Sacred Heart College (Autonomous)

Department of Chemistry

MSc Applied Chemistry - Pharmaceutical

Course Plan

Academic Year 2015 – 16

Semester 2

	COURSE PLAN					
		ACADEMIC YEAR 2015	-16			
PROGRAMME	:	M.Sc. Applied Chemistry - Pharmaceutical	LECTURE HOURS	:	72	
SEMESTER	:	2	CREDITS	:	4	
SUBJECT TITLE	:	COORDINATION CHEMISTRY	SUBJECT CODE	:	P2CPHT05	
COURSE TEACHERS	:	Dr. Joseph John (JJ), Mr. Midhun Dominic C D (MD), Mr. Senju Devassykutty, Dr. Ramakrishnan S (RKS)				
Course Objectives	:	 Ability to understand the structure and bonding in To understand the spectral and magnetic properti To know about the Kinetics and Mechanism of Re To understand the Stereochemistry of Coordinatio To know about Coordination Chemistry of Lantha 	es of complexes eactions in Metal Complexes on Compounds			

No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignments
1	Classification of complexes based on coordination	Conventional Lecture	
	numbers and possible geometries.	Chalk & Board	
2	Sigma and pi bonding ligands such as CO, NO, CN		
3	Sigma and pi bonding ligands such as R ₃ P, and Ar ₃ P.		
4	Stability of complexes – factors affecting stability		Assignment on coordination
5	Stability of complexes, thermodynamic aspects of	Lecture With power point	numbers and possible geometries
	complex formation	presentation	
6	Irving William order of stability, chelate effect	Conventional Lecture	
7	First Internal Test		
8	Splitting of <i>d</i> orbitals in octahedral, tetrahedral, square planar		
9	Splitting of <i>d</i> orbitals in square pyramidal and triagonal bipyramidal fields	Lecture With Powerpoint	
10	LFSE, Dq values, Jahn Teller (JT) effect	presentation	Assignment on Crystal field
11	Theoretical failure of crystal field theory, evidence of covalency in the metal ligand bond		theory
12	Nephelauxetic effect, ligand field theory		
13	Ligand field theory		
14	Introduction to Molecular orbital theory		
	Se	econd Internal Test	
15	Molecular orbital theory-M.O energy level diagrams		
	for octahedral complexes without and with π -bonding		
16	M.O energy level diagrams for tetrahedral complexes		Assignment on Molecular orbital
	without and with π -bonding,	Lecture with ICT	theory
17	Experimental evidences for pi-bonding.		
18	Revision		

- 1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rd Edn., Interscience, 1972.
- 2. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Pearson Education India, 2006.
- 3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- 4. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reaction, John Wiley & Sons, 2006.
- 5. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- 6. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 7. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-India, 2010.
- 8. J.D. Lee, Concise Inorganic Chemistry, 4th Edn., Wiley-India, 2008.

No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignments
1	Introduction to spectral and magnetic properties		
2	Electronic Spectra of complexes-Term symbols of		
	dn system, Racah parameters		
3	Splitting of terms in weak and strong octahedral	Conventional Lecture Using	Assignment on correlation
	and tetrahedral fields.	Chalk and Board	diagrams
4	Correlation diagrams for dn in octahedral and		
	tetrahedral fields (qualitative approach)		
5	Correlation diagrams for d10-n ions in octahedral		
	and tetrahedral fields (qualitative approach)		
6	d-d transition, selection rules for electronic		
	transition-effect of spin orbit coupling and		
	vibronic coupling.		
	First Internal Tes	t	
7	Interpretation of electronic spectra of complexes-		
	Orgel diagrams		
8	Demerits of Orgel diagrams		
9	Tanabe-Sugano diagrams		Assignments based on Orgel
10	Calculation of Dq , B and β (Nephelauxetic ratio)	Lecture With Chalk and board	diagrams
	values		
11	Spectra of complexes with lower symmetries,		
	charge transfer spectra, luminescence spectra.		
12	Magnetic properties of complexes-paramagnetic and		
	diamagnetic complexes		
13	molar susceptibility, Gouy method for the		
	determination of magnetic moment of		
	complexes, spin only magnetic moment.	No. of Trade and Trade	
1.4		Second Internal Test	
14	Temperature dependence of magnetism-		
	Curie's law, Curie-Weiss law. Temperature		
	Independent Paramagnetism (TIP)		

15	Spin state cross over, Antiferromagnetism-inter and intra molecular interaction.		Seminar Based on Applications
16	Anomalous magnetic moments.	Lecture with ICT	of radioactivity
17	Elucidating the structure of cobalt complexes using		-
	electronic spectra, IR spectra and magnetic		
	moments.		
18	Elucidating the structure of nickel complexes using		
	electronic spectra, IR spectra and magnetic		
	moments.		

- 1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rd Edn., Interscience, 1972.
- 2. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Pearson Education India, 2006.
- 3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- 4. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reaction, John Wiley & Sons, 2006.
- 5. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- 6. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 7. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-India, 2010.
- 8. J.D. Lee, Concise Inorganic Chemistry, 4th Edn., Wiley-India, 2008.

