
SHAILESH S

ASST. PROFESSOR

DEPT OF COMPUTER SCIENCE

SH COLLEGE

DATA STRUCTURES USING „C‟

DEFINITION

• Data structure is representation of the logical relationship

existing between individual elements of data.

• In other words, a data structure is a way of organizing all

data items that considers not only the elements stored but also

their relationship to each other.

INTRODUCTION

• Data structure affects the design of both structural & functional

aspects of a program.

• Program=algorithm + Data Structure

• You know that a algorithm is a step by step procedure to solve a

particular function.

INTRODUCTION

• That means, algorithm is a set of instruction written to carry out

certain tasks & the data structure is the way of organizing the data

with their logical relationship retained.

• To develop a program of an algorithm, we should select an

appropriate data structure for that algorithm.

• Therefore algorithm and its associated data structures from a

program.

CLASSIFICATION OF DATA

STRUCTURE

Data structure are normally divided into two broad categories:

• Primitive Data Structure

• Non-Primitive Data Structure

CLASSIFICATION OF DATA

STRUCTURE

Data structure

Primitive DS Non-Primitive DS

Integer Float Character Pointer Float Integer Float

CLASSIFICATION OF DATA

STRUCTURE

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

PRIMITIVE DATA STRUCTURE

• There are basic structures and directly operated upon by the

machine instructions.

• In general, there are different representation on different

computers.

• Integer, Floating-point number, Character constants, string

constants, pointers etc, fall in this category.

NON-PRIMITIVE DATA

STRUCTURE

• There are more sophisticated data structures.

• These are derived from the primitive data structures.

• The non-primitive data structures emphasize on structuring of a

group of homogeneous (same type) or heterogeneous (different

type) data items.

NON-PRIMITIVE DATA

STRUCTURE

• Lists, Stack, Queue, Tree, Graph are example of non-primitive

data structures.

• The design of an efficient data structure must take operations to

be performed on the data structure.

NON-PRIMITIVE DATA

STRUCTURE

The most commonly used operation on data structure are broadly
categorized into following types:

• Create

• Selection

• Updating

• Searching

• Sorting

• Merging

• Destroy or Delete

DIFFERENT BETWEEN

THEM

• A primitive data structure is generally a basic structure that is

usually built into the language, such as an integer, a float.

• A non-primitive data structure is built out of primitive data

structures linked together in meaningful ways, such as a or a

linked-list, binary search tree, AVL Tree, graph etc.

DATA STRUCTURES : ARRAYS

• An array is defined as a set of finite number of homogeneous

elements or same data items.

• It means an array can contain one type of data only, either all

integer, all float-point number or all character.

ARRAYS

Simply, declaration of array is as follows:

 int arr[10]

Where int specifies the data type or type of elements arrays stores.

“arr” is the name of array & the number specified inside the square

brackets is the number of elements an array can store, this is also called

sized or length of array.

ARRAYS

Following are some of the concepts to be remembered about arrays:

• The individual element of an array can be accessed by

specifying name of the array, following by index or

subscript inside square brackets.

• The first element of the array has index zero[0]. It means

the first element and last element will be specified

as:arr[0] & arr[9]

 Respectively.

ARRAYS

• The elements of array will always be stored in the

consecutive (continues) memory location.

• The number of elements that can be stored in an array, that

is the size of array or its length is given by the following

equation:

(Upperbound-lowerbound)+1

ARRAYS

• For the above array it would be

(9-0)+1=10,where 0 is the lower bound of array and

9 is the upper bound of array.

• Array can always be read or written through loop. If we

read a one-dimensional array it require one loop for

reading and other for writing the array.

ARRAYS

• For example: Reading an array

For(i=0;i<=9;i++)

 scanf(“%d”,&arr[i]);

• For example: Writing an array

For(i=0;i<=9;i++)

 printf(“%d”,arr[i]);

ARRAYS

• If we are reading or writing two-dimensional array it would

require two loops. And similarly the array of a N dimension

would required N loops.

• Some common operation performed on array are:

• Creation of an array

• Traversing an array

ARRAYS

• Insertion of new element

• Deletion of required element

• Modification of an element

• Merging of arrays

