CYLINDRICAL AND
 SPHERICAL COORDINATES 03

CYLINDRICAL COORDINATES

In the cylindrical coordinate system, a point in space (Figure 12.7.1) is represented by the ordered triple (r, θ, z), where

- (r, θ) are the polar coordinates of the point's projection in the $x y$-plane
- z is the usual z-coordinate in the Cartesian coordinate system

Figure 12.7.1: The right triangle lies in the $x y$-plane. The length of the hypotenuse is r and θ is the measure of the angle formed by the positive x-axis and the hypotenuse. The z-coordinate describes the location of the point above or below the $x y$-plane.

Conversion between Cylindrical and Cartesian Coordinates

The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point are related as follows:
These equations are used to convert from cylindrical coordinates to rectangular coordinates.

- $x=r \cos \theta$
- $y=r \sin \theta$
- $z=z$

These equations are used to convert from rectangular coordinates to cylindrical coordinates

1. $r^{2}=x^{2}+y^{2}$
2. $\tan \theta=\frac{y}{x}$
3. $z=z$

SPHERICAL COORDINATES

CH

In the spherical coordinate system, a point P in space (Figure 11.7.9) is represented by the ordered triple (ρ, θ, φ) where

- ρ (the Greek letter rho) is the distance between P and the orgin $(\rho \neq 0)$;
- θ is the same angle used to describe the location in cylindrical coordinates,
- φ (the Greek letter phi) is the angle formed by the positive z-axis and line segment 0 P, where 0 is the origin and $0 \leq \varphi \leq \pi$.

Figure 11.7.9: The relationship among spherical, rectangular, and cylindrical coordinates.

HOWTO: Converting among Spherical, Cylindrical, and Rectangular Coordinates

Rectangular coordinates (x, y, z), cylindrical coordinates (r, θ, z), and spherical coordinates (ρ, θ, φ) of a point are related as follows:

Convert from spherical coordinates to rectangular coordinates

These equations are used to convert from spherical coordinates to rectangular coordinates.

- $x=\rho \sin \varphi \cos \theta$
- $y=\rho \sin \varphi \sin \theta$
- $z=\rho \cos \varphi$

Convert from rectangular coordinates to spherical coordinates

These equations are used to convert from rectangular coordinates to spherical coordinates.

- $\rho^{2}=x^{2}+y^{2}+z^{2}$
- $\tan \theta=\frac{y}{x}$
$\because=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$.

Convert from spherical coordinates to cylindrical coordinates

These equations are used to convert from spherical coordinates to cylindrical coordinates.

- $r=\rho \sin \varphi$
- $\hat{\theta}=\theta$
- $z=\rho \cos \varphi$

Convert from cylindrical coordinates to spherical coordinates

These equations are used to convert from cylindrical coordinates to spherical coordinates.

- $\rho=\sqrt{r^{2}+z^{2}}$
- $\theta=\theta$
- $\varphi=\arccos \left(\frac{z}{\sqrt{r^{2}+z^{2}}}\right)$

PROBLEMS

Convert the rectangular coordinates $(1,-3,5)$ to cylindrical coordinates.

Solution

Use the second set of equations from Note to translate from rectangular to cylindrical coordinates:

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
r & = \pm \sqrt{1^{2}+(-3)^{2}} \\
& = \pm \sqrt{10} .
\end{aligned}
$$

We choose the positive square root, so $r=\sqrt{10}$. Now, we apply the formula to find θ. In this case, y is negative and x is positive, which means we must select the value of θ between $\frac{3 \pi}{2}$ and 2π :

$$
\begin{aligned}
\tan \theta & =\frac{y}{x} & =\frac{-3}{1} \\
\theta & =\arctan (-3) & \approx 5.03 \mathrm{rad} .
\end{aligned}
$$

Ii. this case, the z-coordinates are the same in both rectangular and cylindrical coordinates:

$$
z=5 .
$$

The point with rectangular coordinates $(1,-3,5)$ has cylindrical coordinates approximately equal to $(\sqrt{10}, 5.03,5)$.

PROBLEMS

Plot the point with spherical coordinates ($8, \frac{\pi}{3}, \frac{\pi}{6}$) and express its location in both rectangular and cylindrical coordinates.

Solution

Use the equations in Note to translate between spherical and cylindrical coordinates (Figure 11.7.12):

$$
\begin{aligned}
x & =\rho \sin \varphi \cos \theta \\
& =8 \sin \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{3}\right) \\
& =8\left(\frac{1}{2}\right) \frac{1}{2} \\
& =2 \\
y & =\rho \sin \varphi \sin \theta \\
& =8 \sin \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{3}\right) \\
& =8\left(\frac{1}{2}\right) \frac{\sqrt{3}}{2} \\
& =2 \sqrt{3} \\
z & =\rho \cos \varphi \\
& =8 \cos \left(\frac{\pi}{6}\right) \\
& =8\left(\frac{\sqrt{3}}{2}\right) \\
& =4 \sqrt{3}
\end{aligned}
$$

PROBLEMS

$$
\begin{aligned}
r & =\rho \sin \varphi \\
& =8 \sin \frac{\pi}{6} \quad=4 \\
\theta & =\theta \\
z & =\rho \cos \varphi \\
& =8 \cos \frac{\pi}{6} \\
& =4 \sqrt{3} .
\end{aligned}
$$

Thus, cylindrical coordinates for the point are $\left(4, \frac{\pi}{3}, 4 \sqrt{3}\right)$.

PROBLEMS

Convert the rectangular coordinates $(-1,1, \sqrt{6})$ to both spherical and cylindrical coordinates.

Solution

Start by converting from rectangular to spherical coordinates:

$$
\begin{aligned}
\rho^{2} & =x^{2}+y^{2}+z^{2}=(-1)^{2}+1^{2}+(\sqrt{6})^{2}=8 \\
\tan \theta & =\frac{1}{-1} \\
\rho & =2 \sqrt{2} \text { and } \theta=\arctan (-1)=\frac{3 \pi}{4} .
\end{aligned}
$$

Because $(x, y)=(-1,1)$, then the correct choice for θ is $\frac{3 \pi}{4}$.
There are actually two ways to identify φ. We can use the equation $\varphi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$. A more simple approach, however, is to use equation $z=\rho \cos \varphi$. We know that $z=\sqrt{6}$ and $\rho=2 \sqrt{2}$, so

$$
\sqrt{6}=2 \sqrt{2} \cos \varphi, \text { so } \cos \varphi=\frac{\sqrt{6}}{2 \sqrt{2}}=\frac{\sqrt{3}}{2}
$$

and therefore $\varphi=\frac{\pi}{6}$. The spherical coordinates of the point are $\left(2 \sqrt{2}, \frac{3 \pi}{4}, \frac{\pi}{6}\right)$.
To find the cylindrical coordinates for the point, we need only find r :

$$
r=\rho \sin \varphi=2 \sqrt{2} \sin \left(\frac{\pi}{6}\right)=\sqrt{2} .
$$

The cylindrical coordinates for the point are $\left(\sqrt{2}, \frac{3 \pi}{4}, \sqrt{6}\right)$.

03

THANK YOU

