MATHEMATICAL ANALYSIS

MODULE-2

OPEN SETS, CLOSED SETS AND COUNTABLE SETS

NEIGHBOURHOOD OF A POINT

A set $N \subseteq R$ is called the neighbourhood of a point a, if there exists an open interval I containing a and contained in N, i.e.,

 $a \in I \subseteq N$

An open interval is a neighbourhood of each of its points. We shall take the open interval $(a-\delta, a+\delta)$ where $\delta > 0$ as a neighbourhood of the point a.

DELETED NEIGHBOURHOODS

The set $\{x: 0 < |x-a| < \delta\}$ i.e., an open interval $(a-\delta, a+\delta)$ from which the number a itself has been excluded or deleted is called a deleted neighbourhood of a.

ILLUSTRATIONS

- 1. The set **R** of real numbers is the neighbourhood of each of its points.
- 2. The set **Q** of rationals is not the nbd of any of its points.
- 3. The open interval (a, b) is nbd of each of its points.
- The closed interval [a, b] is the nbd of each point of (a, b) but is not a nbd of the end points a and b.
- 5. The null set ϕ is a nbd of each of its points in the sense that there is no point in ϕ of which it is not a nbd.

EXAMPLE 1. A non- empty finite set is not a nbd of any point.

A set can be a nbd of a point if it contains an open interval containing the point. Since an interval necessarily contains an infinite number of points, therefore, in order that a set be a nbd of a point it must necessarily contain an infinity of points. Thus a finite set cannot be a nbd of any point.

EXAMPLE 2. Superset of a nbd of a point x is also a nbd of x. i.e., if N is a nbd of a point x and $M \supseteq N$ then M is also a nbd of x.

EXAMPLE 3. Union (finite or arbitrary) of nbds of a point x is again a nbd of x.

EXAMPLE 4. If M and N are nodes of a point x, then show that $M \cap N$ is also a node of x. Soln. Since M, N are nbds of x, \exists open intervals enclosing the point x such that $x \in (x - \delta_1, x + \delta_1) \subseteq M$ and $x \in (x - \delta_2, x + \delta_2) \subseteq N$ Let $\delta = \min(\delta_1, \delta_2)$. Then $(x-\delta, x+\delta) \subseteq (x-\delta_1, x+\delta_1) \subseteq M$ and $(x-\delta, x+\delta) \subseteq (x-\delta_2, x+\delta_2) \subseteq N$ $\Rightarrow (x - \delta, x + \delta) \subseteq M \cap N$ $\Rightarrow x \in (x - \delta, x + \delta) \subseteq M \cap N$ $\Rightarrow M \cap N$ is a nbd of x.

INTERIOR POINTS OF A SET

A point x is an interior point of a set S if S is a nbd of x. In other words x is an interior point of S if \exists an open interval (a, b) containing x and contained in S, i.e., $x \in (a, b) \subseteq S$. Thus a set is a nbd of each of its interior points.

Interior of a Set. The set of all interior points of a set is called the interior of the set. The interior of a set is generally denoted by S' or int S.

Ex. The interior of the set **N** or **I** or **Q** is the null set, but interior of **R** is **R**.

The interior of a set S is a subset of S. i.e., int $S \subseteq S$.

 $[x \in int S \Rightarrow x \in (x - \delta, x + \delta) \subseteq S \Rightarrow x \in S \text{ . i.e., int } S \subseteq S.]$

OPEN SET

A set S is said to be open if it is a nbd of each of its points, i.e., for each $x \in S$, there exist an open interval I_x such that

 $x \in I_x \subseteq S$.

Thus every point of an open set is an interior point, so that for an open set S, int S= S.

```
Evidently, S is open \Leftrightarrow S=int S.
```

The set is not open if it is not a nbd of at least one of its points, or that there is at least one point of the set which is not an interior point.

ILLUSTRATIONS

1. The set **R** of real numbers is an open set.

2. The set **Q** of rationals is not an open set.

3. The closed interval [a, b], is not open for it is not a neighbourhood of the end points a and b.

4. The null set ϕ is open, for there is no point in ϕ of which it is not a neighbourhood.

5. A non-empty finite set is not open.

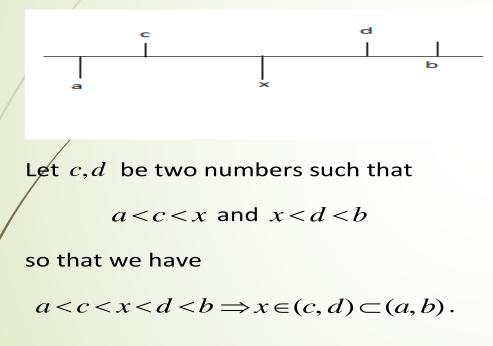
6. The set $\{\frac{1}{n} : n \in N\}$ is not open.

