
CONTROL FLOW

Control flow refers to the order in which the individual

statements, instructions or function calls of an imperative

or functional program are executed or evaluated.

Types of control instructions

1. Sequence control

Instructions are executed in the same order in which

they appear in the program

2. Selection/ Decision control

It allows the computer to take a decision as, to

which instruction is to be executed next.

3. Repetition/ Loop control

It helps the computer to execute a group of

instructions repeatedly till, a condition satisfied.

4. Case control

Decision control statements

a) The if Statement

An if statement is a selection statement that allows more

than one possible flow of control. It is implemented in two

forms;

(1) Simple if statement

Syntax->

 if (expression)

 {

 statements;

 }

(2) if...else statement

syntax ->

 if (expression)

Dept. Of Computer Science, S.H. College

 {

statements;

 }

 else

 {

 statements;

 }

Eg. - if (a>b)

 { printf("biggest value is a"); }

 else

 { printf("biggest value is b"); }

Nesting of if ... else Statements

If within if is called nested if and it is used when we have

multiple conditions to check and when any if condition

contains another if statement then that is called ‘nested if’.

If the external condition is true, then the internal if

condition is executed and if the condition is false then the

else portion of external if is executed.

Dept. Of Computer Science, S.H. College

Syntax->

 if (condition 1)

 {

if (condition 2)

{ statement 1; }

else

 { statement 2; }

 }

 else

 {

 statement 3;

 }

 statement-x;

The else if Ladder

When a series of many conditions have to be checked we

may use the ladder else if statement which takes the

following general form.

Dept. Of Computer Science, S.H. College

syntax ->

 if (condition 1)

 statement 1;

 else if (condition 2)

 statement 2;

 else if (condition n)

 statement n;

 else

 default statement;

 statement x;

This construct is known as if else construct or ladder. The

conditions are evaluated from the top of the ladder to

downwards. As soon as the true condition is found, the

statement associated with it is executed and the control is

transferred to the statement – x (skipping the rest of the

ladder. When all the condition becomes false, the final else

containing the default statement will be executed.

Dept. Of Computer Science, S.H. College

Eg. main()

 {

 int magic=123;

 int guess;

 scanf(“%d”,&guess);

 if (guess==magic)

 { printf("** right **");

 printf("%d is the magic number",magic);

 }

 else if (guess>magic)

 printf(.. Wrong .. too High");

 else

 printf(".. Wrong .. Too Low");

 }

b) The switch statement

The switch statement is a construct that is used when many

conditions are being tested for. When there are many

conditions, it becomes too difficult and complicated to use

the if and else if constructs. Nested if/else statements arise

when there are multiple alternative paths of execution

based on some condition that is being tested for.

 This is implemented as follows;

 scanf("%d",&variable_name);

 Switch (variable_name)

 {

 case 1:

 statements;

 break;

 case 2:

 statements;

 break;

 default:

 statements;

 }

Dept. Of Computer Science, S.H. College

Rules for switch statement

 The switch expression must be an integral type.

 Case labels must be constants or constant expressions.

 Case labels must be unique. No two labels can have the

same value.

 Case labels must end with semicolon.

 The break statement transfers the control out of the

switch statement.

 The break statement is optional. That is, two or more

case labels may belong to the same statements.

 The default label is optional. If present, it will be

executed when the expression does not find a matching

case label.

 There can be at most one default label.

 The default may be placed anywhere but usually placed

at the end.

 It is permitted to nest switch statements.

Dept. Of Computer Science, S.H. College

Loops

A loop is a programming structure that repeats a sequence
of instructions until a specific condition is met.

A nested loop is a logical structure, which is characterized

by two or more repeating statements that are placed in a

"nested" form (loop inside another loop).

Infinite loops : -Loops that never ends (condition never

becomes false.)

Entry controlled loops

In this type test expression is checked first. The body of the

loop is executed only if the test expression evaluates to

true. Two entry controlled loops are as follows.

a) while loop

b) for loop

a) while loop

The while loop is used to execute a block of code as long as

the test expression is true. This is an entry controlled loop.

Syntax->

 while (tested condition is satisfied)

 {

 block of code

 }

Dept. Of Computer Science, S.H. College

b) for loop

The for loop can execute a block of code for a fixed or

given number of times. This is an entry controlled loop.

Syntax->.

for (initialization;test expression;increment/decrement)

{

 block of code

}

The initialization is usually an assignment statement that is

used to set the loop-control variable. Test expression is a

relational expression that determines when the loop will

exit. The increment/decrement defines how the loop-

control variable will change each time the loop is

repeated. These three major sections must be separated by

semicolons. The for loop will continue to execute as

long as the test expression is true.

