CYLINDRICAL AND SPHERICAL COORDINATES

CYLINDRIC&L COORDIN&TES

In the cylindrical coordinate system, a point in space (Figure 12.7.1) is represented by the ordered triple (r, θ, z) , where

- (r, θ) are the polar coordinates of the point's projection in the xy-plane
- z is the usual z-coordinate in the Cartesian coordinate system

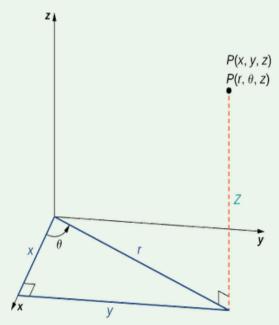


Figure 12.7.1: The right triangle lies in the xy-plane. The length of the hypotenuse is r and θ is the measure of the angle formed by the positive x-axis and the hypotenuse. The z-coordinate describes the location of the point above or below the xy-plane.

Conversion between Cylindrical and Cartesian Coordinates

03

The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point are related as follows:

These equations are used to convert from cylindrical coordinates to rectangular coordinates.

- $x = r \cos \theta$
- $y = r \sin \theta$
- $\bullet z = z$

These equations are used to convert from rectangular coordinates to cylindrical coordinates

1.
$$r^2 = x^2 + y^2$$

2.
$$\tan \theta = \frac{y}{x}$$

3.
$$z = z$$

SPHERICAL COORDINATES

In the spherical coordinate system, a point P in space (Figure 11.7.9) is represented by the ordered triple (ρ, θ, φ) where

- ρ (the Greek letter rho) is the distance between P and the origin ($\rho \neq 0$);
- θ is the same angle used to describe the location in cylindrical coordinates;
- φ (the Greek letter phi) is the angle formed by the positive z-axis and line segment OP, where O is the origin and $0 \le \varphi \le \pi$.

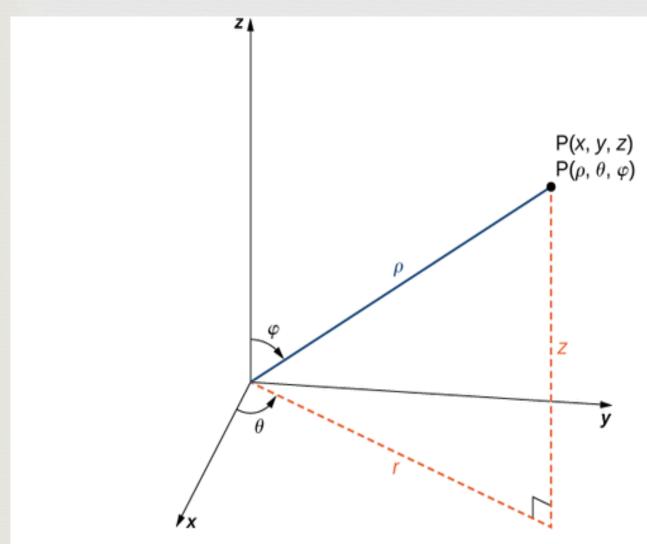


Figure 11.7.9: The relationship among spherical, rectangular, and cylindrical coordinates.

HOWTO: Converting among Spherical, Cylindrical, and Rectangular Coordinates

Rectangular coordinates (x, y, z), cylindrical coordinates (r, θ, z) , and spherical coordinates (ρ, θ, φ) of a point are related as follows:

Convert from spherical coordinates to rectangular coordinates

These equations are used to convert from spherical coordinates to rectangular coordinates.

- $x = \rho \sin \varphi \cos \theta$
- $y = \rho \sin \varphi \sin \theta$
- $z = \rho \cos \varphi$

Convert from rectangular coordinates to spherical coordinates

These equations are used to convert from rectangular coordinates to spherical coordinates.

- $\rho^2 = x^2 + y^2 + z^2$
- $\tan \theta = \frac{y}{x}$
- $e \cdot \varphi = \arccos(\frac{z}{\sqrt{x^2 + y^2 + z^2}}).$

Convert from spherical coordinates to cylindrical coordinates

These equations are used to convert from spherical coordinates to cylindrical coordinates.

