

POLYNOMIAL FUNCTIONS

Definition:

A function defined by

 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n, \quad \text{where} \quad a_o \neq 0, \text{ n is a non negative}$ integer and a_i (i = 0, 1....,n) are fixed complex numbers is called a **polynomial** of **degree** n in x. Then numbers a_o, a_1, \dots, a_n are called the **coefficients** of f.

If α is a complex number such that $f(\alpha)$ = 0, then α is called **zero** of the polynomial.

Theorem

Every polynomial of degree n has n and only n zeroes.

Proof:

Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, where $a_0 \neq 0$, be a polynomial of degree $n \geq 1$.

By fundamental theorem of algebra, f(x) has at least one zero, let α_1 be that zero.

Then $(x - \alpha_1)$ is a factor of f(x).

Therefore, we can write:

 $f(x) = (x - \alpha_1)Q_1(x)$, where $Q_1(x)$ is a polynomial function of degree n - 1.

If $n-1 \ge 1$, again by Fundamental Theorem of Algebra, $Q_1(x)$ has at least one zero, say α_2 .

Therefore, $f(x) = (x - \alpha_1)(x - \alpha_2)Q_2(x)$ where $Q_2(x)$ is a polynomial function of degree n - 2.

Repeating the above arguments, we get

 $f(x)=(x-\alpha_1)(x-\alpha_2).....(x-\alpha_n)Q_n(x), \text{ where } Q_n(x) \text{ is a polynomial function}$ of degree n - n = 0, i.e., $Q_n(x)$ is a constant.

The state of the s

Equating the coefficient of x^n on both sides of the above equation, we get $Q_n(x) = a_n$.

Therefore, $f(x) = a_o(x - \alpha_1)(x - \alpha_2)....(x - \alpha_n)$.

If α is any number other than $\alpha_1, \alpha_2, ..., \alpha_n$, then $f(x) \neq 0 \Rightarrow \alpha$ is not a zero of f(x).

Hence f(x) has n and only n zeros, namely $\alpha_1, \alpha_2, ..., \alpha_n$.

Note:

Let $f(x) = a_o x^n + a_1 x^{n-1} + ... + a_n$; $a_o \ne 0$ be an nth degree polynomial in x.

Then, $a_o x^n + a_1 x^{n-1} + ... + a_n = 0$ ----- (1)

is called a **polynomial equation** in x of degree n.

A number α is called a **root** of the equation (1) if α is a zero of the polynomial f(x).

Solved Problems

1. Solve $x^4 - 4x^2 + 8x + 35 = 0$, given $2 + i\sqrt{3}$ is a root.

Solution:

Given that $2+i\sqrt{3}$ is all root of $x^4-4x^2+8x+35=0$; since complex roots occurs in conjugate pairs $2-i\sqrt{3}$ is also a root of it.

 $\Rightarrow [x - (2 + i\sqrt{3})][x - (2 - i\sqrt{3})] = (x - 2)^2 + 3 = x^2 - 4x + 7$ is a factor of the giver polynomial.

Dividing the given polynomial by this factor, we obtain the other factor as $x^2 + 4x + 5$.

The roots of $x^2 + 4x + 5 = 0$ are given by $\frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm i$.

Hence the roots of the given polynomial are $2+i\sqrt{3}$, $2-i\sqrt{3}$, -2+i and -2-i.

2. Solve $x^4 - 5x^3 + 4x^2 + 8x - 8 = 0$, given that one of the roots is $1 - \sqrt{5}$.

Solution:

Since quadratic surds occur in conjugate pairs as roots of a polynomial equation, $1+\sqrt{5}$ is also a root of the given polynomial.

$$\Rightarrow [x-(1-\sqrt{5})][x-(1+\sqrt{5})] = (x-1)^2 - 5 = x^2 - 2x - 4$$
 is a factor.

Dividing the given polynomial by this factor, we obtain the other factor as $x^2 - 3x + 2$.

Also,
$$x^2 - 3x + 2 = (x - 2)(x - 1)$$

Thus the roots of the given polynomial equation are $1+\sqrt{5},1-\sqrt{5},1,2$.

Relation between the Roots and Coefficients of a Polynomial Equation

If α and β are the roots of $ax^2 + bx + c = 0$, $(a \neq 0)$, then $\alpha + \beta = \frac{-b}{a}$ and $\alpha\beta = \frac{c}{a}$ If α and β and γ are the roots of $ax^3 + bx^2 + cx + d = 0$, $(a \neq 0)$, then $\alpha + \beta + \gamma = \frac{-b}{a}$, and $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}$ and $\alpha\beta\gamma = \frac{-d}{a}$.

