
JAVA THREADS

SHAILESH S

ASST. PROFESSOR

DEPT. OF COMPUTER SCIENCE

SH COLLEGE

WHAT IS A THREAD?

 Individual and separate unit of execution that is part of a

process

multiple threads can work together to accomplish a common

goal

 Video Game example

one thread for graphics

one thread for user interaction

one thread for networking

WHAT IS A THREAD?

video

interaction

networking

Video Game

Process

ADVANTAGES

 easier to program

1 thread per task

 can provide better performance

thread only runs when needed

no polling to decide what to do

 multiple threads can share resources

 utilize multiple processors if available

DISADVANTAGE

 multiple threads can lead to deadlock

much more on this later

 overhead of switching between threads

CREATING THREADS (METHOD 1)

 extending the Thread class

must implement the run() method

thread ends when run() method finishes

call .start() to get the thread ready to run

CREATING THREADS EXAMPLE 1

class Output extends Thread {

 private String toSay;

 public Output(String st) {

 toSay = st;

 }

 public void run() {

 try {

 for(;;) {

 System.out.println(toSay);

 sleep(1000);

 }

 } catch(InterruptedException e) {

 System.out.println(e);

 }

 }

}

EXAMPLE 1 (CONTINUED)

class Program {

 public static void main(String [] args) {

 Output thr1 = new Output(“Hello”);

 Output thr2 = new Output(“There”);

 thr1.start();

 thr2.start();

 }

}

main thread is just another thread (happens to start first)

main thread can end before the others do

any thread can spawn more threads

CREATING THREADS (METHOD 2)

 implementing Runnable interface

virtually identical to extending Thread class

must still define the run()method

setting up the threads is slightly different

CREATING THREADS EXAMPLE 2

class Output implements Runnable {

 private String toSay;

 public Output(String st) {

 toSay = st;

 }

 public void run() {

 try {

 for(;;) {

 System.out.println(toSay);

 Thread.sleep(1000);

 }

 } catch(InterruptedException e) {

 System.out.println(e);

 }

 }

}

EXAMPLE 2 (CONTINUED)

class Program {

 public static void main(String [] args) {

 Output out1 = new Output(“Hello”);

 Output out2 = new Output(“There”);

 Thread thr1 = new Thread(out1);

 Thread thr2 = new Thread(out2);

 thr1.start();

 thr2.start();

 }

}

main is a bit more complex

everything else identical for the most part

ADVANTAGE OF USING RUNNABLE

 remember - can only extend one class

 implementing runnable allows class to extend something

else

CONTROLLING JAVA THREADS

_.start(): begins a thread running

wait() and notify(): for synchronization

• more on this later

_.stop(): kills a specific thread (deprecated)

_.suspend() and resume(): deprecated

_.join(): wait for specific thread to finish

_.setPriority(): 0 to 10 (MIN_PRIORITY to

MAX_PRIORITY); 5 is default (NORM_PRIORITY)

JAVA THREAD SCHEDULING

 highest priority thread runs

if more than one, arbitrary

 yield(): current thread gives up processor so another of equal

priority can run

if none of equal priority, it runs again

 sleep(msec): stop executing for set time

lower priority thread can run

STATES OF JAVA THREADS

 4 separate states

new: just created but not started

runnable: created, started, and able to run

blocked: created and started but unable to run because it is

waiting for some event to occur

dead: thread has finished or been stopped

STATES OF JAVA THREADS

new

runnable

blocked

dead

start()
stop(),

end of run method

wait(),

I/O request,

suspend()

notify(),

I/O completion,

resume()

JAVA THREAD EXAMPLE 1

class Job implements Runnable {

 private static Thread [] jobs = new Thread[4];

 private int threadID;

 public Job(int ID) {

 threadID = ID;

 }

 public void run() { do something }

 public static void main(String [] args) {

 for(int i=0; i<jobs.length; i++) {

 jobs[i] = new Thread(new Job(i));

 jobs[i].start();

 }

 try {

 for(int i=0; i<jobs.length; i++) {

 jobs[i].join();

 }

 } catch(InterruptedException e) { System.out.println(e); }

 }

}

JAVA THREAD EXAMPLE 2
class Schedule implements Runnable {

 private static Thread [] jobs = new Thread[4];

 private int threadID;

 public Schedule(int ID) {

 threadID = ID;

 }

 public void run() { do something }

 public static void main(String [] args) {

 int nextThread = 0;

 setPriority(Thread.MAX_PRIORITY);

 for(int i=0; i<jobs.length; i++) {

 jobs[i] = new Thread(new Job(i));

 jobs[i].setPriority(Thread.MIN_PRIORITY);

 jobs[i].start();

 }

 try {

 for(;;) {

 jobs[nextThread].setPriority(Thread.NORM_PRIORITY);

 Thread.sleep(1000);

 jobs[nextThread].setPriority(Thread.MIN_PRIORITY);

 nextThread = (nextThread + 1) % jobs.length;

 }

 } catch(InterruptedException e) { System.out.println(e); }

 }

}