No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignmets		
1	Introduction	Conventional Lecture			
2	Thermodynamic and kinetic stability				
3	Thermodynamic and kinetic stability				
4	Kinetics and mechanism of nucleophilic substitution reactions in square planar complexes	Conventional lecture using Chalk and Board	Seminar Assignment to Students on the nucleophilic substitution reactions		
5	Kinetics and mechanism of nucleophilic substitution reactions in square planar complexes	and ICT-PPT			
6	<i>trans</i> effect-theory and applications.				
	Fi	rst Internal Test			
7	Kinetics and mechanism of octahedral				
	substitution- water exchange				
8	Kinetics and mechanism of octahedral				
	substitution- dissociative				
0	and associative mechanisms	Conventional Leature using Challe	Aggignment to Students on the general		
9	Kinetics and mechanism of octahedral	Conventional Lecture using Chalk and Board and ICT -PPT	Assignment to Students on the general mechanism of octahedral substitution		
10	substitution- base hydrolysis Kinetics and mechanism of octahedral		mechanism of octaneural substitution		
10	substitution- racemization reactions				
11	Kinetics and mechanism of octahedral				
11	substitution-solvolytic reactions (acidic				
	and basic).				
		Second Internal Test	1		
12	Electron transfer reactions: outer sphere mechanism-Marcus theory	Conventional Lecture using Chalk and Board and ICT -PPT	Assignment on electron transfer reactions		

13	Electron transfer reactions: outer sphere mechanism-Marcus theory	
14	Electron transfer reactions: outer sphere mechanism-Marcus theory	
15	Electron transfer reactions: inner sphere mechanism-Taube mechanism.	
16	Electron transfer reactions: inner sphere mechanism-Taube mechanism.	
17	Electron transfer reactions: inner sphere mechanism-Taube mechanism.	
18	Revision	

- 1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rd Edn., Interscience, 1972.
- 2. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Pearson Education India, 2006.
- 3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- 4. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reaction, John Wiley & Sons, 2006.
- 5. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- 6. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 7. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-India, 2010.
- 8. J.D. Lee, Concise Inorganic Chemistry, 4th Edn., Wiley-India, 2008

Teacher IV – MD	Module Taken: Unit 4: Stereocher	nistry of Coordination Compounds	s (9 Hrs)
No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignments
1	Introduction to stereochemistry		
2	Geometrical and optical isomerism in octahedral		
	complexes		
3	Resolution of optically active complexes		
4	Determination of absolute configuration of	Conventional Lecture	Preparation of Lecture Notes
	complexes by ORD and circular dichroism		
5	Stereoselectivity and conformation of chelate		
	rings, asymmetric synthesis catalyzed by		
	coordination compounds		
6	Linkage isomerism-electronic and steric factors		
	affecting linkage isomerism.		
7	Symbiosis-hard and soft ligands		
8	Prussian blue and related structures, Macrocycles-		
	crown ethers.		
9	Revision		
	First Internal Test		

- 1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rd Edn., Interscience, 1972.
- 2. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Pearson Education India, 2006.
- 3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- 4. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reaction, John Wiley & Sons, 2006.
- 5. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- 6. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 7. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-India, 2010.
- 8. J.D. Lee, Concise Inorganic Chemistry, 4th Edn., Wiley-India, 2008

Teacher IV – MD	Module Taken: Unit 5: Coordination	on Chemistry of Lanthanides and A	ctinides (9 Hrs)
10	General characteristics of lanthanides-Electronic		
	configuration		
11	Term symbols for lanthanide ions, Oxidation state		
12	Lanthanide contraction. Factors that mitigate		
	against the formation of lanthanide complexes.	Conventional Lecture	Preparation of Notes on
13	Electronic spectra and magnetic		characteristics of lanthanides
	properties of lanthanide complexes		
14	.Lanthanide complexes as shift reagents		
	Second Int	ternal Test	
15	General characteristics of actinides-difference		
	between 4f and 5f orbitals		
16	Comparative account of coordination chemistry of	Conventional Lecture	Preparation of Notes on
	lanthanides and actinides with		characteristics of actinides
	special reference to electronic spectra properties.		
17	Comparative account of coordination chemistry of		
	lanthanides and actinides with		
	special reference to magnetic properties.		
18	Revision		

- 1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rd Edn., Interscience, 1972.
- 2. J.E. Huheey, E.A. Keiter, R.A. Keiter, Inorganic Chemistry Principles of Structure and Reactivity, 4th Edn., Pearson Education India, 2006.
- 3. K.F. Purcell, J.C. Kotz, Inorganic Chemistry, Holt-Saunders, 1977.
- 4. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reaction, John Wiley & Sons, 2006.
- 5. B.E. Douglas, D.H. McDaniel, J.J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., Wiley-India, 2007.
- 6. R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.
- 7. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley-India, 2010.
- 8. J.D. Lee, Concise Inorganic Chemistry, 4th Edn., Wiley-India, 2008

