
MATHEMATICAL ANALYSIS



MODULE- 2

OPEN SETS, CLOSED SETS AND 

COUNTABLE SETS



NEIGHBOURHOOD OF A POINT 

A set RN   is called the neighbourhood of a point a , if there exists an open interval I  

containing a  and contained in N , i.e., 

NIa   

An open interval is a neighbourhood of each of its points. We shall take the open interval            

),(   aa where 0  as a neighbourhood of the point a . 

DELETED NEIGHBOURHOODS 

The set }||0:{  axx i.e., an open interval ),(   aa  from which the number a  itself 

has been excluded or deleted is called a deleted neighbourhood of a . 



ILLUSTRATIONS

1. The set R of real numbers is the neighbourhood of each of its points. 

2. The set Q of rationals is not the nbd of any of its points. 

3. The open interval ),( ba  is nbd of each of its points. 

4. The closed interval ],[ ba  is the nbd of each point of ),( ba  but is not a nbd of the end 

points a  and b . 

5. The null set is a nbd of each of its points in the sense that there is no point in   of 

which it is not a nbd. 



EXAMPLE 1. A non- empty finite set is not a nbd of any point.  

  A set can be a nbd of a point if it contains an open interval containing the point. Since an 

interval necessarily contains an infinite number of points, therefore, in order that a set be a 

nbd of a point it must necessarily contain an infinity of points. Thus a finite set cannot be a 

nbd of any point. 

EXAMPLE 2. Superset of a nbd of a point x  is also a nbd of x . i.e., if N  is a nbd of a point x  

and NM   then M  is also a nbd of x . 

EXAMPLE 3. Union (finite or arbitrary) of nbds of a point x  is again a nbd of x . 



EXAMPLE 4. If M  and N  are nbds of a point x , then show that NM   is also a nbd of x . 

 Soln. Since M , N  are nbds of x , ∃ open intervals enclosing the point x  such that  

Mxxx  ),( 11   and Nxxx  ),( 22    

Let ),min( 21   . Then 

Mxxxx  ),(),( 11   and Nxxxx  ),(),( 22   

NMxx  ),(   

NMxxx  ),(   

NM   is a nbd of x . 



INTERIOR POINTS OF A SET 

A point x  is an interior point of a set S if S is a nbd of x . In other words x  is an interior point 

of S if ∃ an open interval ),( ba  containing x  and contained in S, i.e., Sbax  ),( . Thus a 

set is a nbd of each of its interior points. 

Interior of a Set. The set of all interior points of a set is called the interior of the set. The 

interior of a set is generally denoted by S’ or int S. 

Ex. The interior of the set N or I or Q is the null set, but interior of R is R. 

The interior of a set S is a subset of S. i.e., int S  S. 

[ SxSxxxSx  ),(int  . i.e., int S  S.] 



OPEN SET 

A set S  is said to be open if it is a nbd of each of its points, i.e., for each Sx , there exist an 

open interval xI  such that  

SIx x  . 

Thus every point of  an open set is an interior point, so that for an open set S, int S= S. 

Evidently, S is open  S=int S. 

The set is not open if it is not a nbd of at least one of its points, or that there is at least one 

point of the set which is not an interior point. 



ILLUSTRATIONS 

1. The set R of real numbers is an open set. 

2. The set Q of rationals is not an open set. 

3. The closed interval ],[ ba , is not open for it is not a neighbourhood of the end points a  and 

b . 

4. The null set   is open, for there is no point in   of which it is not a neighbourhood. 

5. A non-empty finite set is not open. 

6. The set }:
1

{ Nn
n

  is not open. 



EXAMPLE 5. Show that every open interval is an open set.  

Or 

Every open inerval is a nbd of each of its points. 

Let x  be any point of the given open interval ),( ba so that we have bxa  .                                                      

 

Let dc,  be two numbers such that 

 xca   and bdx   

so that we have 

 bdxca  ),(),( badcx  . 

Thus the given interval ),( ba  contains an open interval containing the point x , and is 

therefore a nbd of x . 

Hence, the open interval is a nbd of each of its points and is therefore an open set. 



 Example 6. Show that every open set is a union of open intervals . 

 Let S  be an open set and x a point of S . 

