SACRED HEART COLLEGE (AUTONOMOUS)

Department of Mathematics

BACHELOR OF SCIENCE [MATHEMATICS]

Course plan

Academic Year 2016 – 17

Semester 5

COURSE PLAN U5CRMATO5 : Mathematical Analysis

COURSE OBJECTIVE

•

- *To study elementary concepts of real analysis
- * To equip the students for analysing a problem and solving it.
- *To understand both algebraic and geometrical implications of the results in real analysis.

Sessions	Торіс	Method	Remarks
1	Introductory Session, Bridge course	Lecture	
2	Introductory Session, Bridge course	Lecture	
3	Intervals, Bounded and unbounded sets-	Lecture, group discussion and	
	examples	problem solving	
4	Problem solving		
5	Supremum and infimum-	Lecture, group discussion and	
		problem solving	
6	examples to find supremum and infimum		
7	Order completeness in R, Archimedian	Lecture, group discussion	
	property of real numbers		
8	Dedekinds form of completeness property	Lecture	
9	Dedekinds form of completeness property	Lecture	
10	Revision		
11	Test Paper - 1		
12	Introduction to module 2		
13	Neighbourhood of a point	Lecture, group discussion and	
		problem solving	
14	examples		
15	Interior point of a set-examples		
16	Interior point of a set-examples	Lecture, group discussion and	
		problem solving	
17	Open set-examples	Lecture, group discussion and	
		problem solving	
18	Theorems on open sets - Problems		
19	Limit Point-Derived set-examples	Lecture, group discussion and	
		problem solving	

20	Limit Point-Derived set-examples	Lecture, group discussion and problem solving
21	Bolzano Weierstras Theorem	Lecture
22	Closed sets-examples	Lecture, group discussion and
	Closure of a set-examples Further	problem solving
	theorems	
23	Theorem continues	Lecture
24	Dense sets-examples	Lecture, group discussion and
		problem solving
25	Countable and uncountable sets-	Lecture, group discussion and
	examples	problem solving
26	Theorems on countable sets	Lecture
27	Problems on countable sets	Doubt clearing
28	Test Paper 2	
29	Real sequences, range, bounded	Lecture, group discussion and
	sequences	problem solving
30	Convergence of sequences	Lecture, group discussion and
		problem solving
31	Some theorems	
32	Limit points of a sequence	Lecture, group discussion and
		problem solving
33	Examples for limit points of sequences	Lecture, group discussion and
		problem solving
34	Bolzano Weierstrass Theorem	Lecture
35	Bolzano Weierstrass Theorem	Lecture
36	Bolzano Weierstrass Theorem	Lecture, group discussion and
		problem solving
37	Limit inferior and limit superior	Lecture, group discussion and
		problem solving
38	Limit inferior and limit superior	Lecture, group discussion and
		problem solving
39	Limit inferior and limit superior	Lecture, group discussion and
		problem solving
40	Problems	Lecture, group discussion and
		problem solving
41	Problems	Lecture, group discussion and
		problem solving
42	Convergent Sequences	Lecture, group discussion and
		problem solving
43	Convergent Sequences	Lecture, group discussion and
		problem solving
44	Convergent Sequences	Lecture, group discussion and
		problem solving

45	Convergent Sequences	problem solving	
46	Cauchys general principle of convergence	Lecture, group discussion and	
		problem solving	
47	Cauchys general principle of convergence	Lecture, group discussion and	
		problem solving	
48	Statement of theorem without proof in	Lecture, group discussion	
	algebra of sequences		
49	Statement of theorem without proof in	group discussion	
	algebra of sequences		
50	Some important theorems	Lecture	
51	Examples		
52	Problem solving		
53	Monotonic Sequences	Lecture, group discussion and	
		problem solving	
54	Monotonic Sequences	Lecture, group discussion and	
		problem solving	
55	Monotonic Sequences	Lecture, group discussion and	
		problem solving	
56	Monotonic Sequences	Lecture, group discussion and	
		problem solving	
57	Subsequences	Lecture, group discussion and	
		problem solving	
58	Revision		
59	Test Paper 3		
60	Introduction to complex numbers		
61	Sum and Product	Lecture, group discussion and	
		problem solving	
62	Basic algebraic properties	Lecture, group discussion and	
		problem solving	
63	Further properties		
64	Vector and modulii	Lecture, group discussion and	
		problem solving	
65	Different representations	Lecture, group discussion and	
		problem solving	
66	Exponent forms		
67	Argument of products and quotients	Lecture, group discussion and	
		problem solving	
68	Product and powers in exponential form	Lecture, group discussion and	
		problem solving	
69	Problems		
70	Roots of complex numbers	Lecture, group discussion	
71	Roots of complex numbers	Lecture, group discussion	
72	Examples		

