

## Rigid Bodies

Distance between all pairs of points in the system must remain permanently fixed

Six degrees of freedom:
$\rightarrow 3$ cartesian coordinates specifying position of centre of mass
$\rightarrow 3$ angles specifying orientation of body axes

## Orthogonal Transformations

General linear transformation:


Transition between coordinates fixed in space and coordinates fixed in the rigid body is achieved by means of an orthogonal transformation

## Euler Angles



## Transformation matrices:

$$
\mathbf{D}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\mathbf{A}=\left(\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\
-\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right)
$$

## Euler Angles



## Transformation matrices:

$$
\mathbf{D}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\mathbf{A}=\left(\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\
-\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right)
$$

## Euler Angles



## Transformation matrices:

$$
\mathbf{D}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\mathbf{A}=\left(\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\
-\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right)
$$

## Euler's Theorem

"any transformation in the 3-dimensional real space which has at least one fixed point can be described as a simple rotation about a single axis"

## Chalses' Theorem

"the most general displacement of a rigid body is a translation plus a rotation"

## Moment of Inertia

Relationship between angular momentum and angular velocity:

$$
\mathbf{J}=\underline{\mathbf{I}} \cdot \boldsymbol{\omega}
$$

I: moment of inertia tensor

$$
\underline{\mathbf{I}}=\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)
$$

Principal moments $I_{1}, I_{2}$, and $I_{3}$ found easily if coordinate axes chosen to lie along the directions of the principal axes

## Euler's Equations of Motion

For rigid body with one point fixed:

$$
\begin{aligned}
& I_{1} \dot{\omega}_{x}-\omega_{y} \omega_{z}\left(I_{2}-I_{3}\right)=\tau_{x} \\
& I_{2} \dot{\omega}_{y}-\omega_{z} \omega_{x}\left(I_{3}-I_{1}\right)=\tau_{y} \\
& I_{3} \dot{\omega}_{z}-\omega_{x} \omega_{y}\left(I_{1}-I_{2}\right)=\tau_{z}
\end{aligned}
$$

$\tau$ : net torque that the body is being subjected to

## Force Free Motion of a Rigid Body

Euler's equations for a symmetric body with one point fixed, subject to no net forces or torques:

$$
\begin{aligned}
& I_{1} \dot{\omega}_{x}=\left(I_{1}-I_{3}\right) \omega_{z} \omega_{y} \\
& I_{2} \dot{\omega}_{y}=-\left(I_{1}-I_{3}\right) \omega_{z} \omega_{x} \\
& I_{3} \dot{\omega}_{z}=0
\end{aligned}
$$

Angular frequency:

$$
\Omega=\frac{I_{1}-I_{3}}{I_{1}} \omega_{z}
$$

## Heavy Symmetrical Top - One Point Fixed

$$
L=T-V=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}-M g R \cos \theta
$$

Generalised momenta corresponding to ignorable coordinates:

$$
\begin{aligned}
& p_{\psi}=\frac{\partial L}{\partial \dot{\psi}}=I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)=I_{3} \omega_{z}=I_{1} a \\
& p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\left(I_{1} \sin ^{2} \theta+I_{3} \cos ^{2} \theta\right) \dot{\phi}+I_{3} \dot{\psi} \cos \theta=I_{1} b
\end{aligned}
$$

## Heavy Symmetrical Top ctd.

Energy equation:

$$
\dot{u}^{2}=\left(1-u^{2}\right)(\alpha-\beta u)-(a-b u)^{2}=f(u)
$$

$|f(u)| \rightarrow \infty$ as $u \rightarrow \infty$
$f( \pm 1)=-(b \mp a)^{2} \leq 0$


## Heavy Symmetrical Top ctd.

Three possibilities for the motion:


Motion in $\phi$ : precession
Motion in $\theta$ : nutation

