Correlation
\square Two variables are said to be correlated when change in the value of one variable results in the change in the value of other variable
\square Are two variables related?
\square Does one increase as the other increases?
■e. g. skills and income
\square Does one decrease as the other increases?
■e. g. health problems and nutrition
\square How can we get a numerical measure of the degree of relationship?

Scatterplots

\square AKA scatter diagram or scattergram.
\square Graphically depicts the relationship between two variables in two dimensional space.

Direct Relationship

Inverse Relationship

Scatterplot: Video Games and Test Score

An Example

\square Does smoking cigarettes increase systolic blood pressure?
\square Plotting number of cigarettes smoked per day against systolic blood pressure
\square Fairly moderate relationship
\square Relationship is positive

Trend?

Heart Disease and Cigarettes

\square Data on heart disease and cigarette smoking in 21 developed countries (Landwehr and Watkins, 1987)
\square Data have been rounded for computational convenience.
\square The results were not affected.

The Data

Surprisingly, the U.S. is the first country on the list--the country with the highest consumption and highest mortality.

Country	Cigarettes	CHD
1	11	26
2	9	21
3	9	24
4	9	21
5	8	19
6	8	13
7	8	19
8	6	11
9	6	23
10	5	15
11	5	13
12	5	4
13	5	18
14	5	12
15	5	3
16	4	11
17	4	15
18	4	6
19	3	13
20	3	4
21	3	14

Scatterplot of Heart Disease

\square CHD Mortality goes on ordinate (Y axis)
\square Why?
\square Cigarette consumption on abscissa (X axis)
\square Why?
\square What does each dot represent?
\square Best fitting line included for clarity

What Does the Scatterplot Show?

\square As smoking increases, so does coronary heart disease mortality.
\square Relationship looks strong
\square Not all data points on line.
\square This gives us "residuals" or "errors of prediction"

To be discussed later

Correlation

\square Co-relation
\square The relationship between two variables
\square Measured with a correlation coefficient
\square Most popularly seen correlation
coefficient: Pearson Product-Moment Correlation

Types of Correlation
\square Positive correlation

- High values of X tend to be associated with high values of Y.
\square As X increases, Y increases
\square Negative correlation
- High values of X tend to be associated with low values of Y.
\square As X increases, Y decreases
\square No correlation
\square No consistent tendency for values on Y to increase or decrease as X increases

Correlation Coefficient

\square A measure of degree of relationship.
\square Between 1 and -1
\square Sign refers to direction.
\square Based on covariance
\square Measure of degree to which large scores on X go with large scores on Y, and small scores on X go with small scores on Y
\square Think of it as variance, but with 2 variables instead of 1 (What does that mean??)

Correlation

+1.00 perfect positive

High positive correlation
as one event increases, the second exactly increases

positive

 as one event increases, the second sometimes increases
zero correlation

no relationship between the events

negative

as one event increases, the second sometimes decreases
perfect negative
as one event increases, the second exacily
decreases

Covariance
\square Remember that variance is:

$$
\operatorname{Var}_{X}=\frac{\Sigma(X-\bar{X})^{2}}{N-1}=\frac{\sum(X-\bar{X})(X-\bar{X})}{N-1}
$$

\square The formula for co-variance is:

$$
\operatorname{Cov}_{X Y}=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{N-1}
$$

\square How this works, and why?
\square When would $\operatorname{cov}_{X Y}$ be large and positive? Large and negative?

	Country	X (Cig.)	Y (CHD)	$(X-\bar{X})$	$(Y-\bar{Y})$	$(X-\bar{X}) *(Y-\bar{Y})$
	1	11	26	5.05	11.48	57.97
	2	9	21	3.05	6.48	19.76
	3	9	24	3.05	9.48	28.91
	4	9	21	3.05	6.48	19.76
	5	8	19	2.05	4.48	9.18
	6	8	13	2.05	-1.52	-3.12
	7	8	19	2.05	4.48	9.18
	8	6	11	0.05	-3.52	-0.18
	9	6	23	0.05	8.48	0.42
■	10	5	15	-0.95	0.48	-0.46
XOMO	11	5	13	-0.95	-1.52	1.44
	12	5	4	-0.95	-10.52	9.99
	13	5	18	-0.95	3.48	-3.31
	14	5	12	-0.95	-2.52	2.39
	15	5	3	-0.95	-11.52	10.94
	16	4	11	-1.95	-3.52	6.86
	17	4	15	-1.95	0.48	-0.94
	18	4	6	-1.95	-8.52	16.61
	19	3	13	-2.95	-1.52	4.48
	20	3	4	-2.95	-10.52	31.03
	21	3	14	-2.95	-0.52	1.53
	Mean	5.95	14.52			
	SD	2.33	6.69			
	Sum					222.44

Example

$$
\operatorname{Cov}_{\text {cig.\&CHD }}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{N-1}=\frac{222.44}{21-1}=11.12
$$

Correlation Coefficient

\square Pearson's Product Moment Correlation
\square Symbolized by r
\square Covariance \div (product of the 2 SDs)

$$
r=\frac{\operatorname{Cov}_{X Y}}{s_{X} s_{Y}}
$$

\square Correlation is a standardized covariance

Calculation for Example

$$
\begin{aligned}
& \square \operatorname{Cov}_{X Y}=11.12 \\
& \square s_{X}=2.33 \\
& \square s_{Y}=6.69
\end{aligned}
$$

$$
r=\frac{\operatorname{cov}_{X Y}}{s_{X} s_{Y}}=\frac{11.12}{(2.33)(6.69)}=\frac{11.12}{15.59}=.713
$$

Example

\square Correlation $=.713$
\square Sign is positive so positive corelation