73	Regions in complex plane	Lecture, group discussion and problem solving	
74	Regions in complex plane	Lecture, group discussion and problem solving	
75	Test paper 4		

COURSE PLAN U5CRMAT06 DIFFERENTIAL EQUATIONS

COURSE OBJECTIVES

Since the time of Isaac Newton differential equation have been of fundamental importance in the application of Mathematics to the Physical Science. Lately differential equation gained increasing importance in the Biological and Social Science. In this course we are studying the ordinary differential equation involving one independent and one or more dependent variables. The integrals of ordinary differential equation are plane curves. Also we should study the differential equation involving one dependent and more than one independent variables, that is, partial differential equation. Such integrals are space curves and surfaces. Partial differential equation can arise in a variety of ways in Geometry, Physics, etc.

Basic Reference

1. Shepley L. Ross - Differential Equations, 3rd ed., (Wiley India).

Sessions	Торіс	Method	
1.	Bridge course – Introduction to differential equations	Lecture, Group	
	and partial differential equations	Discussion,	
		Interactions	
2.	Module 1 - Exact differential equations	Lecture, Group	
		Discussion,	
		Interactions	
3.	Exact differential equations and integrating factors	Lecture, Group	
		Discussion,	
		Interactions	
4.	Problems solving	Discussion	
5.	Problems	Discussion	
6.	Separable equations	Lecture, Group	
		Discussion,	
		Interactions	
7.	Separable equations and problems	Lecture, Group	
		Discussion,	
		Interactions	
8.	equations reducible to separable equations	Lecture, Group	
		Discussion,	
		Interactions	
9.	Problems solving	Lecture, Group	
		Discussion,	
		Interactions	

2. Ian Sneddon – Elements of Partial Differential Equation (Tata Mc Graw Hill)

÷

10.	Problems	Lecture, Group
		Discussion,
		Interactions
11.	linear equations and its solutions	Lecture, Group
		Discussion,
		Interactions
12.	Problems on linear equations	Lecture, Group
		Discussion,
		Interactions
13.	Bernoulli equations and its solution	Lecture, Group
		Discussion,
		Interactions
14.	Problems on Bernoulli equations	Lecture, Group
		Discussion,
		Interactions
15.	special integrating factors and transformations : case 1	Lecture, Group
		Discussion,
		Interactions
16.	special integrating factors and transformations : case 2	Lecture, Group
		Discussion,
		Interactions
17.	Problems	Lecture, Group
		Discussion,
		Interactions
18.	Problems	Lecture, Group
		Discussion,
		Interactions
19.	Orthogonal trajectories and its solution	Lecture, Group
		Discussion,
		Interactions
20.	Oblique trajectories and its solutions	Lecture, Group
		Discussion,
24		Interactions
21.	Problems	Lecture, Group
		Discussion,
		Interactions
22.	Revision of module 1	Lecture, Group
		Discussion,
22	Tost on modulo 1	Interactions
23.	Module 2 Introduction Posis theory of linear	Locturo Crown
24.	differential equations	Lecture, Group
		Discussion,
		interactions

25.	Basic Definitions	Lecture, Group
		Discussion,
		Interactions
26.	Basic existence theorem	Lecture, Group
		Discussion,
		Interactions
27.	Objective type problems based on definitions and	Lecture, Group
	theorem	Discussion,
		Interactions
28.	Basic theorems on linear homogeneous differential	Lecture, Group
	equations	Discussion,
		Interactions
29.	Elementary problems on basic theorem	Lecture, Group
		Discussion,
		Interactions
30.	Method of reduction of order	Lecture, Group
		Discussion,
		Interactions
31.	Problems on reduction of order	Lecture, Group
		Discussion,
		Interactions
32.	Non homogeneous equations and theorems	Lecture, Group
		Discussion,
		Interactions
33.	Problems on non homogeneous equations	Lecture, Group
		Discussion,
		Interactions
34.	Homogeneous linear equations with constant	Lecture, Group
	coefficient - Introduction	Discussion,
		Interactions
35.	Case I and Case II	Lecture, Group
		Discussion,
		Interactions
36.	Case III and Case IV	Lecture, Group
	Problems	Discussion,
27		Interactions
37.	vietnoa of undetermined coefficients - Introduction	Lecture, Group
	and method A	Discussion,
20		Interactions
38.	iviethod B, definitions of UC functions and sets	Lecture, Group
		Discussion,
		Interactions