	COURSE PLAN				
		ACADEMIC YEAR 2015-16			
PROGRAMME	:	M.Sc. Applied Chemistry - Pharmaceutical	LECTURE HOURS	:	72
SEMESTER	:	2	CREDITS	:	4
SUBJECT TITLE	:	Organic Reaction Mechanism	SUBJECT CODE	:	P2CPHT06
COURSE TEACHERS	:	Dr. Joseph .T. Moolayil, Dr. V.S Sebastian, Dr. June Cyri	iac	•	
Instructional Hours : Four Hours per Week					

	No. of Session	Session Topic and Discussion Theme	Value additions	COs
JTN	1			
	1.	Classification	Assignment No: 1	
	2.	Electrocyclic reactions.		
	3.	Sigmatropic reactions.		
	4.	Cycloaddition reactions.		
	5.	Chelotropic reactions.		
	6.	Ene reactions.		
suc	7.	Woodward Hoffmann rules	Power Point	
acti	8.	Frontier orbital and orbital symmetry correlation approaches -	Power Point	
d re	<u>2</u> 9.	Continued	Power Point	
erte	10.	PMO method.	Power Point	
onc	9. 10. 11.	Pericyclic reactions in organic synthesis such as Claisen rearrangement		
7: (12.	Cope rearrangement		
Unit 7: Concerted reactions	13.	Wittig rearrangement, Mislow-Evans rearrangement		
	14.	Sommelet-Hauser rearrangements, Diels-Alder and Ene reactions (with stereochemical aspects)		
	15.	Dipolar cycloaddition (introductory).		
	16.	Pyrolytic elimination reactions: cheletropic elimination.	Power Point	
	17.	Decomposition of cyclic azo compounds.		
	18.	β -eliminations involving cyclic transition states such as N-oxides, Acetates and xanthates.		
	R کا	.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, Organic Chemistry, 7th Edn., Pearson,	New Delhi, 2011.	

- J. Clayden, N. Greeves, S.Warren, P.Wothers, Organic Chemistry, Oxford University Press, New York, 2004.
- Fleming, Wiley, Frontier Orbitals and Organic Chemical Reactions, London, 1976.
- S. Sankararaman, Pericyclic Reactions-A Text Book, Wiley VCH, 2005.

JUC	,			
		19.	Formation, structure and stability of carbanions	Assignment No.3
		20.	Reactions of carbanions: C-X bond $(X = C, O, N)$	
S		21.	Formations through the intermediary of carbanions.	
ınion		22.	Chemistry of enolates and enamines.	
Carba		23.	Kinetic and Thermodynamic enolates-lithium and boron enolates in aldol alkylation and acylation of enolates.	
Unit2: Chemistry of Carbanions		24.	Electrophilic additions to alkenes, Kinetics, effect of structure, orientation and stereochemistry.	Power Point
Chemi	2 	25.	Ozonolysis and hydroboration. Nucleophilic additions to carbonyls groups. Named reactions under carbanion chemistry –Mechanism of Claisen,	
Unit2:		26.	Dieckmann, Knoevenagel, Stobbe, Darzen and acyloin condensations. Shapiro reaction and Julia elimination. Favorski rearrangement.	
		27.	Ylids: Chemistry of Phosphorous and Sulphur ylids - Wittig and related reactions, Peterson olefination.	
		J.	March and M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanism	anisms, and Structure, 6th Edn., Wiley, 2007.
		ht	tp://www.organic-chemistry.org/namedreactions.	
		R	.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, Organic Chemistry, 7th Edn., Pearson,	New Delhi, 2011.
		J.	Clayden, N. Greeves, S.Warren, P.Wothers, Organic Chemistry, Oxford University	ty Press, New York, 2004.

VSS						
	28.	Generation of radical intermediates				
suc	29.	Its (a) addition to alkenes, alkynes (inter & intramolecular)				
Unit5: Radical Reactions (9 Hours)	30.	For C-C bond formation - Baldwin's				
l Re ırs)	31.	Fragmentation and rearrangements				
kadical Ro (9 Hours)	32.	Hydroperoxide: formation, rearrangement and reactions.	Assignment No:2			
. Ra	33.	Continued				
nit5:	34.	Auto-oxidation.				
j	35.	Named reactions involving radical intermediates: Barton deoxygenation				
	36.	Decarboxylation, McMurry coupling.				
Text Books	R	http://www.organic-chemistry.org/namedreactions. R.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, <i>Organic Chemistry</i> , 7 th Edn., Pearson, New Delhi, 2011. J. Clayden, N. Greeves, S.Warren, P.Wothers, <i>Organic Chemistry</i> , Oxford University Press, New York, 2004.				
pı	37.	Structure of carbenes (singlet and triplet) - generation of carbenes -				
ies, nes an	38.	Addition and insertion reactions.				
urben Vitre	39.	Rearrangement reactions of carbenes such as Wolff rearrangement -				
Unit4: Carbenes, penoids, Nitrenes Arynes	40.	Generation and reactions of ylids by carbenoid decomposition.				
Unit4: Carbenes, Carbenoids, Nitrenes and Arynes	41.	Structure, generation and reactions of nitrene and related electron deficient nitrene intermediates.				
S	42.	Continued				

