PARTIAL ORDERINGS

Partial Orderings: Definitions

Definitions:

- A relation *R* on a set *S* is called a <u>partial order</u> if it is
 - Reflexive
 - Antisymmetric
 - Transitive
- A set S together with a partial ordering R is called a <u>partially ordered set</u> (poset, for short) and is denote (*S*,*R*)

Partial Orderings: Notation

- We use the notation:
 - $a \prec b$, when $(a,b) \in R$
 - $a \prec b$, when $(a,b) \in R$ and $a \neq b$
- The notation ≺ is not to be mistaken for "less than"
- The notation ≺ is used to denote <u>any</u> partial ordering

Comparability: Definition

Definition:

- The elements a and b of a poset (S, \prec) are called <u>comparable</u> if either a \prec b or b \prec a.
- When for $a, b \in S$, we have neither $a \prec b$ nor $b \prec a$, we say that a, b are <u>incomparable</u>

Total orders: Definition

Definition:

- If (S,≺) is a poset and every two elements of S are comparable, S is called a <u>totally ordered set</u>.
- The relation \prec is said to be a <u>total order</u>
- Example
 - The relation "less than or equal to" over the set of integers (Z, ≤) since for every a,b∈Z, it must be the case that a≤b or b≤a
 - What happens if we replace \leq with <?
- The relation < is not reflexive, and (Z,<) is not a poset

Well Orderings: Definition

- ▶ **Definition**: (S,≺) is a well-ordered set if
 - It is a poset
 - Such that \prec is a total ordering and
 - Such that every non-empty subset of S has a <u>least</u> <u>element</u>
- Example
 - The natural numbers along with \leq , (N,\leq), is a wellordered set since any nonempty subset of N has a least element and \leq is a total ordering on N
 - However, (\mathbb{Z},\leq) is <u>not</u> a well-ordered set
 - Why?
 - Is it totally ordered?

Z⁻ ⊂ Z but does not have a least element
Yes

Hasse Diagrams

- Like relations and functions, partial orders have a convenient graphical representation: Hasse Diagrams
 - Consider the <u>digraph</u> representation of a partial order
 - Because we are dealing with a partial order, we know that the relation must be reflexive and transitive
 - Thus, we can simplify the graph as follows
 - Remove all self loops
 - Remove all transitive edges
 - Remove directions on edges assuming that they are oriented upwards
 - The resulting diagram is far simpler

Hasse Diagram: Example

Hasse Diagram: Example (2)

Extremal Elements: Maximal

- Definition: An element a in a poset (S, ≺) is called <u>maximal</u> if it is not less than any other element in S. That is: ¬(∃b∈S (a≺b))
- If there is one <u>unique</u> maximal element a, we call it the <u>maximum</u> element (or the <u>greatest</u> element)

Extremal Elements: Minimal

- ▶ **Definition**: An element a in a poset (S, \prec) is called <u>minimal</u> if it is not greater than any other element in S. That is: $\neg(\exists b \in S (b \prec a))$
- If there is one <u>unique</u> minimal element a, we call it the <u>minimum</u> element (or the <u>least</u> element)

Extremal Elements: Example 1

- What are the minimal, maximal, minimum, maximum elements?
- Minimal: {a,b}
- Maximal: {c,d}
- There are no unique minimal or maximal elements, thus no minimum or maximum

THANK YOU