39.	Examples	Lecture, Group
		Discussion,
		Interactions
40.	Problems	Lecture, Group
		Discussion,
		Interactions
41.	Variation of Parameters, method	Lecture, Group
		Discussion,
		Interactions
42.	Variation of parameters problem	Lecture, Group
		Discussion,
		Interactions
43.	Cauchy Euler Equation and the method of solution	Lecture, Group
		Discussion,
		Interactions
44.	Problems on CR equations	Lecture, Group
		Discussion,
		Interactions
45.	Problems	Lecture, Group
		Discussion,
		Interactions
46.	Revision	Lecture, Group
		Discussion,
		Interactions
47.	Revision	Lecture, Group
		Discussion,
		Interactions
48.	Test on module 2	
49.	Test Paper review	
50.	Introduction to second order linear homogeneous	Lecture, Group
	differential equations and examples.	Discussion,
		Interactions
51.	Ordinary points of second order linear homogeneous	Lecture, Group
	equations and examples.Concept of power series and	Discussion,
	convergence of power series.	Interactions
52.	Theorem concerning power series solutions& The	Lecture, Group
	method of finding power series solutions.	Discussion,
		Interactions
53.	Problems related to power series solutions.	Lecture, Group
		Discussion,
		Interactions
54.	Problems related to power series solutions.	Seminar by
		students

55.	Problems related to power series solutions.	Seminar by	
		students	
56.	Problems related to power series solutions.	Seminar by	
		students	
57.	Singular points of second order linear homogeneous	Lecture, Group	
	equations. Classification into regular and irregular	Discussion,	
	singular points.	Interactions	
58.	Problems related to classification of singular points.	Lecture, Group	
		Discussion,	
		Interactions	
59.	Theorems related to existence of Frobenius series	Lecture, Group	
	solutions about regular singular points of second order	Discussion,	
	linear homogeneous equations.	Interactions	
60.	Method of finding Frobenius series solutions about	Seminar by	
	regular singular points.	students	
61.	Problems related to Frobenius series solutions	Lecture, Group	
		Discussion,	
		Interactions	
62.	Problems related to Frobenius series solutions	Lecture, Group	
		Discussion,	
		Interactions	
63.	Problems related to Frobenius series solutions	Lecture, Group	
		Discussion,	
		Interactions	
64.	Problems related to Frobenius series solutions	Seminar by	
		students	
65.	Introducing the Bessel's equation of order zero and	Lecture, Group	
	order p.	Discussion,	
		Interactions	
66.	Solution of the Bessel's equation of order zero	Lecture, Group	
		Discussion,	
		Interactions	
67.	Solution of the Bessel's equation of order zero(Contd.)	Lecture, Group	
		Discussion,	
		Interactions	
68.	Solution of the Bessel's equation of order p	Lecture, Group	
		Discussion,	
		Interactions	
69.	Solution of the Bessel's equation of order p(Contd.)	Lecture, Group	
		Discussion,	
		Interactions	