EXAMPLE 5. Show that every open interval is an open set.

Or

Every open inerval is a nbd of each of its points.

Let x be any point of the given open interval (a, b) so that we have a < x < b.



Thus the given interval (a, b) contains an open interval containing the point x, and is therefore a nbd of x.

Hence, the open interval is a nbd of each of its points and is therefore an open set.

Example 6. Show that every open set is a union of open intervals .

Let S be an open set and x_{λ} a point of S.

Since S is open, therefore \exists an open interval $I_{x_{\lambda}}$ for each of its points x_{λ} such that

 $x_{\lambda} \in I_{x_{\lambda}} \subseteq S \quad \forall x_{\lambda} \in S$

Again the set S can be thought of as the union of singleton sets like $\{x_{\lambda}\}$, i.e.,

 $\mathcal{S} = \bigcup_{\lambda \in \Lambda} \{x_{\lambda}\}$, where Λ is the index set

$$\therefore S = \bigcup_{\lambda \in \Lambda} \{x_{\lambda}\} \subseteq \bigcup_{\lambda \in \Lambda} I_{x_{\lambda}} \subseteq S$$

 $\Rightarrow S = \bigcup_{\lambda \in \Lambda} I_{x_{\lambda}}$

THEOREM 1: The interior of a set is an open set.

Let S be a given set, and int S its interior.

If int $S = \phi$ then int S is open.

When int $S \neq \phi$, let $x \in int S$.

As x is an interior point of S, there exist an open interval I_x such that $x \in I_x \subseteq S$

But I_x being an open interval, is a nbd of each of its points.

- Every point of I_x is an interior point of I_x , and $I_x \subseteq S \implies$ every point of I_x is an interior point of S
 - $\therefore I_x \subseteq \text{int } S$
- $\Rightarrow x \in I_x \subseteq \text{int } S \Rightarrow \text{any point of } x \text{ of int } S \text{ is interior point of int } S$
- \Rightarrow int *S* is an open set.

Corollary: The interior of a set S is an open subset of S.

THEOREM 2: The interior of a set S is the largest open subset of S.

Or

The interior of a set S contains every open subset of S .

We know that the interior int S of a set S is an open subset of S. Let us show that any open subset S_1 of S is contained in int S.

```
Let x \in S_1.
```

Since an open set is a nbd of each of its points, therefore S_1 is a nbd of x.

```
But S is a superset of S_1.
```

```
\therefore S is also a nbd of x
```

```
\Rightarrow x \text{ is an interior point of } S
\Rightarrow x \in \text{int } S
```

Thus

```
\Rightarrow x \in S_1 \Rightarrow x \in \text{int } S
```

```
\therefore S_1 \subseteq \text{ int } S
```

Hence, every open subset of S is contained in its interior int S.

 \Rightarrow int *S*, the interior of *S* is the largest open subset of *S*.

Corollary: Interior of the set S is the union of all open subsets of S.

THEOREM 3: The union of an arbitrary family of open sets is open.

Let F be the union of an arbitrary family $\mathcal{F} = \{S_{\lambda} : \lambda \in \Lambda\}$ of open sets, Λ being an index set. To prove that F is open, we shall show that for any point $x \in F$, it contains an open interval containing x.

Let $x \in F$. Since F is the union of the members of \mathcal{F} , \exists at least one member, say S_{λ} of \mathcal{F} which contains x. Again, S_{λ} being an open set, there exist an open interval I_x such that

 $x \in I_x \subseteq S_\lambda \subseteq F.$

Thus the set F contains an open interval containing any point x of F

 \Rightarrow F is an open set.

THEOREM 4: The intersection of any finite number of open sets is open.

Let us consider two open sets S, T.

If $S \cap T = \emptyset$, it is an open set.

If $S \cap T \neq \emptyset$, let $x \in S \cap T$.

Now

 $x \in S \cap T \Longrightarrow x \in S \land x \in T$

 \Rightarrow S, T are nbds of x [since S, T are open]

 \Rightarrow S \cap T is a nbd of x.

But since x is any point of S \cap T, therefore S \cap T is a nbd of each of its points.

Hence $S \cap T$ is open.

This proof may of course be extended to a finite number of sets.

Note: The above theorem does not hold for the intersection of arbitrary family of open sets.

Consider for example the open sets $S_n = (\frac{-1}{n}, \frac{1}{n}), n \in N$

Their intersection is the set {0} consisting of a single point 0, and this set is not open.

LIMIT POINTS OF A SET

Definition 1: A real number ξ is a limit point of a set S ($\subset R$) if every nbd of ξ contains an infinite number of members of S.

Thus ξ is a limit point of set S if for any nbd N of ξ N \cap S is an infinite set.

A limit point is also called a cluster point, a condensation point or an accumulation point.

A limit point of a set may or may not be a member of the set. A set may have no limit point, a unique limit point, a finite or an infinite number of limit points.

