CALCULUS

VOLUME OF A SOLID OF REVOLUTION

- DISC METHOD
-WASHER METHOD
-SHELL METHOD

If a region in the plane is revolved about a given line, the resulting solid is a solid of revolution, and the line is called the axis of revolution.

DISC METHOD

- The volume of the solid generated by a region under $f(x)$ bounded by the x-axis and vertical lines $x=a$ and $x=b$, which is revolved about the x-axis is

$$
\mathrm{V}=\pi \int_{a}^{b}(f(x))^{2} \mathrm{dx}
$$

The volume of the solid generated by a region under $f(y)$ (to the left of $f(y)$ bounded by the y-axis, and horizontal lines $y=c$ and $y=d$ which is revolved about the y-axis
$\mathrm{V}=\pi \int_{c}^{d}(f(y))^{2} \mathrm{dy}$

WASHER METHOD

This is an extension of the disc method.

- The volume of the solid generated by a region between $f(x)$ and $g(x)$ bounded by the vertical lines $x=a$ and $x=b$, which is revolved about the x axis is

$$
V=\pi \int_{a}^{b} \mid\left((f(x))^{2}-(g(x))^{2} \mid d x\right.
$$

- The volume of the solid generated by a region between $f(y)$ and $g(y)$ bounded by the horizontal lines $y=c$ and $y=d$ which is revolved about the y-axis is

$$
\mathrm{V}=\pi \int_{c}^{d}\left|(\mathrm{f}(\mathrm{y}))^{2}-(g(y))^{2}\right| d y
$$

SHELL METHOD

The shell method is a method of calculating the volume of a solid of revolution when integrating along an axis parallel to the axis of revolution.

The volume of the solid generated by a region bounded by the vertical lines $x=a$ and $x=b$, which is revolved about the y-axis is $V=2 \pi \int_{a}^{b} x f(x) d x$

- The volume of the solid generated by a region bounded by the y axis, and horizontal lines $y=c$ and $y=d$ which is revolved about the x-axis is

$$
\mathrm{V}=2 \pi \int_{c}^{d} y f(y) d y
$$

THANK YOU

