
MESSAGING

MESSAGING

• Messaging - capability to communicate with the

outside world

• Enable you to send sms message to another

phone when an event happens

• Events like

• Geographical location is reached

• Access a webservice such as currency exchange,

weather

CONTENTS

 How to send SMS messages

 programmatically within your application

 Using the built-in Messaging application

 How to receive incoming SMS messages

 How to send Email messages from your application

SENDING SMS MESSAGES USING INTENTS

 To activate the built-in Messaging application from within your

application , use an Intent object together with the MIME type

‖vnd.android-dir/mms-sms‖

Intent i = new

 Intent(android.content.intent.ACTION_VIEW);

i.putExtra(―address‖,‖5556;5558;5560‖)

i.putExtra(―sms_body‖,‖hello my friends‖)

i.setType(―vnd.android-dir/mms-sms‖)

startActivity(i);

• You can send SMS to multiple recipients by separating each phone

number with semi-colon in the putExtra()

• No permission in AndroidManifest.xml is needed, because your

application is ultimately no t the one sending the message

SENDING SMS MESSAGES PROGRAMMATICALLY

 Android has a built-in SMS application that enables to send and

receive SMS messages.

 For Example

 Application automatically sends SMS at regular time intervals

 Track location of kids- app sending SMS msg containing the

geographical location on every 30 minutes

 So need to programmatically send and receive SMS messages in

your Android application

SMS MESSAGING PROGRAMMATICALLY

• To send SMS message, use SMS Manager class

 SMSManager sms=SMSManager.getDefault();

 Automatically send an SMS message to a recipient without user
intervention (without involving built-in messaging application)

 Need not instantiate this class, call the getDefault() static
method to obtain an SMSManager object

 Provide SMS permission in AndroidManifest .xml

 <uses-permission
android:name=‘’android.permission.RECEIVE_SMS>

SMS MESSAGING PROGRAMMATICALLY

sms.sendTextmessage(phonenumber,null,

 message,null,null);

 Five arguments to sendtextmessage() method

 destinationAddress - phone no of recipient

 scAddress - Service Center Address

 Text – content of the text message

 sentIntent –Pending intent to invoke when the

message is sent

 deliveryIntent –Pending intent to invoke when the

message has been delivered

BROADCAST RECEIVERS

 Broadcast Receivers simply respond to broadcast messages

from other applications or from the system itself.

 These messages are sometime called events or intents.

 For example, applications can also initiate broadcasts to let other

applications know that some data has been downloaded to the

device and is available for them to use.

 Broadcast receiver is the one who will intercept this

communication and will initiate appropriate action.

BROADCAST RECEIVERS

 Two important steps to make BroadcastReceiver

works for the system broadcasted intents

 Creating the Broadcast Receiver.

 Registering Broadcast Receiver

CREATING THE BROADCAST RECEIVER

 A broadcast receiver is implemented as a subclass

of BroadcastReceiver class and overriding the

onReceive() method where each message is received as

a Intent object parameter.

public class MyReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent)

 {

 Toast.makeText(context, "Intent Detected.",

Toast.LENGTH_LONG).show();

 }

}

REGISTERING BROADCAST RECEIVER

 An application listens for specific broadcast intents by registering a

broadcast receiver in AndroidManifest.xml file.

 Consider we are going to register MyReceiver for system generated event
ACTION_BOOT_COMPLETED which is fired by the system once the
Android system has completed the boot process.

<application android:icon="@drawable/ic_launcher"
android:label="@string/app_name" android:theme="@style/AppTheme―>

 <receiver android:name="MyReceiver">

 <intent-filter>

<action
android:name="android.intent.action.BOOT_COMPLETED">
</action>

</intent-filter>

</receiver>

 </application>

 whenever your Android device gets booted, it will be intercepted by
BroadcastReceiver MyReceiver and implemented logic
inside onReceive() will be executed

BROADCASTING CUSTOM INTENTS

 If you want your application itself should generate and send custom

intents then you will have to create and send those intents by using

the sendBroadcast()method inside your activity class.

 public void broadcastIntent(View view) {

 Intent intent = new Intent();

intent.setAction("com.example.CUSTOM_INTENT");

sendBroadcast(intent); }

 This intent com.example.CUSTOM_INTENT can also be registered in

similar way as we have regsitered system generated intent.

BROADCASTING CUSTOM INTENTS

<application android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<receiver android:name="MyReceiver">

<intent-filter>

<action android:name=―example.CUSTOM_INTENT">

</action>

</intent-filter>

</receiver>

</application>

PENDING INTENT

 A Pending Intent specifies an action to take in the future.

 It lets you pass a future Intent to another application and allow that

application to execute that Intent as if it had the same permissions as

your application, whether or not your application is still around when

the Intent is eventually invoked.

 A PendingIntent provides a means for applications to work, even

after their process exits. It€™s important to note that even after the

application that created the PendingIntent has been killed, that

Intent can still run.

PENDING INTENT

 To perform a broadcast via a pending intent so get a PendingIntent via
PendingIntent.getBroadcast().

 To perform an activity via an pending intent you receive the activity via
PendingIntent.getActivity().

 A description of an Intent and target action to perform with it.

 Instances of this class are created with

 getActivity(Context, int, Intent, int),

 getBroadcast(Context, int, Intent, int),

 getService (Context, int, Intent, int);

 Returned object can be handed to other applications so that they can
perform the action you described on your behalf at a later time.

GETTING FEEDBACK AFTER SENDING A MESSAGE

 Create two pending intent objects to monitor the status of the

SMS message-sending process.