70.	Bessel Fuctions and properties.	Lecture, Group
		Discussion,
		Interactions
71.	CIA – I	1 hr; descriptive
		answers only
72.	Introduction to systems of first order linear equations.	Lecture, Group
		Discussion,
		Interactions
73.	Solving systems of first order linear equations-	Lecture, Group
	Elimination Method	Discussion,
		Interactions
74.	Solving systems of first order linear equations-	Seminar by
	Elimination Method(Contd.)	students
75.	Solving systems of first order linear equations-Operator	Lecture, Group
	Method	Discussion,
76		Interactions
76.	Solving systems of first order linear equations-Operator	Seminar by
	Niethod(Contd.)	students
77.	Review of the 3 rd Module	
/8.	Introduction to Partial Differential equations	Lecture, Group
		Discussion,
70	Origin of Dartial Differential Equations	
79.	Origin of Partial Differential Equations	Discussion
		Interactions
80	Forming Partial Differential equations by elimination of	
00.	arbitrary constants	Discussion
		Interactions
81.	Forming Partial Differential equations by elimination of	Seminar by
	arbitrary constants(Contd.)	students
82.	Forming Partial Differential equations by elimination of	Lecture, Group
	arbitrary functions.	Discussion,
	,	Interactions
83.	Forming Partial Differential equations by elimination of	Seminar by
	arbitrary functions.(Contd.)	students
84.	Surfaces and Curves in three dimensions.	Lecture, Group
		Discussion,
		Interactions
85.	Surfaces and Curves in three dimensions.(Contd.)	Lecture, Group
		Discussion,
		Interactions

86.	Method of solution of the differential equation	Seminar by
	$\frac{dx}{dx} - \frac{dy}{dz} - \frac{dz}{dz}$	students
	$P \overline{Q} R$	
	(Contd.	
87.	Second CIA	2 hrs Descriptive
		Test
88.	Lagrange's linear first order p.d.e. and solution.	
89.	Problems related to Lagranges equation	
90.	Problems related to Lagranges equation(Contd.)	
91.	Problems related to Lagranges equation(Contd.)	
92.	Review of 4 th module	
93.	REVISION.	

COURSE PLAN

U5CRMAT07 ABSTRACT ALGEBRA

COURSE OBJECTIVES

This course aims to introduce the students to abstract algebraic structures such as groups, rings, integral domains, division rings and fields. It also aims to familiarise the students with the concept of isomorphism of algebraic structures, various types and examples of groups, the concept of subgroups and normal subgroups and the concept of characteristic and ideal of a ring.

Text Book

1.A First Course in Abstract Algebra by John B Fraleigh 3rd Edition

Additional references

1) Contemporary Abstract Algebra by Joseph Gallian

2) Topics in Algebra by I.N.Herstein

3) Algebra by Michael Artin

4) Abstract Algebra by David S Dummit and Richard M Foote

Sessions	Торіс	Method	Remarks
1	Bridge Course: Concept of Set and its	Group Discussion followed	
	importance in Mathematics and	by a Lecture session.	
	particularly in algebra		
2	Bridge Course : The importance of	Interactive session including	
	definitions in mathematics	GD	
3	Bridge Course:Equivalence Relations	Lecture session with	
	and Partitions	Examples	
4	Bridge Course:Equivalence Relations	Lecture session with	
	and Partitions	Examples	
5	Binary Operations: Introduction of the	Lecture session	
MODULE 1	concept		
BEGINS			
6	Examples of operations which are	Interactive session with the	
	binary operations and	students in which the	
	counterexamples	students are given different	

