľ	7	Stern-Volmer equation, static and dynamic quenching.				
OH		1 st Internal Examination				
Р	8	Concentration quenching,				
	9	E-type and P-type. Effect of temperature on emissions,	Power Point Presentation			
	No. of Sessions	Session Topic and Discussion Theme	Value additions			
	10	Two photon absorption spectroscopy				
	11 Principle of utilization of solar energy		Power Point Presentation			
	12	Solar cells and their working.	Power Point Presentation			
	13	Photochemistry of vision.				
	14	delayed fluorescence,	Group Discussion			
	2 nd Internal Examination					
	15	Numericals				
	16	Revision				
	17	Revision	Individual Assignment:			
			Various intermolecular forces			
	18	Revision				
	6. D.A. McQuarrie, J.D. Simon, Physiacl chemistry: A Molecular Approach, University Science Books, 1997					
8	8. K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, 2 nd Edn. New Age International, 1986.					
300ks	9. G. Aruldhas, Molecular structure and Spectroscopy, PHI Learning, 2007.					
Text Book	10. M.	R Wright, An Introduction to Chemical Kinetics, John Interscience-20	007			
Γ	11. A.	W &Sons, Adamson, A.P. Gast, Physical chemistry of sufaces,6thEdn	John Wiley, 1997			
	12. D.O. Cowan ,R.L. Drisko , Elements of Organic Photochemistry, Plenum Press, 1976					

Programme: M Sc Chemistry

Semester: III

Course: P3CHET12 Spectroscopic Methods In Chemistry

	Term – I (Before I Internal tests) – 30 % of the syllabus						
Sl No	Topic/Module	Hour/ session	Teacher/invited persons etc.	Method of teaching *	Remarks: Books, reference etc		
1	Unit 1: Drugs acting on ANS 1.1, 1.2, 1.3	6 hrs	Dr Jorphin Joseph	Lecture ICT enabled	D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction		
2	Unit 2: Drugs acting on CVS	6 hrs	Dr. Grace Thomas	Lecture ICT enabled	to Spectroscopy		
3	Unit 3: Chemotherapy 3.1, 3.2	6 hrs	Midhun Dominic C D	Lecture ICT enabled			
4	Unit 4: Antineoplastic Drugs	6 hrs	Senju Devassykutty	Lecture			
5	Unit 6: Miscellaneous class of compounds 6.1, 6.2	6 hrs	June Cyriac	Lecture ICT enabled			

*ICT enabled, Lecture method (conventional)

	Term – II – 40 % of the syllabus (before the second Internal tests)						
Sl No	Topic/Module	Hour/ session	Teacher/invited persons etc.	Method of teaching *	Remarks: Books, reference etc		
1	Unit 1: Drugs acting on ANS 1.4, 1.5, 1.6	6 hrs	Dr Jorphin Joseph	Lecture ICT enabled	W. Kemp, Organic Spectroscopy, 2nd Edn		
2		6 hrs	Dr. Grace Thomas	Lecture ICT enabled			

3	Unit 3: Chemotherapy 3.3, 3.4	6 hrs	Midhun Dominic C D	Lecture ICT enabled	
4		6 hrs	Senju Devassykutty	Lecture	
5	Unit 6: Miscellaneous class of compounds 6-3, 6.4, 6.5	6 hrs	June Cyriac	Lecture ICT enabled	

	Term – III – 30 % of the syllabus (before the model examination)						
Sl	Topic/Module	Hour/	Teacher/invited	Method of	Remarks: Books,		
No		session	persons etc.	teaching *	reference etc		
1	Unit 1: Drugs acting on ANS	6 hrs	Dr Jorphin Joseph	Lecture ICT enabled	R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectroscopic		
2		6 hrs	Dr. Grace	Lecture ICT	Identification of		
			Thomas	enabled	Organic Compounds,		
					5th Edn.,		
3	Unit 3: Chemotherapy	6 hrs	Midhun	Lecture ICT			
	3.5		Dominic C D	enabled			
4		6 hrs	Senju	Lecture			
			Devassykutty				
5	Unit 6: Miscellaneous class of	6 hrs	June Cyriac	Lecture ICT			
	compounds			enabled			
	6.6, 6.7						