APPLICATIONS of FIRST ORDER DIFFERENTIAL EQUATIONS

ORTHOGONAL TRAJECTORIES

Definition:

$$
\begin{equation*}
\text { Let } F(x ; y ; c)=0 \tag{1}
\end{equation*}
$$

be a given one-parameter family of curves in the xy-plane. A curve that inter-sects the curves of the family(1) at right angles is called an orthogonal trajectory of the given family

WORKING METHOD FOR FINDING THE ORTHOGONAL TRAJECTORY

- Method:
- Step 1:- To flnd the orthogonal trajectories of a family of curves(1);first differentiate equation(1)implicitly with respect to x and obtain the differential equation of the given family of curves (1).
- Step 2:-Eliminate the parameter c between the derived equation and the given equation(1).
- Step 3:-Let us assume that the resulting differential equation of the family (1)can be expressed in the form $d y / d x=f(x ; y)$.
- Step 4:-Since an orthogonal trajectory of the given family intersects each curve of given family at right angels, the slope of the orthogonal trajectory at $(x ; y)$ is $-1 / f(x ; y)$. So, the differential equation of the family of orthogonal trajectories is

```
dy/dx = -1/f(x;y).
```


PROBLEMS

Example 1)

Find the orthogonal trajectories of the family of parabola $y=c x^{2}$; where c is an arbitrary constant.

Solution. Differentiating $y=c x^{2}$
we obtain the differential equation $\mathrm{dy} / \mathrm{dx}=2 \mathrm{cx}$ (2)
Substituting $c=y / x^{2}$ into (2)
we obłain $\mathrm{dy} / \mathrm{dx}=2 \mathrm{y} / \mathrm{x}$
which is the differential equation of the given family of parabolas. So
$d y / d x=-x / 2 y \quad$ (3) is the differential equation of the orthogonal trajectories of the given family (1). Solving (3) by separating variables we obtain $2 y^{2}+x^{2}=c^{2} \quad$ where c is a constant.

OBLIQUE TRAJECTORIES

Definition:- Let $\mathrm{F}=(\mathrm{x} ; \mathrm{y} ; \mathrm{c})=0$ be a one parameter family of curves. A curve which intersects the curves of the given family at a constant angle $a \neq 90^{\circ}$ is called an oblique trajectory of the given family.

Suppose the differential equation of the given family is $d y / d x=f(x ; y)$.
Then the differential equation of a family of oblique trajectories is given by

$$
d y / d x=\frac{f(x, y)+\tan a}{1-f(x, y) \tan a}
$$

Find the family of oblique trajectories that intersect the family of circles $x^{2}+y^{2}=c^{2}$ at angle 45°.

Solution.

From $x^{2}+y^{2}=c^{2}$
we get $2 x+2 y d y / d x=0$
$d y / d x=-x / y$
The differential equation of the family of oblique trajectories are
given by $\frac{d y}{d x}=\frac{\frac{-x}{y}+1}{1+\frac{x}{y}}=\frac{y-x}{y+x}$
It is clear that eqn (2) is a homogeneous differential equation.
Applying the transformation $y=v x$, we obtain separable differential equation $\times \frac{d v}{d x}+v=\frac{x(v-1)}{x(v+1)}$

$$
\frac{v+1}{v^{2}+1} \mathrm{~d} v=-\frac{d x}{x}
$$

Hence the solution is $\ln c^{2}\left(x^{2}+y^{2}\right)+2 \operatorname{arc} \tan \frac{y}{x}=0$.

THANK YOU