	43.	Hoffmann, and Curtius reactions.	
	44.	Lossen,, Schmidt and Beckmann rearrangement reactions	
	45.	Arynes: Generation, structure, stability and reactions. Orientation effect-amination of haloarenes.	_

- J. March and M. B. Smith, March's *Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6*thEdn., Wiley, 2007. http://www.organic-chemistry.org/namedreactions.
- R.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, *Organic Chemistry*, 7thEdn., Pearson, New Delhi, 2011.
- J. Clayden, N. Greeves, S.Warren, P.Wothers, Organic Chemistry, Oxford University Press, New York, 2004.

JUC			
isms	46.	A comprehensive study on the effect of substrate, reagent, leaving group, solvent, ambident nucleophile and neighbouring group on nucleophilic substitution (SN_1 and SN_2)	
chan	47.	Contiued	
on Me	48.	Contiued	
n reacti ırs)	49.	Study on the effect of substrate, reagent, leaving group, solvent, ambident nucleophile and neighbouring group on elimination (E ₁ , E ₂ andE _{1CB}) reactions.	Power Point
titution r (9 Hours)	50.	Continued	
Unit1: Review of substitution reaction Mechanisms (9 Hours)	51.	Stereochemistry of E ₂ reaction, Intramolecular pyrolytic elimination, Cope elimination. Elimination <i>vs</i> substitution.	Power Point
eview	52.	Review of organic reaction mechanisms with special reference to nucleophilic and electrophilic substitution at aliphatic carbon (SN ⁱ , SE ₁ , SE ₂ and SE ⁱ).	
it1: R	53.	Continued	
	54.	Markovnikovs and anti Markovnikovs addition	
	I	F. A. Carey, R. A. Sundberg, Advanced Organic Chemistry, Part B: Reactions and S	Synthesis, 5 th Edn.,, Springer, New York, 2007.
	V	V. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, First South	Asian Edition, Cambridge University Press, 2005.
	J	. March and M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanism	anisms, and Structure, 6thEdn., Wiley, 2007.
	h	ttp://www.organic-chemistry.org/namedreactions.	
	R	a.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, Organic Chemistry, 7th Edn., Pearson,	New Delhi, 2011.
	J	. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford Universi	ty Press, New York, 2004.

	55.	Formation, structure and stability of carbocations.					
	56.	Classical and non-classical carbocations.	Power Point				
ations	57.	C-X bond (X = C, O, N) formations through the intermediary of carbocations.					
Carboc	58.	Molecular rearrangements including Wagner-Meerwein, Pinacol-pinacolone, semi-pinacol,					
Chemistry of Carbocations (9Hours)	59.	Dienone-phenol and Benzilic acid rearrangements, Noyori annulation, Prins reaction.					
Chemis (91	60.	C-C bond formation involving carbocations: Oxymercuration, halolactonisation.					
Unit 3:	61.	Structure and reactions of α , β - unsaturated carbonyl compounds – electrophilic addition					
Uı	62.	Nucleophilic addition - Michael addition,					
	63.	Mannich reaction and Robinson annulation.					
	R. Bruckner, Advanced Organic Chemistry: Reaction Mechanism, Academic Press, 2002.						
	F	. A. Carey, R. A. Sundberg, Advanced Organic Chemistry, Part B: Reactions and S	ynthesis, 5thEdn.,, Springer, New York, 2007.				
	W	7. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, First South	Asian Edition, Cambridge University Press, 2005.				
	J.	March and M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanism	anisms, and Structure, 6th Edn., Wiley, 2007.				
	h	ttp://www.organic-chemistry.org/namedreactions.					
	R	.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, Organic Chemistry, 7th Edn., Pearson,	New Delhi, 2011.				
	J.	Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford Universit	y Press, New York, 2004.				

	64.	Reactions of carbonyl compounds		
spu	65.	Oxidation, reduction addition		
nodw	66.	Continued		
Unit 6: Chemistry of Carbonyl Compounds (9 Hours)	67.	Cannizzaro reaction		
Carbo	68.	Grignard reagent		
ry of Carb	69.	Structure and reactions of α,β unsaturated carbonyl compounds		
nemist	70.	Michael addition		
t 6: Cl	71.	Mannich reaction		
Uni	72.	Robinson annulation		
	J. March and M. B. Smith, March's <i>Advanced Organic Chemistry: Reactions, Mechanisms, and Structure,</i> 6 th Edn., Wiley, 2007. http://www.organic-chemistry.org/namedreactions. R.T. Morrison, R.N. Boyd, S.K. Bhatacharjee, <i>Organic Chemistry</i> , 7 th Edn., Pearson, New Delhi, 2011. J. Clayden, N. Greeves, S.Warren, P.Wothers, <i>Organic Chemistry</i> , Oxford University Press, New York, 2004.			