		operations and are	
		supposed to identify	
		whether they are binary	
		operations or nor.	
7	Representation of Binary Operations	Lecture	
	using a table		
8	Binary operations (Conclusion)	Lecture	
9	Group: Motivating the definition using	Lecture	
	an example (For example the set of		
	Integers under addition		
10	Group (Introduction of the concept	Lecture	
	continued)		
11	Group table of order 4.	Interactive session	
12,13 &14	Selected Exercises on pages 26, 27 and	Assignment and seminar for	
	28 of the text	the students.	
15	Subgroups. The concept of subgroup is	Lecture	
	explained and examples are given.		
16	The subgroups of Z_4 and V are	Lecture	
	determined.		
17	Cyclic Subgroups -Concept is	Lecture	
	introduced		
18,19 &20	Exercises on Page 35,36 and 37 of the	Assignment, Seminar and	
	text	for the students	
21	Permutations and permutation	Lecture	
	groups- Introduction of the concept.		
	•		
22	Permutations continued. The group	Lecture	
22	Permutations continued. The group S_A	Lecture	
22 23	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their	Lecture Lecture	
22 23	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice	Lecture	
22 23	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams	Lecture Lecture	
22 23 24	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem	Lecture Lecture Lecture	
22 23 24	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof.	Lecture Lecture Lecture	
22 23 24 25	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on	Lecture Lecture Lecture Lecture	
22 23 24 25	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof	Lecture Lecture Lecture Lecture	
22 23 24 25	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained	Lecture Lecture Lecture Lecture	
22 23 24 25 26	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed.	Lecture Lecture Lecture Lecture Lecture	
22 23 24 25 26 27	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed. The alternating Group	Lecture Lecture Lecture Lecture Lecture Lecture Lecture	
22 23 24 25 26 27 28	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed. The alternating Group Selected Exercises on page 55,56 and	Lecture Lecture Lecture Lecture Lecture Lecture Seminars and assignments	
22 23 24 25 26 27 28	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed. The alternating Group Selected Exercises on page 55,56 and 57	Lecture Lecture Lecture Lecture Lecture Lecture Seminars and assignments by students	
22 23 24 25 26 27 28 29	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed. The alternating Group Selected Exercises on page 55,56 and 57 FIRST CIA	Lecture Lecture Lecture Lecture Lecture Lecture Seminars and assignments by students Written Test; Descriptive.	
22 23 24 25 26 27 28 29 30	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed. The alternating Group Selected Exercises on page 55,56 and 57 FIRST CIA Cyclic Groups- Definition , Theorem	Lecture Lecture Lecture Lecture Lecture Lecture Seminars and assignments by students Written Test; Descriptive. Lecture	
22 23 24 25 26 27 28 29 30 MODULE 2	Permutations continued. The group S_A Group Tables of S_3 and D_4 and their subgroups and subgroup lattice diagrams Cycles and cyclic Notation. Theorem 5.1 of the text and its proof. Transpositions-definition. Corollary on page 52. Theorem 5.2-idea of proof explained Theorem 5.2- Proof Completed. The alternating Group Selected Exercises on page 55,56 and 57 FIRST CIA Cyclic Groups- Definition , Theorem 6.1, Lemma 6.1 and examples	Lecture Lecture Lecture Lecture Lecture Lecture Seminars and assignments by students Written Test; Descriptive. Lecture	

31	Theorem 6.2 and its Corollary	Lecture	
32 The Classification of Cyclic groups-		Lecture	
	Infinite Case		
33	The Classification of Cyclic groups-	Lecture	
	Finite Case		
34	Subgroups of Finite Cyclic groups.	Lecture	
	Theorem 6.4		
35	Corollary of theorem 6.4 and	Lecture	
	applications.		
36	Selected Exercises on pages 63 64 and	Seminar and assignments	
	65	for the students	
37	Isomorphism- Definition, Explanation	Lecture	
	of the concept and Theorem 7.1		
38	How to show that to groups are	Lecture	
	isomorphic and		
	Theorem 7.2 and Example 7.2		
39	How to show that two groups are not	Lecture	
	isomorphic. Examples 7.5- 7.9 Of the		
	text		
40	Cayley's Theorem	Lecture	
41	Cayley's Theorem and proof	Lecture	
	continued.		
42,43 and 44	Exercises on pages 74,75 and 76 of the	Seminar Assignment and	
	text	for the students.	
45	Groups of Cosets- Introduction to the	Lecture	
	concept and Theorem 11.1.Definition		
	of left and right cosets. Motivation		
	using example 11.2 and example 11.3.		
46	Theorem 11.2 example 11.1 and	Lecture	
47	Theorem 11.3		
47	Lagrange's Theorem, its corollary ,	Lecture	
	theorem 11.5, Definition of index and		
40	Theorem 11.6.		
48	counterexample for the faisity of the	Lecture	
40	Colorted Eversions on page 111 112	Cominen and essimments	
49	and 112	for students	
50	I amma 12.1 and Theorem 12.1		
50	Definition of automorphism theorem		
	12.2. definition of a normal subgroup		
	theorem 12.2 Example 12.1 and		
	definition of conjugate subgroups		
1	juennition of conjugate subgroups.		