- $r = \rho \sin \varphi$
- $\hat{\theta} = \theta$
- $z = \rho \cos \varphi$

Convert from cylindrical coordinates to spherical coordinates

These equations are used to convert from cylindrical coordinates to spherical coordinates.

- $\rho = \sqrt{r^2 + z^2}$
- $\theta = \theta$
- $\varphi = \arccos(\frac{z}{\sqrt{r^2 + z^2}})$

Convert the rectangular coordinates (1, -3, 5) to cylindrical coordinates.

Solution

Use the second set of equations from Note to translate from rectangular to cylindrical coordinates:

$$r^2 = x^2 + y^2$$

 $r = \pm \sqrt{1^2 + (-3)^2}$
 $= \pm \sqrt{10}$.

We choose the positive square root, so $r=\sqrt{10}$. Now, we apply the formula to find θ . In this case, y is negative and x is positive, which means we must select the value of θ between $\frac{3\pi}{2}$ and 2π :

$$an heta = rac{y}{x} = rac{-3}{1}$$
 $heta = \arctan(-3) \approx 5.03 \, \mathrm{rad}.$

The this case, the z-coordinates are the same in both rectangular and cylindrical coordinates:

$$z=5$$
.

The point with rectangular coordinates (1, -3, 5) has cylindrical coordinates approximately equal to $(\sqrt{10}, 5.03, 5)$.

Plot the point with spherical coordinates $(8, \frac{\pi}{3}, \frac{\pi}{6})$ and express its location in both rectangular and cylindrical coordinates.

Solution

Use the equations in Note to translate between spherical and cylindrical coordinates (Figure 11.7.12):

$$x = \rho \sin \varphi \cos \theta$$

$$= 8 \sin(\frac{\pi}{6}) \cos(\frac{\pi}{3})$$

$$= 8(\frac{1}{2})\frac{1}{2}$$

$$= 2$$

$$y = \rho \sin \varphi \sin \theta$$

$$= 8 \sin(\frac{\pi}{6}) \sin(\frac{\pi}{3})$$

$$= 8(\frac{1}{2})\frac{\sqrt{3}}{2}$$

$$= 2\sqrt{3}$$

$$z = \rho \cos \varphi$$

$$= 8 \cos(\frac{\pi}{6})$$

$$= 8(\frac{\sqrt{3}}{2})$$

$$= 4\sqrt{3}$$

$$r = \rho \sin \varphi$$

$$= 8 \sin \frac{\pi}{6} = 4$$

$$\theta = \theta$$

$$z = \rho \cos \varphi$$

$$= 8 \cos \frac{\pi}{6}$$

$$= 4\sqrt{3}.$$

Thus, cylindrical coordinates for the point are $(4, \frac{\pi}{3}, 4\sqrt{3})$.

Convert the rectangular coordinates $(-1, 1, \sqrt{6})$ to both spherical and cylindrical coordinates.

Solution

Start by converting from rectangular to spherical coordinates:

$$ho^2 = x^2 + y^2 + z^2 = (-1)^2 + 1^2 + (\sqrt{6})^2 = 8$$
 $an \theta = \frac{1}{-1}$
 $ho = 2\sqrt{2} ext{ and } \theta = \arctan(-1) = \frac{3\pi}{4}.$

Because (x,y)=(-1,1), then the correct choice for heta is $frac{3\pi}{4}$.

There are actually two ways to identify φ . We can use the equation $\varphi=\arccos(\frac{z}{\sqrt{x^2+y^2+z^2}})$. A more simple approach, however, is to use equation $z=\rho\cos\varphi$. We know that $z=\sqrt{6}$ and $\rho=2\sqrt{2}$, so

$$\sqrt{6}=2\sqrt{2}\cosarphi,\,$$
 so $\cosarphi=rac{\sqrt{6}}{2\sqrt{2}}=rac{\sqrt{3}}{2}$

and therefore $\varphi=\frac{\pi}{6}$. The spherical coordinates of the point are $(2\sqrt{2},\frac{3\pi}{4},\frac{\pi}{6})$.

To find the cylindrical coordinates for the point, we need only find r:

$$r=
ho\sinarphi=2\sqrt{2}\sin(rac{\pi}{6})=\sqrt{2}.$$

The cylindrical coordinates for the point are $(\sqrt{2}, \frac{3\pi}{4}, \sqrt{6})$.

THANK YOU