	COURSE PLAN				
		ACADEMIC YEAR 20	15-16		
PROGRAMME	:	M.Sc. Applied Chemistry - Pharmaceutical	LECTURE HOURS	:	54
SEMESTER	:	2	CREDITS	:	3
SUBJECT TITLE	:	MOLECULAR SPECTROSCOPY	SUBJECT CODE	:	P2CPHT08
COURSE TEACHERS	:	Dr Franklin J, Dr. Jinu George, Dr KB Jose			
COURSE OBJECTIVES	:	Ability to understand the basics spectroscopy Ability to interpret the spectroscopic properties in simple systems, selection rules, derivations of related mathematical expressions Ability to explore and reflect about the wide range of possibilities and applications of spectroscopy			
Instructional Hours	:	3 hours/week			

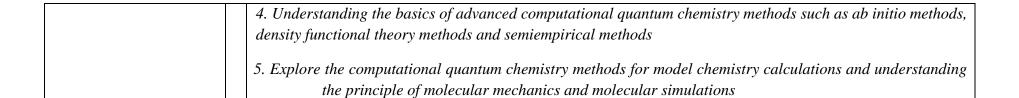
	No. of Sessions	Session Topic and Discussion Theme	Value additions	Web URL/additional resources
	1	Resonance Raman scattering and resonance fluorescence.		
opy	2	Principle of SERS, selection rules, application. Comparison of IR		https://youtu.be/H6_GgJN39
rosc	3	and Raman. Unit 2 Electron & Electronic Spectroscopy & Lasers : Introduction	ICT	<u>vY</u>
ect	4	Electron Spectroscopy: Basic principles		
$\mathbf{S}_{\mathbf{p}}$	5	Photoelectron spectra of simple molecules, selection rules-Electron		
ıce		spectroscopy for chemical analysis (ESCA)-UPS		
nar	6			
[0Si	7	Applications		
R		1st Internal Examination	Т	T
Unit 2: Resonance Spectroscopy	8	X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES).		
Ur	9	Electronic spectroscopy: Electronic spectra of diatomic molecules,	Power Point	
		Franck-Condon principle	Presentation	
Text Books	2. G. 3. P. 4. R. 5. R. 6. K. 7. W 8. H. 9. H. 10. D.	N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy, Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall of Ind W. Atkins, Physical Chemistry, ELBS,1994 S. Drago, Physical Methods in Inorganic Chemistry, Van Nonstrand R S. Drago, Physical Methods in Chemistry, Saunders College, 1992. J. Laidler, J.H. Meiser, Physical Chemistry, 2 nd Edn. CBS, 1999. Kemp, NMR in chemistry-A Multinuclear Introduction, McMillan, 1999. Kaur, Spectroscopy, 6 th Edn. Pragati Prakashan, 2011. Gunther, NMR Spectroscopy, Wiley, 1995. A. McQuarrie, J.D. Simon, Physical Chemistry: A Molecular Approact N. Sathyanarayan, Electronic Absorption Spectroscopy and Related Tells. N. Sathyanarayana, Vibrational Spectroscopy: Theory and Application	ia, 2001. einhold, 1965. 986. h, University Sciencechniques, Universit	re Books, 1997. ies Press, 2001.

13.	D.N. Sathyanarayana,	Introduction to Magnetic	Resonance Spectroscopy	ESR, NMR, NOR	, IK International, 2009.
				,, ,	, , , _ , _ , _ , _ , _ , _ , _

14.	J. D. Graybeat. Molecular Spectroscopy, M	CGraw-Hill International Edition, 1988

Unit II	No. of Sessions	Session Topic and Discussion Theme	Value additions		
	10	Vibronic transitions, Spectra of organic compounds, $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transition.			
	11	Lasers: Laser action, population inversion, properties of laser radiation	Power Point Presentation		
	12	Two stage, three stage-examples of simple laser systems.	Power Point Presentation		
	13	Unit 3: Resonance Spectroscopy: Introduction			
>	14	Discussions related to new gen Lasers	Group Discussion		
scob	2 nd Internal Examination				
ectro	15	3.1 NMR spectroscopy: interaction between nuclear spin and applied magnetic field			
$\mathbf{S}_{\mathbf{I}}$	16	Nuclear energy levels, population of energy levels			
Unit 2: Resonance Spectroscopy	17	Larmor precession, relaxation methods, chemical shift	Individual Assignment: Various intermolecular forces		
Unit	18	Representation, examples of AB, AX and AMX types, exchange phenomenon			
Text Books					

	No. of Sessions	Session Topic and Discussion Theme	Method			
	1	1.1 Origin of spectra: origin of different spectra and the regions of				
		the electromagnetic spectrum, intensity of absorption				
niques	2	influencing factors, signal to noise ratio, natural line width, contributing factors				
ic Techi	3	Doppler broadening, Lamb dip spectrum	ICT			
Unit 1: Foundations of Spectroscopic Techniques	4	Born Oppenheimer approximation, energy dissipation from excited states (radiative and non radiative processes), and relaxation time.				
ons of S	5	1.2 Microwave spectroscopy: Classification of molecules;				
oundati	7	rigid rotor model; rotational spectra of diatomics and polyatomics;				
H.	1st Internal Examination					
Unit 1	8	effect of isotopic substitution and nonrigidity; selection rules and intensity distribution.				
	9	1.3 Vibrational spectroscopy: Vibrational spectra of diatomics;	Power Point Presentation			
Text Books						
Unit III	No. of Sessions	Session Topic and Discussion Theme	Value additions			


