Correlation

Two variables are said to be correlated when change in the value of one variable results in the change in the value of other variable

- □ Are two variables related?
 - Does one increase as the other increases?
 - e. g. skills and income
 - Does one decrease as the other increases?
 - e. g. health problems and nutrition
- How can we get a numerical measure of the degree of relationship?

Scatterplots

- AKA scatter diagram or scattergram.
- Graphically depicts the relationship between two variables in two dimensional space.

Direct Relationship

Inverse Relationship

An Example

- Does smoking cigarettes increase systolic blood pressure?
- Plotting number of cigarettes smoked per day against systolic blood pressure
 - Fairly moderate relationship
 - Relationship is positive

Trend?

Heart Disease and Cigarettes

- Data on heart disease and cigarette smoking in 21 developed countries
 (Landwehr and Watkins, 1987)
- Data have been rounded for computational convenience.
 - The results were not affected.

The Data

Surprisingly, the U.S. is the first country on the list-the country with the highest consumption and highest mortality.

Country	Cigarettes	CHD
1	11	26
	9	21
2	9	24
4	9	21
5	8	19
6 7	8	13
	8	19
8	6	11
9	6	23
10	5	15
11	5	13
12	5	4
13	5	18
14	5	12
15	5	3
16	4	11
17	4	15
18	4	6
19	3	13
20	3	4
21	3	14

Scatterplot of Heart Disease

- CHD Mortality goes on ordinate (Y axis)
 - Why?
- Cigarette consumption on abscissa (X axis)
 - Why?
- What does each dot represent?
- Best fitting line included for clarity

Cigarette Consumption per Adult per Day

What Does the Scatterplot Show?

- As smoking increases, so does coronary heart disease mortality.
- Relationship looks strong
- Not all data points on line.
 - This gives us "residuals" or "errors of prediction"
 - ■To be discussed later

Correlation

- □ Co-relation
- The relationship between two variables
- Measured with a correlation coefficient
- Most popularly seen correlation coefficient: Pearson Product-Moment Correlation

Types of Correlation

- Positive correlation
 - ■High values of X tend to be associated with high values of Y.
 - As X increases, Y increases
- Negative correlation
 - □ High values of X tend to be associated with low values of Y.
 - As X increases, Y decreases
- □ No correlation
- No consistent tendency for values on Y to increase or decrease as X increases

Correlation Coefficient

- A measure of degree of relationship.
- Between 1 and -1
- Sign refers to direction.
- Based on covariance
 - Measure of degree to which large scores on X go with large scores on Y, and small scores on X go with small scores on Y
 - Think of it as variance, but with 2 variables instead of 1 (What does that mean??)

Correlation

Covariance

Remember that variance is:

$$Var_X = \frac{\Sigma (X - \overline{X})^2}{N - 1} = \frac{\Sigma (X - \overline{X})(X - \overline{X})}{N - 1}$$

□ The formula for co-variance is:

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$

- How this works, and why?
- When would cov_{XY} be large and positive? Large and negative?

$(Y-\overline{Y}) | (X-\overline{X})*(Y-\overline{Y})$ Country X (Cig.) Y (CHD) $(X - \overline{X})$ 57.97 11 26 5.05 11.48 9 21 3.05 6.48 19.76 3 9 24 3.05 9.48 28.91 9 3.05 19.76 4 21 6.48 5 8 19 2.05 4.48 9.18 8 -3.126 13 2.05 -1.527 8 19 2.05 4.48 9.18 0.05 -0.186 11 -3.52 0.05 8.48 0.42 9 6 23 10 5 15 -0.950.48 -0.4611 5 -1.52 13 -0.951.44 5 12 -0.954 -10.529.99 13 5 -3.3118 -0.953.48 5 14 12 -0.95-2.522.39 5 3 10.94 15 -0.95-11.52-1.95 -3.52 6.86 16 4 11 17 15 -1.950.48 -0.944 -1.95 16.61 18 4 6 -8.52 3 -1.524.48 19 13 -2.953 20 4 -2.95-10.5231.03 21 3 1.53 14 -2.95-0.52

Example

Mean 5.95 14.52 SD 2.33 6.69

Sum

Example

$$Cov_{cig.\&CHD} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1} = \frac{222.44}{21 - 1} = 11.12$$

Correlation Coefficient

- Pearson's Product Moment Correlation
- Symbolized by r
- □ Covariance ÷ (product of the 2 SDs)

$$r = \frac{Cov_{XY}}{s_X s_Y}$$

Correlation is a standardized covariance

Calculation for Example

- $\square \operatorname{Cov}_{XY} = 11.12$
- $\Box s_{X} = 2.33$
- $\Box s_{Y} = 6.69$

$$r = \frac{\text{cov}_{XY}}{s_X s_Y} = \frac{11.12}{(2.33)(6.69)} = \frac{11.12}{15.59} = .713$$

Example

- □ Correlation = .713
- □ Sign is positive so positive corelation