 Pending Intent objects in the onCreate ()

 sentPI = PendingIntent.getBroadcast(this, 0,

 new Intent(SENT), 0);

 deliveredPI = PendingIntent.getBroadcast(this, 0,

 new Intent(DELIVERED), 0);

• PI objects will be used to send broadcasts later when

 an SMS message has been sent and delivered

GETTING FEEDBACK AFTER SENDING A MESSAGE

 Pending Intent objects are passed to the last two

arguments of the sendTextMessage() method

 When a msg is sent correctly or failed to be

delivered, then it will be notified of its status via

two Pending Intent objects

 sms.sendTextmessage(phonenumber,null,

 message, sentPI, deliveredPI);

GETTING FEEDBACK AFTER SENDING A MESSAGE

onResume()

 Create and register two Broadcast Receivers

 Intents are fired by the SMSManager when the message has been sent

and delivered.

 Broadcast Receivers listen for intents that match SMS_SENT and

DELIVERED

 Within each BroadcastReceiver override the OnReceive() method and

get the current result code.

onPause ()

 You can unregister the two Broadcastreceivers objects

RECEIVING SMS MESSAGES

 Receive incoming SMS messages within the application

is useful when the application to perform need to

perform an action when the a certain SMS message is

received.

 Suppose you want to track the location of the phone in

case stolen or lost.

 Create an application that automatically listens for SMS

messages containing secret code. Once that SMS is received

then send an SMS containing the location‘s coordinates back

to the sender

RECEIVING SMS MESSAGES

 To listen for the incoming SMS msgs create a

BroadcastReceiver class,

 Enable the app to receive intents sent by other applications

using the sendBroadcast() method.

 Enable the app to handle events raised by other application

 When an incoming msg is received the OnReceive() method is

fired

 If device receives 5 sms msgs , then onReceive () method will be

called five times.

RECEIVING SMS MESSAGES

 To extract the content of each msg , use createFromPDU()

method from the SMSMessage class

 Phone no obtained via getOrginatingAddress()-to send

autoreply

 Body of the msg via getMessageBody()

 The application will continue to listen to the incoming msgs

even if the application is not running, as long as

application installed in the device.

PREVENTING FROM RECEIVING A MESSAGE

 To prevent an incoming msg from being handled by the built-in Message

application, the app you created needs to handle the msg before the

Message app has a chance to do so

 To do this android:priority attribute to the <intent-filter> element like

this

 <intent-filter android:priority=‗‘100‘‘>

 Set this attribute to a high no such as 100. The higher the no the earlier

Android executes our application.

 To prevent other applications from seeing the message, call

abortBroadcast() method of the BroadcastReceiver class.

UPDATING ACTIVITY FROM BROADCAST RECEIVER

 To send the SMS message back to the main activity of your application

 For example, you might wish to display the message in a TextView

 When SMSReceiver class receives an SMS message, it will broadcast

another Intent object so that any applications listening for this intent

can be notified

//send a broadcast intent to update the SMS received in the activity---

Intent broadcastIntent = new Intent();

broadcastIntent.setAction(―SMS_RECEIVED_ACTION‖);

broadcastIntent.putExtra(―sms‖, str);

context.sendBroadcast(broadcastIntent);

UPDATING ACTIVITY FROM BROADCAST RECEIVER

 Create a BroadcastReceiver object to listen for broadcast intents

 private BroadcastReceiver intentReceiver = new BroadcastReceiver() {

 public void onReceive(Context context, Intent intent) {

//—-display the SMS received in the TextView—-

 TextView SMSes = (TextView) findViewById(R.id.textView1);

 SMSes.setText(intent.getExtras().getString("sms"));

 } };

UPDATING ACTIVITY FROM BROADCAST RECEIVER

 When a broadcast intent is received, you update the SMS

message in the TextView.

 TextView will display the SMS message only when the

message is received while the activity is visible on the

screen.

 If the SMS message is received when the activity is not in

the foreground, the TextView will not be updated.

 INVOKING AN ACTIVITY FROM A BROADCASTRECEIVER

 The previous example shows how you can pass the SMS message received

to be displayed in the activity.

 Situations like your activity may be in the background when the SMS

message is received.

 In this case, it would be useful to be able to bring the activity to the

foreground when a message is received.

 In the SMSActivity class,

 register the BroadcastReceiver in the activity‘s onCreate() event,

instead of the onResume() event

 instead of unregistering it in the onPause() event, unregister it in the

onDestroy() event.

 This ensures that even if the activity is in the background, it will still be

able to listen for the broadcast intent.

 INVOKING AN ACTIVITY FROM A BROADCASTRECEIVER

 modify the onReceive() event in the SMSReceiver class by using an

intent to bring the activity to the foreground before broadcasting

another intent

 Intent mainActivityIntent = new Intent(context, SMSActivity.class);

 mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 context.startActivity(mainActivityIntent);

 The startActivity() method launches the activity and brings it to the

foreground.

 Set the Intent.FLAG_ACTIVITY_NEW_TASK flag because calling

startActivity() from outside of an activity context requires the

FLAG_ACTIVITY_NEW_TASK flag.

 INVOKING AN ACTIVITY FROM A BROADCASTRECEIVER

 Set the launchMode attribute of the <activity> element in the

AndroidManifest.xml file to singleTask

<activity android:name=”.MainActivity”

 android:label=”@string/app_name”

 android:launchMode=”singleTask” >

 If you don‘t set this, multiple instances of the activity will be

launched as your application receives SMS messages.

THANK YOU

