# CENTRAL MOMENTS, SKEWNESS AND KURTOSIS

Central Moments- The average of all the deviations of all observations in a dataset from the mean of the observations raised to the power *r* 

 $=\frac{1}{n}\sum_{k=1}^{\infty}\left(x_{k}-m\right)^{r},$  $m_r$ k=

In the previous equation, n is the number of observations, X is the value of each individual observation, m is the arithmetic mean of the observations, and r is a positive integer.

#### Central (or Mean) Moments

In mean moments, the deviations are taken from the mean. For Ungrouped Data:

First Population Moment about Mean= $\mu_1 = \frac{\sum (x_i - \mu)}{N}$ Second Population Momentabout Mean= $\mu_2 = \frac{\sum (x_i - \mu)^2}{N}$ First Sample Momentabout Mean= $m_1 = \frac{\sum (x_i - \bar{x})}{n}$ Second Sample Momentabout Mean= $m_2 = \frac{\sum (x_i - \bar{x})^2}{n}$ In General,  $r^{th}$  Population Moment about Mean= $\mu_r = \frac{\sum (x_i - \mu)^r}{N}$ 

$$r^{th}$$
 Sample Moment about Mean= $m_r = \frac{\sum (x_i - \overline{x})^r}{n}$ 

### Central (or Mean) Moments

Formula for Grouped Data:

r<sup>th</sup> Population Moment about Mean= $\mu_r = \frac{\sum f(x_i - \mu)^r}{\sum f}$ r<sup>th</sup> Sample Moment about Mean= $m_r = \frac{\sum f(x_i - \bar{x})^r}{\sum f}$  There are 4 central moments:

- The first central moment, r=1, is the sum of the difference of each observation from the sample average (arithmetic mean), which always equals 0
- The second central moment, r=2, is variance.

The third central moment, r=3, is skewness.

- Skewness describes how the sample differs in shape from a symmetrical distribution.
- If a normal distribution has a skewness of 0, right skewed is greater then 0 and left skewed is less than 0.

Negatively skewed distributions, skewed to the left, occur when most of the scores are towards the left of the mode of the distribution.

- In a normal distribution where skewness is 0, the mean, median and mode are equal.
- In a negatively skewed distribution, the mode > median > mean.

Positively skewed distributions occur when most of the scores are towards the right of the mode of the distribution. In a positively skewed distribution, mode< median< mean.

Positive skew

Negative skew -\_

Symmetric distribution (No skew)

### Skewness

When the distribution is symmetric, the value of skewness should be zero. Karl Pearson defined coefficient of Skewness as:

$$Sk = \frac{Mean - Mode}{SD}$$

Since in some cases, Mode doesn't exist, so using empirical relation,

$$Mode = 3Median - 2Mean$$

We can write,

$$Sk = \frac{3(Median - Mean)}{SD}$$

(it ranges b/w - 3 to +3)

Kurtosis is the 4<sup>th</sup> central moment.

This is the "peakedness" of a distribution.

- It measures the extent to which the data are distributed in the tails versus the center of the distribution
- There are three types of peakedness.
  - Leptokurtic- very peaked
  - Platykurtic relatively flat
  - Mesokurtic in between

#### Kurtosis

 Karl Pearson introduced the term Kurtosis (literally the amount of hump) for the degree of peakedness or flatness of a unimodal frequency curve.

When the peak of a curve becomes relatively high then that curve is called Leptokurtic.

When the curve is flat-topped, then it is called Platykurtic.

Since normal curve is neither very peaked nor very flat topped, so it is taken as a basis for comparison.

The normal curve is called Mesokurtic.



#### Kurtosis

- For a normal distribution, kurtosis is equal to 3.
- When is greater than 3, the curve is more sharply peaked and has narrower tails than the normal curve and is said to be leptokurtic.
- When it is less than 3, the curve has a flatter top and relatively wider tails than the normal curve and is said to be platykurtic.

## Example

Calculate first four moments about the mean for the following set of examination marks:

- X
- 45
- 32
- 37
- 46
- 39
- 36
- 41
- 48
- 36

## Example

Calculate: first four moments about mean for the following frequency distribution:

| Weights (grams) | Frequency (f) |
|-----------------|---------------|
| 65-84           | 9             |
| 85-104          | 10            |
| 105-124         | 17            |
| 125-144         | 10            |
| 145-164         | 5             |
| 165-184         | 4             |
| 185-204         | 5             |
| Total           | 60            |