The Spinning Тор

Rigid Bodies

Distance between all pairs of points in the system must remain permanently fixed

Six degrees of freedom:

- → 3 cartesian coordinates specifying position of centre of mass
- → 3 angles specifying orientation of body axes

Orthogonal Transformations

Transition between coordinates fixed in space and coordinates fixed in the rigid body is achieved by means of an orthogonal transformation

Euler Angles

Transformation matrices:

1	$cos\phi$	$sin\phi$	0)	(1	0	0		$\cos\psi$	$sin\psi$	0)
$\mathbf{D} =$	$-sin\phi$	$cos\phi$	0	$\mathbf{C} =$	0	$cos\theta$	sin heta	$\mathbf{B} =$	$-sin\psi$	$cos\psi$	0
1	0	0	1 /	(0	$-sin\theta$	$cos \theta$)	0	0	1 /

 $\mathbf{A} = \left(\begin{array}{c} cos\psi cos\phi - cos\theta sin\phi sin\psi & cos\psi sin\phi + cos\theta cos\phi sin\psi & sin\psi sin\theta \\ -sin\psi cos\phi - cos\theta sin\phi cos\psi & -sin\psi sin\phi + cos\theta cos\phi cos\psi & cos\psi sin\theta \\ sin\theta sin\phi & -sin\theta cos\phi & cos\theta \end{array} \right)$

Euler Angles

1	$cos\phi$	$sin\phi$	0)	1	1	0	0	($cos\psi$	$sin\psi$	0 \
$\mathbf{D} =$	$-sin\phi$	$cos\phi$	0	$\mathbf{C} = \mathbf{I}$	0	$cos\theta$	sin heta	$\mathbf{B} = [$	$-sin\psi$	$cos\psi$	0
(0	0	1/		0	$-sin\theta$	$\cos\theta$,) (0	0	1 /

 $cos\theta$

 $cos\psi cos\phi - cos heta sin\phi sin\psi \ -sin\psi cos\phi - cos heta sin\phi cos\psi \ sin heta sin\phi$ $\cos\psi\sin\phi + \cos\theta\cos\phi\sin\psi$ $sin\psi sin\theta$ A $-sin\psi sin\phi + cos\theta cos\phi cos\psi$ $cos\psi sin \theta$ $-sin\theta cos\phi$

Euler Angles

Transformation matrices:

($cos\phi$	$sin\phi$	0 \	1	1	0	0) /	$\cos\psi$	$sin\psi$	0 \
$\mathbf{D} =$	$-sin\phi$	$cos\phi$	0	$\mathbf{C} =$	0	$cos\theta$	sin heta	$\mathbf{B} =$	$-sin\psi$	$cos\psi$	0
	0	0	1 /		0	$-sin\theta$	$cos \theta$)	0	0	1 /

 $cos\theta$

 $cos\psi cos\phi - cos heta sin\phi sin\psi \ -sin\psi cos\phi - cos heta sin\phi cos\psi \ sin heta sin\phi$ $\cos\psi\sin\phi + \cos\theta\cos\phi\sin\psi$ $sin\psi sin\theta$ A $-sin\psi sin\phi + cos\theta cos\phi cos\psi$ $cos\psi sin \theta$ $-sin\theta cos\phi$

Euler's Theorem

"any transformation in the 3-dimensional real space which has at least one fixed point can be described as a simple rotation about a single axis"

Chalses' Theorem

"the most general displacement of a rigid body is a translation plus a rotation"

Moment of Inertia

Relationship between angular momentum and angular velocity:

$$\mathbf{J} = \mathbf{\underline{I}} \cdot \boldsymbol{\omega}$$

I: moment of inertia tensor

$$\mathbf{\underline{I}}=\left(egin{array}{cccc} I_{xx} & I_{xy} & I_{xz}\ I_{yx} & I_{yy} & I_{yz}\ I_{zx} & I_{zy} & I_{zz} \end{array}
ight)$$

Principal moments I_1 , I_2 , and I_3 found easily if coordinate axes chosen to lie along the directions of the principal axes

Euler's Equations of Motion

For rigid body with one point fixed:

$$I_1 \dot{\omega}_x - \omega_y \omega_z (I_2 - I_3) = \tau_x$$
$$I_2 \dot{\omega}_y - \omega_z \omega_x (I_3 - I_1) = \tau_y$$
$$I_3 \dot{\omega}_z - \omega_x \omega_y (I_1 - I_2) = \tau_z$$

 τ : net torque that the body is being subjected to

Force Free Motion of a Rigid Body

Euler's equations for a symmetric body with one point fixed, subject to no net forces or torques:

$$egin{aligned} &I_1\dot{\omega}_x=(I_1 ext{-}\ I_3)\omega_z\omega_y\ &I_2\dot{\omega}_y=-(I_1 ext{-}\ I_3)\omega_z\omega_x\ &I_3\dot{\omega}_z=0 \end{aligned}$$

Angular frequency:

$$\Omega = rac{I_1 - I_3}{I_1} \omega_z$$

Heavy Symmetrical Top - One Point Fixed

$$L=T$$
 - $V=rac{1}{2}I_1(\dot{ heta}^2+\dot{\phi^2}sin^2 heta)+rac{1}{2}I_3(\dot{\psi}+\dot{\phi}cos heta)^2$ - $MgRcos heta$

Heavy Symmetrical Top ctd.

Energy equation:

$$\dot{u}^2 = (1 - u^2)(\alpha - \beta u) - (a - bu)^2 = f(u)$$

 $|f(u)| \rightarrow \infty \text{ as } u \rightarrow \infty$ $f(\pm 1) = -(b \mp a)^2 \le 0$

Heavy Symmetrical Top ctd.

Three possibilities for the motion:

Motion in ϕ : precession Motion in θ : nutation