Since S  is open, therefore ∃ an open interval 
x

I  for each of its points x such that 

SxSIx x   
 

Again the set S can be thought of as the union of singleton sets like }{ x , i.e., 

S = 

 }{ x , where  is the index set 

S

 }{ x 


 SIx 


 

 S



x
I  



THEOREM 1: The interior of a set is an open set.

Corollary: The interior of a set S  is an open subset of S . 

Let S  be a given set, and Sint  its interior. 

If Sint   then Sint  is open. 

When Sint  , let x Sint . 

As x  is an interior point of S , there exist an open interval 𝐼𝑥  such that x ∈ 𝐼𝑥 ⊆ S  

But 𝐼𝑥  being an open interval, is a nbd of each of its points . 

 Every point of 𝐼𝑥  is an interior point of 𝐼𝑥 , and 

𝐼𝑥 ⊆ S  every point of 𝐼𝑥  is an interior point of S  

∴  𝐼𝑥 ⊆ Sint  

 x 𝐼𝑥 ⊆ Sint   any point of x  of Sint  is interior point of Sint  

 Sint  is an open set. 



We know that the interior Sint  of a set S  is an open subset of S . Let us show that any 

open subset 1S  of S  is contained in Sint  . 

Let x 1S . 

Since an open set is a nbd of each of its points, therefore 1S  is a nbd of x . 

But  S  is a superset of 1S . 

∴ S  is also a nbd of x  

  x is an interior point of  S  

 x Sint  

Thus 

 x  ∈ 1S ⇒ x Sint  

∴ 1S ⊆ Sint   

Hence, every open subset of S  is contained in its interior Sint  . 

Sint , the interior of S  is the largest open subset of S . 

Corollary:  Interior of the set S  is the union of all open subsets of S . 

THEOREM 2: The interior of a set S  is the largest open subset of S . 

Or 

The interior of a set S  contains every open subset of S . 



THEOREM 3: The union of an arbitrary family of open sets is open. 

 Let F be the union of an arbitrary family ℱ }:{  S  of open sets,   being an index set. 

To prove that F is open, we shall show that for any point x F, it contains an open interval 

containing x . 

    Let x F. Since F is the union of the members of  ℱ, ∃ at least  one member, say S  of ℱ  

which contains x . Again, S  being an open set, there exist an open interval 𝐼𝑥  such that  

x ∈ 𝐼𝑥 ⊆ S ⊆ F. 

                   Thus the set F  contains  an open  interval  containing any point x  of F  

  F is an open set. 



 Let us consider two open sets S, T. 

If S ∩ T = ∅, it is an open set. 

If S ∩ T ≠ ∅, let x  S ∩ T. 

Now 

x  S ∩ T  x  S  x  T  

⇒S, T are nbds of x  [since S, T are open] 

⇒ S ∩ T is a nbd of x . 

But since x  is  any point of S ∩ T, therefore S ∩ T is  a  nbd of each of its points.  

Hence S ∩ T  is open. 

This proof may of course be extended to a finite number of sets. 

THEOREM 4: The intersection of any finite number of open sets is open. 

Note: The above theorem does not hold for the intersection of arbitrary family of open sets. 

    Consider for example the open sets NnS
nnn   ),,( 11  

    Their intersection is the set {0} consisting of a single point 0, and this set is not open. 



LIMIT POINTS OF A SET 

Definition 1: A real number ξ is a limit point of a set S (⊂R) if every nbd of  ξ contains an infinite 

number of members of S. 

Thus ξ is a limit point of set S if for any nbd N of ξ N ∩S is an infinite set. 

A limit point is also called a cluster point, a condensation point or an accumulation point. 

A limit point of a set may or may not be a member of the set. A set may have  no limit point, 

a unique limit point, a finite or an infinite number of limit points.  

Definition 2: A real number ξ is a limit point of a set S (⊆ R) if every nbd of ξ contains atleast 

one member of S other than ξ. 

A point  ξ is not a limit point of a set S if  ∃  even one nbd  of  ξ  not containing any point of S  

other than ξ. 

Derived Sets: The set of all the limit points of a set S is called the derived set  of S and is 

denoted by S’. 



ILLUSTRATIONS 

1. The set I has no limit point, for a nbd ),( 2
1

2
1  mm  of m  Є I, contains no point of I other 

than m . Thus the derived set of I is the null set ɸ.  