Definition 2: A real number ξ is a limit point of a set S (\subseteq R) if every nbd of ξ contains atleast one member of S other than ξ .

A point ξ is not a limit point of a set S if \exists even one nbd of ξ not containing any point of S other than ξ .

Derived Sets: The set of all the limit points of a set S is called the derived set of S and is denoted by S'.

ILLUSTRATIONS

1. The set I has no limit point, for a nbd $(m - \frac{1}{2}, m + \frac{1}{2})$ of $m \in I$, contains no point of I other than m. Thus the derived set of I is the null set ϕ .

2. Every point of R is a limit point, for, every nbd of any of its points contains an infinity of members of R .Therefore R'=R

3. Every point of the set Q of rationals is a limit point of Q, for, between any two rationals there exists an infinity of rationals. Further every irrational number is also a limit point of Q for between any two irrationals there are infinitely many rationals. Thus every real number is a limit point of Q, so that Q'=R.

4. The set $\{\frac{1}{n} : n \in N\}$ has only one limit point, zero, which is not a member of the set.

5. Every point of the closed interval [a, b] is its limit point, and a point not belonging to the interval is not a limit point. Thus the derived set [a, b]'= [a, b].

6. Every point of the (a, b) is its limit point. The end points a, b which are not members of (a, b) are also its limit points. Thus (a, b)'=[a, b].

A finite set has no limit point. An infinite set may or may not have limit points.

Bolzano- Weierstrass Theorem(for sets)

Every infinite bounded set has a limit point.

Let S be any infinite bounded set and m, M its infimum and supremum respectively. Let P be a set of real numbers defined as follows:

 $x \in P$ iff it exceeds at the most a finite number of members of S.

The set P is non empty, for mEP. Also M is an upper bound of P, for no number greater than or equal to M can belong to P. Thus the set P is non-empty and is bounded above .Therefore by the order-completeness property, P has the supremum, say ξ . We shall now show that ξ is a limit point of S.

Consider any nbd ($\xi - \varepsilon, \xi + \varepsilon$) of ξ , where $\varepsilon > 0$.

Since ξ is the supremum of P, \exists at least one member say η of P such that $\eta > \xi - \xi$. Now η belongs to P, therefore it exceeds at the most a finite number of members of S, and consequently $\xi - \xi$ (< η) can exceed at the most a finite number of members of S.

Again as ξ is the supremum of P, ξ + ε cannot belong to P, and consequently ξ + ε must exceed an infinite number of members of S.

Now ξ - ε exceeds at the most a finite number of members of S and ξ + ε exceeds infinitely members of S.

 \Rightarrow ($\xi - \varepsilon, \xi + \varepsilon$) contains an infinite number of members of S

Consequently ξ is a limit point of S.

Note: Boundedness is not necessary in order for an infinite set S to have a limit point. The set $S = \{\frac{1}{2}, 2, \frac{1}{3}, 3, \dots\}$ is unbounded and infinite and has the limit point 0. The unbounded interval (a, ∞) has infinitely many limit points.

Examples:

1. If S and T are subsets of real numbers, then show that

1. $S \subseteq T \Rightarrow S' \subseteq T'$

2. (S ∪ T)' = S' ∪ T'

Soln:

```
1. If S' = \phi then evidently S' \subseteq T'.
```

When $S' \neq \phi$, let $\xi \in S'$ and N be any nbd of ξ .

⇒ N contains an infinite number of members of S.
 But S⊆ T, ∴ N contains infinitely many members of T
 ⇒ ξ is limit point of T,i.e., ξ ∈T'

Thus $\xi \in S' => \xi \in T'$. Hence $S' \subseteq T'$.

2. Now $S \subseteq S \cup T => S' \subseteq (S \cup T)'$ and

 $T \subseteq S \cup T => T' \subseteq (S \cup T)'$

Consequently,

 $S' \cup T' \subseteq (S \cup T)' \tag{1}$

Now we proceed to show that $(S \cup T)' \subseteq S' \cup T'$.

If $(S \cup T)' = \phi$, then evidently $(S \cup T)' \subseteq S' \cup T'$

When (S U T)' $\neq \phi$, let $\xi \in (S UT)'$

Now ξ is a limit points of S U T, therefore, every nbd of ξ contains infinitely many points of S or T or Both.

 $\Rightarrow \ \xi \text{ is a limit point of S or a limit point of T}$ $\Rightarrow \ \xi \in S' V ξ ∈ T'$ ⇒ ξ ∈ S' U T'

Thus, $\xi \in (SUT)' => \xi \in S' \cup T'$

Consequently,

 $(S \cup T)' \subseteq S' \cup T'$

(2)

From (1) and (2) it follows that

(S U T)'=S' U T'

Thus the derived set of the union = the union of the derived sets.

THANK YOU