52	Definition of Factor Group, example	Lecture	
	12.2, Example 12.3 and example 12.4		
53	Examples 12.5, 12.6 and 12.7	Lecture	
54	Definition of simple group, Statement	Lecture	
	of theorem 12.4 and Theorem 12.5		
55	Theorem 12.6	Lecture	
56	Selected Exercises on pages 123,	Seminar and assignments	
	124,125 and 126	for the students.	
57	Definition of Homomorphism and	Lecture	
MODULE 3	Elementary Properties.Example		
BEGINS	13.1, Theorem 13.1 and Example 13.2		
58	Theorem 13.2	Lecture	
59	Theorem 13.3	Lecture	
60	Example 13.3, definition of maximal	Lecture	
	normal subgroup theorem 13.4 and		
	theorem 13.5.		
61,62 and 63	Selected Exercises on pages 133,134	Lecture	
	and 135		
62	Motivation of the definition of a ring,	Lecture	
	The Definition and Examples.		
63	Examples 23.1 and 23.2	Lecture	
64	Theorem 23.1, Definition of	Lecture	
	isomorphism and example 23.3		
65	Definitions of commutative rings and	Lecture	
	examples . Definition of Ring with		
	Unity and examples, Theorem 23.2,		
66	Diffect product of rings.	Lactura	
00	field and examples Example 22.4	Lecture	
67.69 and 60	Selected Exercises on pages 211 212	Locturo	
07,08 and 09	and 213		
70	Divisors of Zero Theorem 24.1 and its	lecture	
70	corollary		
71	Theorem 24.2 and definition of an	lecture	
	integral domain and its examples		
72	Theorems 24.3 and Theorem 24.4 and	Lecture	
	its corollary.		
73	Selected Exercises on pages 220,221	Lecture	
	and 222.		
74	Definition of characteristic of a ring	Lecture	
MODULE 4	and example 24.2 and theorem 24.5		
BEGINS			

75	Fermat's Theorem (Theorem	Lecture
	24.6,corollary, Example 24.3)	
76	Theorem 24.7 and Theorem	Lecture
	24.8(Euler)	
77	SECOND CIA	
78	SECOND CIA	
79	SECOND CIA	
80	Theorem 28.2 and lemma 28.1	Lecture
81	Theorem 28.3	Lecture
82	Definition of Ideal,proper	Lecture
ideal, improper ideal, trivial ideal et al		
	and examples 28.1-28.4	
83	Theorem 28.4 and its corollary	Lecture
84,85&86	Selected Exercises on Pages 252-253	Lecture
87	REVISION	
88	REVISION	
89	REVISION	
90	REVISION	

COURSE PLAN U5CRMAT08 - Fuzzy Mathematics (Semester 5– B.Sc Mathematics)

COURSE OBJECTIVES

The course aims

✤ To introduce and explain the ideas relevant Fuzzy sets and fuzzy logic Theory in detail

Sessions	Торіс	Method
1	Module 1 - Preliminaries - Introduction	Lecturing
2	Crisp set an overview	Lecturing
3	Fuzzy sets	Lecturing
4	Basic types of fuzzy sets	Lecturing
5	Basic concepts of fuzzy sets	Lecturing
6	Properties of alpha cuts	Lecturing
7	Theorems on alpha cuts	Lecturing
8	Problems	Lecturing
9	Representation of fuzzy sets	Lecturing
10	first decomposition theorem	Lecturing
11	second decomposition theorem	Lecturing
12	third decomposition theorem	Lecturing
13	Problems	Lecturing
14	Problems	Lecturing
15	Problems	Lecturing
16	Theorems on alpha plus cut of a set	Lecturing
17	Problems	Lecturing
18	Additional theorems on fuzzy sets	Lecturing
19	Problems	Lecturing
20	Problems	Lecturing
21	Revision	Group discussion
22	CIA – I (Module -1)	1 hr; descriptive answers only
23	Module II – Operations on fuzzy sets	Lecturing
24	Types of fuzzy operations	Lecturing
25	Union	Lecturing
26	Intersection	Lecturing
27	Complements	Lecturing
28	Fuzzy complements	Lecturing
29	Problems	Lecturing
30	Theorems	Lecturing
31	Fuzzy t norms	Lecturing
32	Problems	Lecturing
	Problems	Lecturing
33	Theorems	Lecturing
34	Fuzzy t-conorms	Lecturing