2. Every point of R is a limit point, for, every nbd of any of its points contains an infinity of 

members of R .Therefore R’=R 

3. Every point of the set Q of rationals is a limit point of Q, for, between any two rationals 

there exists an infinity of rationals. Further every irrational number is also a limit point of Q 

for between any two irrationals there are infinitely many rationals. Thus every real number is 

a limit point of Q, so that Q’=R. 

4. The set }:
1

{ Nn
n

  has only one limit point, zero, which is not a member of the set. 

5. Every point of the closed interval [a, b] is its limit point, and a point not belonging to the 

interval is not a limit point. Thus the derived set [a, b]’= [a, b]. 

6. Every point of the (a, b) is its limit point. The end points a, b which are not members of  (a, 

b) are also its limit points. Thus (a, b)’=[a, b]. 

A finite set has no limit point. An infinite set may or may not have limit points. 



Bolzano- Weierstrass Theorem(for sets) 

Every infinite bounded set has a limit point. 

Let S be any infinite bounded set and m, M its infimum and supremum respectively. Let P be 

a set of real numbers defined as follows: 

x ЄP iff it exceeds at the most a finite number of members of S. 

The set P is non empty, for mЄP. Also M is an upper bound of P, for no number greater than 

or equal to M can belong to P. Thus the set P is non-empty and is bounded above .Therefore 

by the order-completeness property, P has the supremum, say ξ. We shall now show that ξ is 

a limit point of S. 

Consider any nbd (ξ -Ɛ, ξ + Ɛ) of ξ, where Ɛ>0. 

Since ξ is the supremum of P ,∃ at least one member say   of P such that  > ξ - Ɛ. Now   

belongs to P, therefore it exceeds at the most a finite number of members of S, and 

consequently ξ - Ɛ (< ) can exceed at the most a finite number of members of S. 

Again as ξ is the supremum of P, ξ + Ɛ cannot belong to P, and consequently ξ + Ɛ must exceed 

an infinite number of members of S. 

Now ξ - Ɛ exceeds at the most a finite number of members of S and ξ + Ɛ exceeds infinitely 

members of S. 

 (ξ - Ɛ, ξ + Ɛ) contains an infinite number of members of S  

Consequently ξ is a limit point of S.  



Note: Boundedness is not necessary in order for an infinite set S to have a limit point. The set 

S= {½, 2, ⅓, 3……} is unbounded and infinite and has the limit point 0. The unbounded interval 

(a, ∞) has infinitely many limit points. 



Examples: 

1. If S and T are subsets of real numbers, then show that 

1. S ⊆ T => S’ ⊆ T’ 

2. (S ⋃ T)’ = S’  ⋃ T’ 

Soln:  

1. If S’=ɸ then evidently S’ ⊆ T’. 

          When S’ɸ, let ξ ЄS’ and N be any nbd of ξ. 

 N contains an infinite number of members of S. 

But S⊆ 𝑇, ∴ N contains infinitely many members of T 

 ξ is limit point of T,i.e., ξ ЄT’ 

Thus ξ ЄS’ => ξ ЄT’. Hence S’⊆T’. 



2. Now S ⊆ S∪T =>  S’ ⊆ (S∪T)’ and 

    T ⊆ S∪T => T’ ⊆ (S∪T)’ 

Consequently, 

S’U T’ ⊆ (S U T)’     (1) 

Now we proceed to show that (S U T )’ ⊆ S’ U T’. 

If (S U T)’=ɸ, then evidently (S U T)’ ⊆ S’ U T’ 

When (S U T)’≠ ɸ, let ξ Є(S UT)’ 

Now ξ is a limit points of S U T, therefore, every nbd  of ξ contains infinitely many points of S 

or T or Both. 

 ξ is a limit point of S or a limit point of T  

 ξ ЄS’   V   ξ ЄT’  

 ξ ЄS’ U T’ 

Thus, ξ Є(SUT)’ => ξ ЄS’ U T’ 

Consequently, 

(S U T)’ ⊆ S’ U T’     (2) 

From (1) and (2) it follows that 

(S U T)’=S’ U T’ 

Thus the derived set of the union= the union of the derived sets. 



THANK YOU