START

INITIALIZE

TEST

BODY OF LOOP

INCREMENT STOP

TRUE FALSE

Dept. Of Computer Science, S.H. College

Exit controlled loops

In this type, test expression is checked last. The body of the

loop is executed at least once even the test expression is

false.

dowhile loop

The do loop also executes a block of code as long as a

condition is satisfied. The difference between a "do

...while" loop and a "while" loop is that the while loop tests

its condition before execution of the contents of the loop

begins; the "do" loop tests its condition after it's been

executed at least once. It is an exit controlled loop.

Syntax->

do

{

 block of code

} while (condition is satisfied);

START

INITIALIZE

BODY OF LOOP

INCREMENT

TRUE

TEST

STOP

FALSE

Dept. Of Computer Science, S.H. College

Example programs

1. /* 1 + (1/2) + (1/3) + (1/n) */

main()

{

 int nterms;

 float count=1,res=0;

 printf("Enter no of terms");

 scanf("%d",&nterms);

 for(count=1;count<=nterms;count++)

 res=res+(1/count);

 printf("result=%f",res);

 getch();

 }

2. /* 1 * (1+3) * (1+3+5) * upto n */

main()

{

 int nterms,row=1,col=1,sum=0,prod=1,digit;

 printf("Enter no of terms");

 scanf("%d",&nterms);

 for(row=1;row<=nterms;row++)

 {

 digit=1;

 sum=0;

 for(col=1;col<=row;col++)

 { sum= sum+digit;

 digit=digit+2;

 }

 prod=prod*sum;

 }

 printf("result=%d",prod);

 getch();

 }

Dept. Of Computer Science, S.H. College

3. /* print all factors of a given number*/

main()

{

 int num,count;

 clrscr();

 printf("Enter a number");

 scanf("%d",&num);

 printf("\n Factors are \n");

 for(count=1;count<=num;count++)

 {

 if (num%count==0)

 printf("\n %d",count);

 }

 getch();

}

4. Summation of a set of numbers.

 main()

 {

 int I,s=0,n;

 for (I=1;I<=10;I++)

 { scanf("%d",&n);

 s=s+n;

 }

printf("sum = %d",s);

 getch();

 }

5. Generate the following series(fibonacci series-

0,1,1,2,3,5,8...20 terms)

 main()

 { int i,j=0,k=1,l=0,m=0;

 printf("%d,%d,",j,k);

 for (i=1;i<=20;i++)

 { l=j+k;

Dept. Of Computer Science, S.H. College

 m=l+k;

 if (i<19)

 printf("%d,%d,",l,m);

 else

 printf("%d,%d",l,m);

 j=l;

 k=m;

 ++i;

 } getch();

 }

6. Print all prime numbers below 100.

 main()

 {

 int n=1,r=0,x,p=0;

 while (n<=100)

 { x=2;

 while (x<=(n/2))

 { k=n%x;

 if (k==0)

 p=1;

 x=x+1;

 }

 if (p==0)

 printf("%d",n);

 n++;

 }

 }

7. Find out smallest among 10 accepted values.

 main()

 {

 int a=0,n,f;

 scanf("%d",&f);

 for (a=1;a<=10;a++)

 { scanf("%d",&n);

 if (f>n)

 f=n;

Dept. Of Computer Science, S.H. College

 }

 printf("\nsmallest no %d",f);

 }

Addittional features of for loop
More than one variable can be intialised at a time in the for

statement

p=1;

for(n=0;n<17;++n)

can be rewritten as

for(p=1,n=0;n<17;++n)

Like the intialisation section we may also have more than

one increment or decrement section.

for(n=1,m=50;n<=m;n=n+1,m=m-1)

The test condition may have compound relation and testing

need not be limited only to the loop control variable.

s=0;

for(i=1;i<20 && s<100;++i)

{

s=s+i;

printf(“%d %d\n”,i,sum);

}

It is also possible to use expression I the assignment

statement of intialisation and increment sections.

for(x=(m+n)/2;x>0;x=x/2)

Another unique aspect of for loop is that one or more

sections can be omitted.

m=5;

for(;mm!=100;)

{

printf(“%d”,m);

Dept. Of Computer Science, S.H. College

m=m+5;

}

Nesting of For loop

One for statement within another for statement.

main()

{

 long sum = 0L;

 int i = 1; /* Outer loop control variable */

 int j = 1; /* Inner loop control variable */

 int count = 10; /* Number of sums to be calculated */

 for(i = 1 ; i <= count ; i++)

 {

 sum = 0L; /* Initialize sum for the inner loop */

 /* Calculate sum of integers from 1 to i */

 for(j = 1 ; j <= i ; j++)

 sum += j;

 printf("\n%d\t%ld", i, sum); /* Output sum of 1 to i */

 }

}

Output

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

