


Canonical Equations of Motion --

Hamiltonian Dynamics
• From previous discussion: If the PE U is independent of 

velocities (conservative system) then the linear momentum in 

rectangular coordinates has the form:  pi  = (L/xi)

• Extend this to the case where the Lagrangian is given 

in terms of generalized coordinates: 

DEFINE: The Generalized Momentum (corresponding 

to the generalized coordinate qj): pj  (L/qj).

pj  “Conjugate Momentum” to qj.

Or, “Canonically Conjugate Momentum” 

• (q,p)  “conjugate” or “canonical” variables.



• Lagrange Eqtns of motion: s degrees of freedom

(L/qj) - (d/dt)[(L/qj)] = 0 (j = 1,2,3, … s)

• Gives s 2nd order, time dependent, differential eqtns.

 The system motion is determined for all time when 
2s initial values are specified: s qj’s & s qj’s 

• We can represent the state of the system motion by the time 
dependent motion of a point in an abstract s-dimensional 
configuration space (coordinates = s generalized coords qj).

• PHYSICS: In the Lagrangian Formulation of 

Mechanics, a system with s degrees of freedom = a problem 
in s INDEPENDENT variables qj(t). The generalized 
velocities, qj(t) are determined by taking the time derivatives 
of the qj(t). The velocities are not independent variables! 



CONTRAST!

• Hamiltonian Mechanics is a fundamentally 
different picture! 

• It describes the system motion in terms of 1st order,
time dependent equations of motion. The number of 
initial conditions is, of course, still 2s.  

 We must describe the system motion with 2s 
independent 1st order, time dependent, differential 

equations expressed in terms of 2s independent variables. 

• Choose s of these = s generalized coordinates qj.

• The others = s generalized (conjugate) momenta pj.



• Hamiltonian Mechanics:

• Describes the system motion in terms of s 
generalized coordinates qj & s generalized  
momenta pj. Gets 2s 1st order, time dependent 
equations of motion. 

• Recall again the DEFINITION: Generalized 
Momentum associated with generalized coord qj:  

pj  (L/qj)

• (q,p)  “conjugate” or “canonical” variables.



Legendre Transformations

• Physically, the Lagrange formulation assumes the 
coordinates qj are independent variables & the velocities qj

are dependent variables & are only obtained by taking time 
derivatives of the qj once the problem is solved.  

• Mathematically, the Lagrange formalism treats qj & qj as 
independent variables. e.g., in Lagrange’s eqtns, (L/qj) 
means take the partial derivative of L with respect to qj

keeping all other q’s & ALSO all q’s constant. Similarly 
(L/qj) means take the partial derivative of L with respect 
to qj keeping all other q’s & ALSO all q’s constant.

• Treated as a pure mathematical problem, changing from the 
Lagrange formulation to the Hamilton formulation corresponds 
to changing variables from (q,q,t) (q,q, independent) to (q,p,t)
(q,p independent)



• Lagrange’s Equations are:

(L/qj)  = (d/dt)[(L/qj)]            (1)

• The generalized momentum is: pj = (L/qj)   (2)

• (1) & (2) together  pj = (L/qj) (N’s 2nd Law!!) (3)

• From previous discussion, the Hamiltonian is: 

H  ∑j qj (L/qj) - L      (4)

• Rewrite (4) using the generalized momentum 

definition (2):

 H = ∑j pj qj - L   (5)

• (5) is the starting point for Hamiltonian Dynamics.



Derivation of Hamilton’s Equations

• Lagrangian Dynamics: Assumes the Lagrangian L = 

L(qj,qj,t) (is a function of generalized coordinates, 

generalized velocities, and time).

• Solve each pj =  (L/qj) for the generalized 

velocities & get:     qj = qj(qk,pk,t)

• In the Hamiltonian H = ∑j pj qj - L, make the change 

of variables from the set (qj,qj,t) to the set (qk,pk,t) & 

express the Hamiltonian as:

H = H(qk,pk,t)  = ∑k pk qk - L(qk,qk,t)



• Hamiltonian Dynamics: Always write

H = H(qk,pk,t)   = ∑k pk qk - L(qk,qk,t)

• This stresses that Hamiltonian dynamics 

considers the generalized coordinates & 

generalized momenta as the variables:

(qk,pk,t), whereas Lagrangian dynamics

considers the generalized coordinates & 

generalized velocities as the variables:

(qk,qk,t). A vital & important point!! Please keep it in 

mind!



