Decoder

The combinational circuit that change the binary information into 2^N output lines is known as **Decoders.** The binary information is passed in the form of N input lines. The output lines define the 2^N-bit code for the binary information. At a time, only one input line is activated for simplicity. The produced 2^N-bit output code is equivalent to the binary information.

- 2 to 4 line decoder:
- In the 2 to 4 line decoder, there is a total of three inputs, i.e., A₀, and A₁ and E and four outputs, i.e., Y₀, Y₁, Y₂, and Y₃. For each combination of inputs, when the enable 'E' is set to 1, one of these four outputs will be 1.

Enable	INP	UTS	OUTPUTS								
E	A ₁	A ₀	Y ₃	Y ₂	Y ₁	Yo					
0	х	Х	0	0	0	0					
1	0	0	0	0	0	1					
1	0	1	0	0	1	0					
1	1	0	0	1	0	0					
1	1	1	1	0	0	0					

• The logical expression of the term Y0, Y0, Y2, and Y3 is as follows:

• Logical circuit of the above expressions is given below:

3 to 8 line decoder:

The 3 to 8 line decoder is also known as **Binary to Octal Decoder**. In a 3 to 8 line decoder, there is a total of eight outputs, i.e., Y_0 , Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , and Y_7 and three outputs, i.e., A_0 , A1, and A_2 . This circuit has an enable input 'E'. Just like 2 to 4

line decoder, when enable 'E' is set to 1, one of these four outputs will be 1.

Enable	I	NPUTS	Outputs									
E	A ₂	A1	Ao	Y7	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Yo	
0	×	×	x	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	1	
1	0	0	1	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	0	0	0	1	0	0	
1	0	1	1	0	0	0	0	1	0	0	0	
1	1	0	0	0	0	0	1	0	0	0	0	
1	1	0	1	0	0	1	0	0	0	0	0	
1	1	1	0	0	1	0	0	0	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	

• The logical expression of the term Y_0 , Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , and Y_7 is as follows:

•
$$Y_0 = A_0' A_1' A_2'$$

 $Y_1 = A_0 A_1' A_2'$
 $Y_2 = A_0' A_1 A_2'$
 $Y_3 = A_0 A_1 A_2'$
 $Y_4 = A_0' A_1' A_2$
 $Y_5 = A_0 A_1' A_2$
 $Y_6 = A_0' A_1 A_2$
 $Y_7 = A_0 A_1 A_2$

4 to 16 line Decoder

In the 4 to 16 line decoder,

there is a total of 16 outputs,

i.e., Y_0 , Y_1 , Y_2 ,...., Y_{16} and four inputs, i.e., A_0 , A1, A_2 , and A_3 . The 3 to 16 line decoder can be constructed using either 2 to 4 decoder or 3 to 8 decoder.

There is the following formula used to find the required number of lower-order decoders.

Required number of lower order decoders= m_2/m_1

$$m_1 = 8$$

 $m_2 = 16$
Required number of 3 to 8 decoders = = = 2

INPUTS			OUTPUTS																
A ₃	A ₂	A1	Ao	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y9	Y ₈	Y7	Y ₆	Y ₅	Y4	Y ₃	Y ₂	Y1	Yo
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

• The logical expression of the term A0, A1, A2,..., A15 are as follows:

