MATRICES

CHARACTERISTIC EQUATION:

The equation $|A - \lambda I| = 0$ is called the characteristic equation of the matrix A

Note:

- 1. Solving $|A \lambda I| = 0$, we get n roots for λ and these roots are called characteristic roots or eigen values or latent values of the matrix A
- 2. Corresponding to each value of λ , the equation AX = λX has a non-zero solution vector X

CHARACTERISTIC POLYNOMIAL:

The determinant $|A - \lambda I|$ when expanded will give a polynomial, which we call as characteristic polynomial of matrix A

Working rule to find characteristic equation:

For a 3 x 3 matrix:

Method 1:

The characteristic equation is $|A - \lambda I| = 0$

Method 2:

Its characteristic equation can be written as $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$ where

 $S_1 = sum of the main diagonal elements,$

 $S_2 = Sum \ of \ the \ minors \ of \ the \ main \ diagonal \ elements$,

 $S_3 = Determinant of A = |A|$

For a 2 x 2 matrix:

Method 1:

The characteristic equation is $|A - \lambda I| = 0$

Method 2:

Its characteristic equation can be written as $\lambda^2 - S_1\lambda + S_2 = 0$ where $S_1 = sum\ of\ the\ main\ diagonal\ elements,\ S_2 = Determinant\ of\ A = |A|$

PROBLEMS:

1. Find the characteristic equation of the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$

Solution: Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$. Its characteristic equation is $\lambda^2 - S_1\lambda + S_2 = 0$ where $S_1 = sumofthemaindiagonal elements = 1 + 2 = 3,$

$$S_2 = Determinant of A = |A| = 1(2) - 2(0) = 2$$

Therefore, the characteristic equation is $\lambda^2 - 3\lambda + 2 = 0$

2. Find the characteristic equation of $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$

Solution: Its characteristic equation is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$, where $S_1 = sumofthemaindiagonal elements = 8 + 7 + 3 = 18$,

$$S_2 = Sumoftheminorsofthemaindiagonalelements = \begin{vmatrix} 7 & -4 \\ -4 & 3 \end{vmatrix} + \begin{vmatrix} 8 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 8 & -6 \\ -6 & 7 \end{vmatrix} = 5 + 20 + 20 = 45, S_3 = Determinant of A = |A| = 8(5) + 6(-10) + 2(10) = 40 - 60 + 20 = 0$$

Therefore, the characteristic equation is $\lambda^3 - 18\lambda^2 + 45\lambda = 0$

CAYLEY-HAMILTON THEOREM:

• Statement: Every square matrix satisfies its own characteristic equation

- Uses of Cayley-Hamilton theorem:
- (1) To calculate the positive integral powers of A.
- (2) To calculate the inverse of a square matrix A.

PROBLEMS

1. Show that the matrix $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ satisfies its own characteristic equation

Solution:Let A = $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$. The characteristic equation of A is $\lambda^2 - S_1\lambda + S_2 = 0$ where $S_1 = Sum\ of\ the\ main\ diagonal\ elements = 1 + 1 = 2$

$$S_2 = |A| = 1 - (-4) = 5$$

The characteristic equation is $\lambda^2 - 2\lambda + 5 = 0$

To prove $A^2 - 2A + 5I = 0$

$$A^2 = A(A) = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix}$$

$$A^{2} - 2A + 5I = \begin{bmatrix} -3 & -4 \\ 4 & -3 \end{bmatrix} - \begin{bmatrix} 2 & -4 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

Therefore, the given matrix satisfies its own characteristic equation

3. Verify Cayley-Hamilton theorem, find A⁴ and A⁻¹ when A = $\begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

Solution: The characteristic equation of A is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0$ where

 $S_1 = Sum \ of \ the \ main \ diagonal \ elements = 2 + 2 + 2 = 6$

 $S_2 = Sum \ of \ the \ minirs \ of \ the \ main \ diagonal \ elements = 3 + 2 + 3 = 8$

$$S_3 = |A| = 2(4-1) + 1(-2+1) + 2(1-2) = 2(3) - 1 - 2 = 3$$

Therefore, the characteristic equation is $\lambda^3 - 6\lambda^2 + 8\lambda - 3 = 0$

To prove that: $A^3 - 6A^2 + 8A - 3I = 0$ -----(1)

$$A^{2} = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix}$$

$$A^{3} = A^{2}(A) = \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{bmatrix}$$

$$A^{3} - 6A^{2} + 8A - 3I$$

$$= \begin{bmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{bmatrix} - \begin{bmatrix} 42 & -36 & 54 \\ -30 & 36 & -36 \\ 30 & -30 & 42 \end{bmatrix} + \begin{bmatrix} 16 & -8 & 16 \\ -8 & 16 & -8 \\ 8 & -8 & 16 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

To find A^4 :

$$(1) \Rightarrow A^3 - 6A^2 + 8A - 3I = 0 \Rightarrow A^3 = 6A^2 - 8A + 3I - (2)$$

Multiply by A on both sides, $A^4 = 6A^3 - 8A^2 + 3A = 6(6A^2 - 8A + 3I) - 8A^2 + 3A$

Therefore,
$$A^4 = 36A^2 - 48A + 18I - 8A^2 + 3A = 28A^2 - 45A + 18I$$

Hence,
$$A^4 = 28 \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} - 45 \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 18 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix}196 & -168 & 252\\ -140 & 168 & -168\\ 140 & -140 & 196\end{bmatrix} - \begin{bmatrix}90 & -45 & 90\\ -45 & 90 & -45\\ 45 & -45 & 90\end{bmatrix} + \begin{bmatrix}18 & 0 & 0\\ 0 & 18 & 0\\ 0 & 0 & 18\end{bmatrix} = \begin{bmatrix}124 & -123 & 162\\ -95 & 96 & -123\\ 95 & -95 & 124\end{bmatrix}$$

To find A^{-1} :

Multiplying (1) by
$$A^{-1}$$
, $A^2 - 6A + 8I - 3A^{-1} = 0$

$$\Rightarrow 3A^{-1} = A^2 - 6A + 8I$$

$$\Rightarrow 3A^{-1} = \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} - 6 \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} - \begin{bmatrix} -12 & 6 & -12 \\ 6 & -12 & 6 \\ -6 & 6 & -12 \end{bmatrix} + \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$$

4. Verify that $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ satisfies its own characteristic equation and hence find A^4

Solution: Given A = $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. The characteristic equation of A is $\lambda^2 - S_1\lambda + S_2 = 0$ where $S_1 = S_1 + S_2 = 0$ where $S_2 = S_1 + S_2 = 0$ where $S_3 = S_2 + S_3 + S_3 = 0$

$$S_2 = |A| = -1 - 4 = -5$$

Therefore, the characteristic equation is $\lambda^2 - 0\lambda - 5 = 0$ i.e., $\lambda^2 - 5 = 0$

To prove: $A^2 - 5I = 0$ -----(1)

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1+4 & 2-2 \\ 2-2 & 4+1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$A^{2} - 5I = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

To find A^4 :

From (1), we get, $A^2 - 5I = 0 \Rightarrow A^2 = 5I$

Multiplying by A^2 on both sides, we get, $A^4 = A^2(5I) = 5A^2 = 5\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$

5. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$, using Cayley-Hamilton theorem

Solution: The characteristic equation of A is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$ where

 $S_1 = Sum \ of \ the \ main \ diagonal \ elements = 1 + 2 - 1 = 2$

$$S_2 = Sum \ of \ the \ minors \ of \ the \ main \ diagonal \ elements = (-2+1)+(-1-8)+(2+3)$$

= $-1-9+5=-5$

$$S_3 = |A| = 1(-2+1) + 1(-3+2) + 4(3-4) = -1 - 1 - 4 = -6$$

The characteristic equation of A is $\lambda^3 - 2\lambda^2 - 5\lambda + 6 = 0$

By Cayley- Hamilton theorem, $A^3 - 2A^2 - 5A + 6I = 0$ ----- (1)

To find A^{-1} :

Multiplying (1) by
$$A^{-1}$$
, we get, $A^2 - 2A - 5A^{-1}A + 6A^{-1}I = 0 \Rightarrow A^2 - 2A - 5I + 6A^{-1} = 0$

$$6A^{-1} = -A^2 + 2A + 5I \Rightarrow A^{-1} = \frac{1}{6}(-A^2 + 2A + 5I) - - - - (2)$$

$$A^2 = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1-3+8 & -1-2+4 & 4+1-4 \\ 3+6-2 & -3+4-1 & 12-2+1 \\ 2+3-2 & -2+2-1 & 8-1+1 \end{bmatrix} = \begin{bmatrix} 6 & 1 & 1 \\ 7 & 0 & 11 \\ 3 & -1 & 8 \end{bmatrix}$$

$$-A^2 + 2A + 5I = \begin{bmatrix} -6 & -1 & -1 \\ -7 & 0 & -11 \\ -3 & 1 & -8 \end{bmatrix} + \begin{bmatrix} 2 & -2 & 8 \\ 6 & 4 & -2 \\ 4 & 2 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$

From (2),
$$A^{-1} = \frac{1}{6} \begin{bmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$

THANK YOU