• A proper Hamiltonian (for use in Hamiltonian 

dynamics) is ALWAYS (!) written as a 

function of the generalized coordinates & 

momenta:   H  H(qk,pk,t). If you write it as a 

function of qj, it is NOT a Hamiltonian!!!

• A proper Lagrangian (for use in Lagrangian 

dynamics) is ALWAYS (!) written as a 

function of the generalized coordinates & 

velocities:  L  L(qj,qj,t)



TO EMPHASIZE THIS

Consider a single free particle (p = mv) 

Energy = KE = T = (½)mv2 only. So, H = T 

But, if it is a PROPER HAMILTONIAN, can 

it be written H = mv2 ?

NO!!!!!! H must be expressed in terms of 

the momentum p, not the velocity v! So the 

PROPER HAMILTONIAN is 

H = [p2/(2m)] !!!!!



Derivation of Hamilton’s Equations of Motion

• The Hamiltonian is: H  H(qk,pk,t) 

• Take the total differential of H: 

dH = ∑k[(H/qk)dqk + (H/pk)dpk] + (H/t)dt  (1)

• Also:  

H(qk,pk,t) = ∑k pk qk - L(qk,qk,t) (2)

• The total differential of (2) is:

dH = ∑k[qk dpk + pk dqk

- (L/qk)dqk - (L/qk)dqk] - (L/t)dt (3)



• We had: pk =  (L/qk) and  pk = (L/qk)

• Put these into (3) & get:

dH = ∑k[qk dpk+ pk dqk - pk dqk - pk dqk] - (L/t)dt

Or:

dH = ∑k [qk dpk - pk dqk ] - (L/t)dt (4)

• Compare (4) with (1) & get:

qk = (H/pk),   pk = - (H/qk)

(H/t) = - (L/t)



Hamilton’s Equations of Motion

qk = (H/pk)           pk = - (H/qk)

• We also have:  (H/t) = - (L/t)

• Use Hamilton’s Equations in (1):

dH = ∑k[(H/qk)dqk + (H/pk)dpk]  + (H/t)dt  (1)

• From Hamilton’s Equations, each term in the sum = 0 

& (1) becomes:  (dH/dt) = (H/t)     (5)

• (5)  If there is no explicit time dependence in H, 

(H/t) = 0, then total time derivative (dH/dt) = 0 or H = 

constant in time. (H is conserved.) If conditions are such 

that H = E (total energy), then the total energy is conserved!



• Hamilton’s Equations of Motion

qk = (H/pk)     pk = - (H/qk)

• These are called the “canonical” 

equations of motion because of their 

(almost) symmetric appearance. 

• The description of motion based on these is 

called Hamiltonian Dynamics.



• Hamilton’s Equations of Motion

qk = (H/pk)     pk = - (H/qk)

• Consider a system with 3n coordinates, m constraints 

& s = 3n - m degrees of freedom. 

 Lagrangian Dynamics description is in terms of s

Lagrange’s Eqtns of Motion (2nd order differential eqtns).

 Hamiltonian Dynamics description is in terms of 2s

Hamilton’s Eqtns of Motion (1st order differential eqtns).

• Since one can be derived from the other, obviously, 

the 2 descriptions are 100% equivalent. They are 

also 100% equivalent to Newton’s 2nd Law!



• Hamiltonian: H(q,p,t) = ∑k qk pk– L(q,q,t) (a)

Hamilton’s Equations of Motion:

qk = (H/pk) (b), pk = -(H/qk) (c), -(L/t) = (H/t) (d)

• 2n 1st order, time dependent equations of motion replacing

the n 2nd order Lagrange Equations of motion.

• (a): The formal definition of the Hamiltonian H in terms of the 

Lagrangian L. However, as we’ll see, in practice, we often 

needn’t know L first to be able to construct H.

• (b): qk = (H/pk): Gives qk’s as functions of (q,p,t).

 Given initial values, integrate to get qk = qk(q,p,t) 

Form the “inverse” of relns of the eqtns pk = (L/qk)  

which give pk = pk(q,q,t).  “No new information”. 