S	10	effect of anharmonicity; Morse potential;			
chniqu	11	Vibration-rotational spectra of diatomics, polyatomic molecules-	Power Point Presentation		
Unit 1: Foundations of Spectroscopic Techniques	12	P,Q,R branches, normal modes of vibration, overtones, hot bands drawbacks of dispersive IR, FTIR	Power Point Presentation		
Spectr	13	1.4 Raman spectroscopy : scattering of light, polarizability and classical theory of Raman spectrum			
ns of	14	rotational and vibrational Raman spectrum,	Group Discussion		
datic	2 nd Internal Examination				
ŭ	15	complementarities of Raman and IR spectra,			
Fo	16	mutual exclusion principle,			
nit 1:	17	polarized and depolarized Raman lines,	Individual Assignment		
Û	18	Revision			
	2.	C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy,	4 th Edn., Tata McGraw Hill, 1994.		
	3.	G. Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall of Indi	a, 2001.		
ooks	4.	P.W. Atkins, Physical Chemistry, ELBS,1994			
Text Books	5.	R.S. Drago, Physical Methods in Inorganic Chemistry, Van Nonstrand Re	einhold, 1965.		
Te	6.	R.S. Drago, Physical Methods in Chemistry, Saunders College, 1992.			

	No. of Sessions	Session Topic and Discussion Theme	Value additions	
	1	Factors influencing coupling, Karplus relationship.		
	2	FTNMR, second order effects on spectra, spin systems (AB, AB2)		
	3	Simplification of second order spectra, chemical shift reagents	ICT	
	4	High field NMR, double irradiation, selective decoupling		
	5	Double resonance		
	6			
	7	NOE effect, two dimensional NMR		
		1 st Internal Examination		
	8	COSY and HETCOR		
	9	¹³ C NMR, natural abundance, sensitivity es 1. C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectro	Power Point Presentation	
Text Books	R.S. Drag Chemistry	Molecular Structure and Spectroscopy, Prentice Hall of India, 2001. 3. o, Physical Methods in Inorganic Chemistry, Van Nonstrand Reinhold, V., Saunders College, 1992. 6. K.J. Laidler, J.H. Meiser, Physical Chemi-A Multinuclear Introduction, McMillan, 1986. 8. H. Kaur, Spectroscop	1965. 5. R.S. Drago, Physical Methostry, 2ndEdn. CBS, 1999. 7. W. Kem	ds in
	No. of Sessions	Session Topic and Discussion Theme	Value additions	
	10	¹⁹ F, ³¹ P, NMR spectroscopy.		
<u> </u>	11	3.2 EPR spectroscopy: Introduction	Power Point Presentation	
do	12	Electron spin in molecules, interaction with magnetic field	Power Point Presentation	
trosc	13	g factor, factors affecting g values, determination of g values (g) and g^{\perp})		
bec	14	Fine structure and hyperfine structure, Kramers' degeneracy	Group Discussion	
nce S		2 nd Internal Examination		
nan 	15	McConnell equation. An elementary study of NQR		
) S		spectroscopy.		
Resc	16	3.3 Mossbauer spectroscopy: Introduction, principle		
Unit 2: Resonance Spectroscopy	16 17	1 1	Individual Assignment:	

Text Books

9. H. Gunther, NMR Spectroscopy, Wiley, 1995. 10. D.A. McQuarrie, J.D. Simon, Physical Chemistry: A Molecular Approach, University Science Books, 1997. 11. D.N. Sathyanarayan, Electronic Absorption Spectroscopy and Related Techniques, Universities Press, 2001. 12. D.N. Sathyanarayana, Vibrational Spectroscopy: Theory and Applications, New Age International, 2007. 13. D.N. Sathyanarayana, Introduction to Magnetic Resonance Spectroscopy ESR, NMR, NQR, IK International, 2009. 14. J. D. Graybeat. Molecular Spectroscopy, McGraw-Hill International Edition, 1988

COURSE PLAN					
	ACADEMIC YEAR 2015-16				
PROGRAMME	:	M.Sc. Applied Chemistry - Pharmaceutical	LECTURE HOURS	:	72
SEMESTER	:	2	CREDITS	:	4
SUBJECT TITLE	:	CHEMICAL BONDING AND COMPUTATIONAL CHEMISTRY	SUBJECT CODE	:	P2CPHT07
COURSE TEACHERS	:	Dr. M George (MG), Dr. Jorphin Joseph(JRJ) & I	Dr. M George (MG), Dr. Jorphin Joseph(JRJ) & Dr Ignatious Abraham (IGA)		
Course Objectives 1. Ability to understand the basics of approximate methods in quantum chemistry such as variation method, perturbation method and Hartree Fock Method 2. Apply the approximate methods in quantum chemistry and extend the concepts for understanding the principles of chemical bonding. 3. Understand, identify and analyze the strengths and limitations of VB and MO methods for explaining the chemical bonding in molecules.					