Illustrative Examples:

1. If the roots of the equation $x^3 + px^2 + qx + r = 0$ are in arithmetic progression, show that $2p^3 - 9pq + 27r = 0$.

Solution:

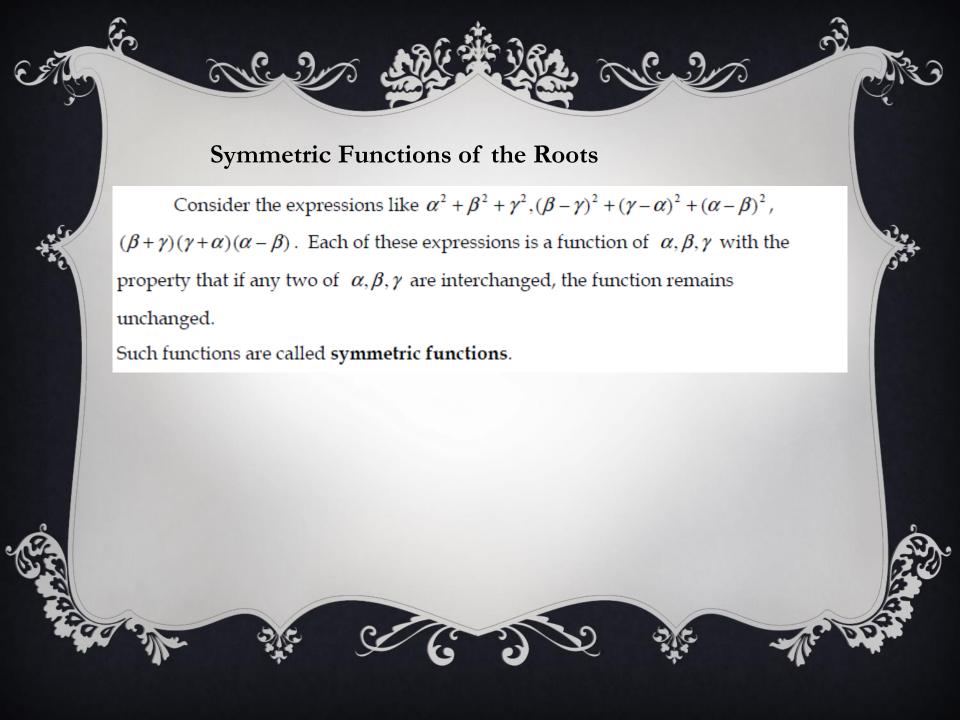
Let the roots of the given equation be a - d, a, a + d.

Then
$$S_1 = a - d + a + a + d = 3a = -p \implies a = \frac{-p}{3}$$

Since a is a root, it satisfies the given polynomial

$$\Rightarrow \left(-\frac{p}{3}\right)^{3} + p\left(-\frac{p}{3}\right)^{2} + q\left(-\frac{p}{3}\right) + r = 0$$

On simplification, we obtain $2p^3 - 9pq + 27r = 0$.



1. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of the following in terms of the coefficients.

$$(i) \sum \frac{1}{\beta \gamma} (ii) \sum \frac{1}{\alpha} (iii) \sum \alpha^2 \beta$$

Solution:

Here $\alpha + \beta + \gamma = -p$, $\alpha\beta + \beta\gamma + \alpha\gamma = q$, $\alpha\beta\gamma = -r$

(i)
$$\sum \frac{1}{\beta \gamma} = \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\alpha \gamma} = \frac{\alpha + \beta + \gamma}{\alpha \beta \gamma} = \frac{-p}{-r} = \frac{p}{r}$$

(ii)
$$\sum \frac{1}{\alpha} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \alpha\gamma}{\alpha\beta\gamma} = \frac{q}{-r} = -\frac{q}{r}$$

$$\begin{split} (iii) \qquad & \sum \alpha^2 \beta = \alpha^2 \beta + \beta^2 \alpha + \gamma^2 \alpha + \gamma^2 \beta + \alpha^2 \gamma + \beta^2 \gamma \\ & = \ \, \big(\alpha \beta + \beta \gamma + \alpha \gamma \big) \big(\alpha + \beta + \gamma \big) - 3 \alpha \beta \gamma \, = (q \, . \, -p) \, - \, 3 \, (-\, r \,) \, = \, 3r \, - \, pq \, \, \, . \end{split}$$