35	Problems	Lecturing	
36	Problems	Lecturing	
37	Theorems	Lecturing	
38	De –morgans law	Lecturing	
39	Dual triple	Lecturing	
40	Theorems on dual triple	Lecturing	
41	Theorems on combination of operations	Lecturing	
42	Theorems	Lecturing	
43	Problems	Lecturing	
44	Problems	Group work	
45	Problems	Group work	
46	Problems	Group work	
47	Problems	Group work	
48	Problems	Group work	
49	Problems	Group work	
50	Problems	Group work	
51	Revision and test		
52	Module III -Introduction	Lecturing	
53	Fuzzy Numbers	Lecturing	
54	Arithmetic operations on intervals	Lecturing	
55	Addition	Lecturing	
56	Subtraction	Lecturing	
57	Multiplication	Lecturing	
58	Division	Lecturing	
59	Arithmetic operations on fuzzy numbers	Lecturing	
60	Addition	Lecturing	
61	Subtraction	Lecturing	
62	Multiplication	Lecturing	
63	Division	Lecturing	
64	Problems	Lecturing	
65	MAX and MIN of fuzzy numbers	Lecturing	
66	Max and min of fuzzy numbers	Lecturing	
67	Problems	Lecturing	
68	Module IV-Fuzzy logic	Lecturing	
69	Classical logic an overview	Lecturing	
70	Multivalued logics	Lecturing	
71	Fuzzy propositions	Lecturing	
72	Fuzzy Quantifiers	Lecturing	
73	Linguistic hedges	Lecturing	
74 - 76	Inference from conditional fuzzy	Lecturing	
	propositions		
77 - 80	Problems		

COURSE PLAN Open Course: U5OCMAT1: APPLICABLE MATHEMATICS

Objectives :

- > Prepare students of all streams, particularly those with arts and commerce back ground for their higher studies.
- Prepare students of all streams, particularly those with arts and commerce back ground to approach competitive examinations.

Text Books:

1 M. Tyra, & K. Kundan- CONCEPTS OF ARITHMETIC.

Sessions	Торіс	Me	thod	RemarkS
1	Introduction about the course	Lec	ture + Interaction	
2	Types of numbers	Lec	ture + Interaction	
3	Solution of quadratic equations with real roots only	Lec	ture + Interaction	
4	Different methods of solution	Lec	ture + Interaction	
5	Logarithms	Lec	ture + Interaction	
6	Properties + problems	Gro	oup work	
7	Problems	Gro	oup work	
8	Evaluations of exponents	Lec	ture + Interaction	
9	Exponents laws		Lecture + Interaction	
10	Permuations		Lecture + Interaction	
11	Rules and explanations		Lecture + Interaction	
12	Problems		Lecture + Interaction	
13	Combinations		Lecture + Interaction	
14	Problems		Lecture + Interaction	
15	Trigonometry		Lecture + Interaction	
16	Simple equations		Group work	
17	- T - Values		Lecture + Interaction	
18	Heights and Distance - problems		Group work	
19	Two dimensional geometry		Lecture + Interaction	
20	Plotting of points		Lecture + Interaction	
21	Drawing graph of a straight line		Lecture + Interaction	
22	Probability		Lecture + Interaction	
23	Sample space		Lecture + Interaction	

24	Examples – events	Lecture + Interaction	
25	Differential calculus	Lecture + Interaction	
26	Formulas	Group work	
27	Simple problems	Group work	
28	Problems	Lecture	
29	Integral calculus	Lecture	
30	Simple problems	Group work	
31	Problems	Group work	
32	Hcf of nos	Lecture	
33	Lcm of nos	Lecture	
34	Fractions	Lecture	
35	Square and roots	Lecture	
36	Test		
37	Cube and cube roots	Lecture	
38	Problems	Lecture	
	Ratio and proportion	Lecture	
39			
	Percentage	Lecture	
40			
41	Profit and loss	Lecture	
42	problems	Group work	
43	Problems	Group work	
44	Simple interest	Lecture	
45	Compound interest	Lecture	
46	Time and work	Lecture	
47	Time and work	Lecture	
48	Work and wage	Lecture	
49	Work and wage	Lecture	
50	Time and distance	Lecture	
51	Elementary menstruation	Lecture	
52	Area and Perimeter	Lecture	
53	Problems on polygons	Lecture	
54	Problems on polygons	Lecture	
55	Test		
56	Problems	Group work	
57	Revision	Group work	
58	Revision	Group work	
59	Revision	Group work	
60	Problems	Group work	