Discussion of Hamilton’s Eqtns



• Hamiltonian: H(q,p,t) = ∑k qk pk– L(q,q,t) (a)

Hamilton’s Equations of Motion:

qk = (H/pk) (b), pk = -(H/qk) (c), -(L/t) = (H/t) (d)

• (b): qk = (H/pk):  qk = qk(q,p,t).  “No new info”. 

– Usually true in terms of SOLVING mechanics problems. However, 

within the Hamiltonian picture of mechanics, where H = H(q,p,t),

obtained NO MATTER HOW (not necessarily by (a)), this has equal 

footing (& contains equally important information as (c)).

• (c): pk = - (H/qk): Integrate & get pk = pk(q,p,t)

• (d): -(L/t) = (H/t): This is obviously only 

important in time dependent problems. 



• Hamiltonian:       H(q,p,t) = ∑k qk pk – L(q,q,t)       (a)    

Hamilton’s Equations of Motion:

qi = (H/pi)  (b), pi = -(H/qi) (c), -(L/t)=(H/t) (d)

• Recipe:

1. Set up the Lagrangian, L = T – U = L(q,q,t)

2. Compute s conjugate momenta using: pk  (L/qk)

3. Form the Hamiltonian H from (a). 

This will be of  the “mixed” form H = H(q,q,p,t)

4. Invert s pk  (L/qk) to get qk  qk(q,p,t).

5. Apply the results of 4. to eliminate qk from H to get a  

proper Hamiltonian H = H(q,p,t). 

Then & only  then can you properly & correctly use (b) & (c)
to get the equations of motion!

Recipe for Hamiltonian Mechanics



• If you think that this is a long, tedious process, you 
aren’t alone! 

– This requires that you set up the Lagrangian first!

– If you already have the Lagrangian, why not go ahead & do 
Lagrangian dynamics instead of going through all of this to 
do Hamiltonian dynamics? 

– Further, combining the 2s 1st order differential equations of 
motion

qk = (H/pk)  (b)  & pk = - (H/qk) (c)  

gives the SAME s 2nd order differential equations of   

motion that Lagrangian dynamics gives!

• However, fortunately, for many physical systems of interest, 
it’s possible to considerably shorten this procedure, even 
eliminating many steps completely! 



Hamiltonian Dynamics Recipe (Comments)

1. In simple cases, its often possible to directly set 

up H in terms of generalized coordinates & 

momenta:  H(qk,pk,t). This is because the 

identification of the generalized momenta pk is easy.

2. Unfortunately, in more complicated cases, where 

identification of the pk is more difficult, it actually     

might be necessary to first set up the Lagrangian

L, & then calculate pk with pk = (L/qk)

3. Only after you have H = H(qk,pk,t) can you apply 

Hamilton’s Eqtns! qk = (H/pk), pk = - (H/qk)



• In many cases, we know that

 H = T + U 

That is, in many cases, the Hamiltonian is 

automatically the total mechanical energy E

• If that is the case, we can skip many steps of the 

recipe. Instead: 1) Write H = T + U immediately. 

Express T in terms of the MOMENTA pk (not the 

velocities qk). Often it’s easy to see how the pk

depend on the qk & thus its easy to do this. Once this 

is done, we can go ahead & do Hamiltonian 

Dynamics without ever having written the Lagrangian.



Example 7.11

• Use the Hamiltonian method

to find the equations of motion 

of a particle of mass m, 

constrained to move on the 

surface of a cylinder 

defined by x2 + y2 = R2. 

The particle is subject to 

a force  directed towards 

the origin and proportional 

to the distance of the particle from the origin: 

F = - kr. Worked on the board!



Comments
• We could have done this problem with Lagrangian

mechanics! In fact, in this case, Lagrange’s Equations are 

easier to get than Hamilton’s Equations. 

• This is often true! The Lagrangian Method often leads

more easily to the equations of motion than the Hamiltonian 

Method.  (In my opinion, almost always!)

• In the Hamiltonian method, qk & pk are considered 

independent. In the Lagrangian Method qk, qk are not. 

 The Hamiltonian Method sometimes has a practical 

advantage over the Lagrangian Method.

– e. g., Useful in celestial mechanics: Looking at motions of bodies due 

to perturbations of other bodies. 

• In general, main power of Hamiltonian formulation is its use 

as a basis for sub-areas of physics beyond classical mechanics.

– Quantum mechanics and beyond!


