SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Second-Order Linear Equations

- A second-order linear differential equation has the form

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=G(x)
$$

- where P, Q, R, and G are continuous functions.
- In this section we study the case where $G(x)=0$, for all x, in Equation 1.
- Such equations are called homogeneous linear equations.

Second-Order Linear Equations

\square Thus the form of a second-order linear homogeneous differential equation is

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0
$$

- If $G(x) \neq 0$ for some x, Equation 1 is nonhomogeneous.

Second-Order Linear Equations

- Two basic facts enable us to solve homogeneous linear equations.
- The first of these says that if we know two solutions y_{1} and y_{2} of such an equation, then the linear combination $y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution

3 Theorem If $y_{1}(x)$ and $y_{2}(x)$ are both solutions of the linear homogeneous equation 2 and c_{1} and c_{2} are any constants, then the function

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is also a solution of Equation 2.

Second-Order Linear Equations

- The other fact we need is given by the following theorem, which is proved in more advanced courses.

It says that the general solution is a linear combination of two linearly independent solutions y_{1} and y_{2}.

This means that neither y_{1} nor y_{2} is a constant multiple of the other.

For instance, the functions $f(x)=x^{2}$ and $g(x)=5 x^{2}$ are linearly dependent, but $f(x)=e^{x}$ and $g(x)=x e^{x}$ are linearly independent.

Second-Order Linear Equations

4 Theorem If y_{1} and y_{2} are linearly independent solutions of Equation 2 on an interval, and $P(x)$ is never 0 , then the general solution is given by

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

where c_{1} and c_{2} are arbitrary constants.

- Theorem 4 is very useful because it says that if we know two particular linearly independent solutions, then we know every solution.

In general, it's not easy to discover particular solutions to a second-order linear equation.

Second-Order Linear Equations

- But it is always possible to do so if the coefficient functions
P, Q, and R are constant functions, that is, if the differential equation has the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- where a, b, and c are constants and $a \neq 0$.

Second-Order Linear Equations

- We are looking for a function y such that a constant times its second derivative y " plus another constant times y ' plus a third constant times y is equal to 0 .

We know that the exponential function $y=e^{r x}$ (where r is a constant) has the property that its derivative is a constant multiple of itself: $y^{\prime}=r e^{r x}$. Furthermore, $y^{\prime \prime}=r^{2} e^{r x}$. If we substitute these expressions into Equation 5 , we see that
$y=e^{r x}$ is a solution if

$$
a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0
$$

or

$$
\left(a r^{2}+b r+c\right) e^{r x}=0
$$

Second-Order Linear Equations

ㅁ. But $e^{r x}$ is never 0 . Thus $y=e^{r x}$ is a solution of Equation 5 if r is a root of the equation

$$
a r^{2}+b r+c=0
$$

- Equation 6 is called the auxiliary equation (or characteristic equation) of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
- Notice that it is an algebraic equation that is obtained from the differential equation by replacing $y^{\prime \prime}$ by r^{2}, y^{\prime} by r, and y by 1 .

Second-Order Linear Equations

8 If the roots r_{1} and r_{2} of the auxiliary equation $a r^{2}+b r+c=0$ are real and unequal, then the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

10 If the auxiliary equation $a r^{2}+b r+c=0$ has only one real root r, then the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{r x}+c_{2} x e^{r x}
$$

11 If the roots of the auxiliary equation $a r^{2}+b r+c=0$ are the complex numbers $r_{1}=\alpha+i \beta, r_{2}=\alpha-i \beta$, then the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

Second-Order Linear Equations

- Solve the equation $y^{\prime \prime}+y^{\prime}-6 y=0$.

Solution:
The auxiliary equation is

$$
r^{2}+r-6=(r-2)(r+3)=0
$$

- whose roots are $r=2,-3$.
- Therefore, by , the general solution of the given differential equation is
\square

$$
y=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

Second-Order Linear Equations

- Solve the equation $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$.
\square
Solution:
The auxiliary equation is $4 r^{2}+12 r+9=0$ can be factored as

$$
(2 r+3)^{2}=0
$$

- so the only root is $r=-3 / 2$ By eqn (10), the general solution is
\square

$$
y=c_{1} e^{-3 x / 2}+c_{2} x e^{-3 x / 2}
$$

Second-Order Linear Equations

$\square \quad$ Solve the equation $y^{\prime \prime}-6 y^{\prime}+13 y=0$.

- Solution:

The auxiliary equation is $r^{2}-6 r+13=0$. By the quadratic formula, the roots are

$=3 \pm 2 i$
the general solution of the differential equation is

$$
y=e^{3 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
$$

THANK YOU