Teacher I – JRJ Module Taken: Unit 1: Approximate Methods in Quantum Mechanics (Total – 18 Hrs)

Instructional Hours : *One Hour Per Week*

No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignments
1	Many-body problem and the need of		
	approximation methods, Independent particle	Conventional Lecture	
	model.	Chalk & Board	
2	Variation method, variation theorem with proof,		
3	Illustration of variation theorem using the trial		Assignment on Problems Related
	function x(a-x) for particle in a 1D-box		to Variation Method
4	Variation method using the trial function e ^{-ar} for the	Lecture With Mathematical	
	hydrogen atom,	Treatment	
5	Variation treatment for the ground state of helium		
	atom.		
6	Perturbation method		
7	Time-independent perturbation method,	Conventional Lecture	
	Perturbation of non-degenerate case only		

	First Internal Test	t	
8	First order correction to energy and wave function,		Assignment on Problems Related to Perturbation Method
9	Illustration by application to particle in a 1D-box with slanted bottom,	Lecture With Mathematical Treatment	
10	Perturbation treatment of the ground state of the helium atom		
11	Qualitative idea of Hellmann-Feynman theorem.		
12	Hartree Self-Consistent Field method for atoms.		
13	Spin orbitals for many electron atoms Multi- electron		
14	Symmetric and antisymmetric wave functions. Pauli's exclusion principle. Slater determinants		
	S	econd Internal Test	
15	Qualitative treatment of Hartree-Fock Self-Consistent Field (HFSCF) method.		
16	Roothan's concept of basis functions,		Assignment Related to Whole
17	Slater-type orbitals (STOs) as basis functions	Lecture with ICT	approximation methods
18	Gaussian type orbitals (GTO), sketches of STO and GTO.		

- 1. I.N. Levine, Quantum Chemistry, 6th Edn., Pearson Education, 2009.
- 2. D.A. McQuarrie, Quantum Chemistry, University Science Books, 2008.
- 3. R.K. Prasad, Quantum Chemistry, 3rd Edn., New Age International, 2006.
- 4. C.N. Datta, *Lectures on Chemical Bonding and Quantum Chemistry*, Prism Books Pvt. Ltd., 1998.
- 5. F.L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, 1968.

Teacher II – IGA Module Taken: Unit 2: Chemical Bonding (Total – 18 Hrs)

Instructional Hours : One Hour Per Week

No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignments
1	Schrödinger equation for molecules.		
2	Born-Oppenheimer approximation.		
3	Valence Bond (VB) theory,		
4	VB theory of H2 molecule,	Conventional Lecture Using	
5	Singlet and triplet state functions (spin orbitals) of H2.	Chalk and Board	Assignment for Preparing Class Notes
6	Molecular Orbital (MO) theory,		
7	MO theory of H ₂ ⁺ ion,		
8	MO theory of H ₂ molecule		
	First Internal Tes	t	
9	MO Theory of homo nuclear diatomic molecules Li ₂ , Be ₂ , N ₂ , O ₂ and F ₂		
10	MO Theory of hetero nuclear diatomic molecules LiH, CO, NO and HF. Bond order.		Assignments based on MO
11	Correlation diagrams, non-crossing rule.	Lecture With Mathematical	Calculations
12	Spectroscopic term symbols for diatomic molecules.	Treatment	
13	Comparison of MO and VB theories.		
14	Hybridization,		
15	quantum mechanical treatment of sp, sp ² and sp ³ hybridisation		
16	Semiempirical MO treatment of planar conjugated molecules,		
	S	Second Internal Test	-

10 71 11 11 11 11 11 11 11 11 11 11 11 11	Hückel Molecular Orbital (HMO) theory of ethene, allyl systems, butadiene and benzene.		
Calculation of charge distributions, bond orders and free valency. Lecture with ICT Seminar Based on HN	Calculation of charge distributions, bond orders and free valency.	Lecture with ICT	Seminar Based on HMO Theory

- 1. I.N. Levine, Quantum Chemistry, 6th Edn., Pearson Education, 2009.
- 2. D.A. McQuarrie, Quantum Chemistry, University Science Books, 2008.
- 3. R.K. Prasad, Quantum Chemistry, 3rd Edn., New Age International, 2006.
- 4. Frontier Orbitals and Organic Chemical Reactions, I. Fleming, Wiley, London, 1976.
- 5. Density functional theory of atoms and molecules, R G Parr and W Yang;
- 6. Chemical hardness: Applications from Molecules to Solids, R G Pearson.

Teacher III- MG	Module Taken: Unit 3: Applications of Group Theory in Chemical Bonding
(Total – 9 Hrs) In	nstructional Hours : One Hour Per Week

No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignmets
1	Applications of Group Theory in Chemical Bonding	Conventional Lecture	
2	Construction of hybrid orbitals in CH ₄ & BF ₃		
3	PCls as example.		
4	Transformation properties of atomic orbitals.		Seminar
5	Symmetry		Assignment to Students on the
	adapted linear combinations (SALC)	Conventional lecture using Chalk	Topic "Applications of Group
6	SALC of C2v, C2h,	and Board and ICT-PPT	Theory in Chemical Bonding"

7	SALC of C3, C3v and D3h point groups.
	and ammonia.
8	MO diagram for water
9	MO diagram for Ammonia
	First Internal Test

References

- 1. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edn., Wiley Eastern, 1990.
- 2. V. Ramakrishnan, M.S. Gopinathan, Group Theory in Chemistry, Vishal Publications, 1992.
- 3. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010

Teacher III – MO	Teacher III – MG Module Taken: Unit 4 & 5: Computational Chemistry and Computational Chemistry Calculations				
(Total – 27 Hrs)	(Total – 27 Hrs) Instructional Hours: Two Hours Per Week				
No. of Session	Session Topic and Discussion Theme	Method of Teaching	Remarks/Student Assignments		
1	Unit 4 : Introduction: computational chemistry as				
	a tool and its scope.				
2	Potential energy surface:				
3	Stationary point, transition state or saddle point,				
	local and global minima.				
4	Molecular mechanics methods:				

5	Force fields-bond stretching, angle bending, torsional terms, non-bonded interactions, electrostatic interactions.	Conventional Lecture And ICT with Power Point Presentation	Preparation of Lecture Notes
6	Mathematical expressions. Parameterisation from experiments or quantum chemistry.		
7	Important features of commonly used force fields like MM3, MMFF, AMBER and CHARMM		
8	Ab initio methods: A review of Hartee-Fock method.		
9	Basis set approximation. Slater and Gaussian functions.		
10	Classification of basis sets - minimal, double zeta, triple zeta, split valence, polarization and diffuse basis sets, contracted basis sets,		
11	Pople style basis sets and their nomenclature, correlation consistent basis sets		
	First Inte	ernal Test	·
12	Hartree-Fock limit. Electron correlation. Qualitative ideas on post Hartree-Fock methods-variational method		
13	Basic principles of Configuration Inetraction(CI). Perturbational methods-basic principles of Møller Plesset Perturbation Theory		
14	General introduction to semiempirical methods: basic principles and terminology.		

15	Introduction to Density Functional Theory (DFT) methods: Hohenberg-Kohn theorems. Kohn-Sham orbitals. Exchange correlation functional.	Conventional Lecture And ICT with Power Point Presentation 2. Visual Display of	1. Seminar on the topic
16	Local densityapproximation. Generalized gradient approximation. Hybrid functionals	Computational Calculations Using Gamess / Gaussian	Comparison of molecular mechanics, ab initio, semiempirical and DFT methods.
17	Model Chemistry-notation, effect on calculation time (cost).		2. Exercises using GAMESS/Gaussian in the
18	Comparison of molecular mechanics, ab initio, semiempirical and DFT methods.		Computer Lab
19	Unit 5 : Computational Chemistry Calculations Molecular Geometry - input-cartesian coordinates and internal coordinate- Z matrix		
20	Z-matrix of: single atom, diatomic molecule, non-linear triatomic molecule, linear triatomic molecule, polyatomic molecules like ammonia, methane, ethane and butane.		
21	General format of GAMESS / Firefly input file. GAMESS / Firefly key word for: basis set selection, method selection, charge, multiplicity,		
22	Single point energy calculation, geometry optimization,		
	Second Int	ternal Test	
23	Constrained optimization and frequency calculation. Identifying a successful GAMESS/Firefly calculation-		
		. Conventional Lecture	

24	Locating local minima and	And ICT with Power Point	
	saddle points, characterizing transition states	Presentation	Practicing and Visualization of
		2. Visual Display of	Computational Chemistry
25	Calculation of ionization energies,	Computational Calculations	Exercises.
	Koopmans' theorem, electron affinities and	Using Gauss View	
	atomic charges.		
26	Identifying HOMO and LUMO-		
27	Visualization of molecular orbitals and normal		
	modes of vibrations using suitable packages		

- 1. E.G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd Edn., Springer, 2011.
- 2. F. Jensen, Introduction to computational chemistry, 2nd Edn., John Wiley & Sons, 2007.
- 3. Michael Springborg, Methods of Electronic-Structure Calculations: From Molecules to Solids John Wiley & Sons, 2000.
- 4. W. Koch, M.C. Holthausen, "A Chemist's Guide to Density Functional Theory", Wiley-VCH Verlag 2000
- 5. K.I. Ramachandran, G. Deepa, K. Namboori, Computational Chemistry and Molecular Modeling: Principles and Applications, Springer, 2008.
- 6. Stote, R. H., Dejaegere, A. and Karplus, M. (1997). Molecular Mechanics and Dynamics Simulations of Enzymes. Computational Approaches to Biochemical Reactivity. Netherlands, Kluwer Academic Publishers.