Principles of
Database Design

Santhosh Kumar K P
Asst. Professor,

Dept. of Computer Science
SH College Thevara

Introduction to

- Database Management System -

Data: structured, semi-structured
and unstructured data

" Data: Known facts that can recorded and that has

implicit meaning,

" Structured data: Information stored in databases is -
known as structured data because it 1s represented in
a strict format.

" The DBMS then checks to ensure that all data
follows the structures and constraints specitfied in the

schema.

Data: structured, semi-structured
and unstructured data

" Unstructured data, because there is very limited
indication of the type of data.

® Example: File (text; excel, pdf ctc)

Data: structured, semi-structured
and unstructured data

* This data may have a certain structure, but not all the
information collected will have identical structure. This
type of data is known as semi-structured data.

* In semi-structured data, the schema information is
mixed in with the data values, since each data object
can have different attributes that are not known in
advance.

* Example: Email (email id, subject, body,
file(unstructured))

Data base

°* Database: is a collection of related data.

* Traditional database: text, numbers .

* Multimedia database: videos, mp3, movies

* GIS(geographical information system): satellite
images

* Real Time db: related to time, eg: used in supermarket

* Data Warehouse: huge and historical

Database Management System

(DBMS)

" DBMS is a general purpose software system that facilitates the
process of defining, constructing, manipulating and sharing

databases among various users and applications. -

* Defining a database involves specitying the data types, structures,
and constraints of the data to be stored in the database

* Constructing the database is the process of storing the data on some
storage medinm that 1s controlled by the DBMS.

* Manipulating is querying the database 7o refrieve specific data,
updating the database, generating reports from the data

* Sharing a database allows multiple users and programs to acress
the database simultaneousl.

Database Applications:

Banking: all transactions

Airlines: reservations, schedules
Universities: registration, grades
Sales: customers, products, purchases

Manufacturing: production, inventory, orders, supply
chain

Human resources: employee records, salaries, tax
deductions

Drawbacks of using file systems to ;
store data:

Data redundancy and inconsistency

* Multiple file formats, duplication of information in different

files
Ditticulty 1n accessing data |

* Need to write a new program to carry out each new task

Data 1solation — multiple files and formats

Integrity problems

* Integrity constraints (e.g. account balance > 0) become part of
program code

* Hard to add new constraints or change existing ones

S—— : —— T T TR

Drawbacks of using file systems to
store data:

* Atomicity of updates

* TFailures may leave database in an inconsistent state with partial
. updates carried out .

* E.g transfer of funds from one account to another should either

complete or not happen at all
* Concurrent access by multiple users

* Concurrent accessed needed for performance

* Uncontrolled concurrent accesses can lead to inconsistencies

* E.g. two people reading a balance and updating it at the same time

* Security problems

Detailed Three Schema Architecture

(Cont...) ! !

MW#

Schemas & mappings built
& maintained by the DBA

Three-Schema Architecture

External schemas/High level at the external level to describe
the various user views.

Conceptual schema at the conceptual level to describe the
structure and constraints for the whole database for a community
of users. Uses a conceptual or an implementation data model.

Internal schema/low level at the internal level to describe
physical storage structures and access paths. Typically uses a
physical data model.

Three-Schema Architecture

* Mappings among schema levels are needed to
transform requests and data.

* Programs refer to an external schema, and are .
mapped by the DBMS to the internal schema for

execution.

External view 1 External view 2
sNo fName IName age salary staffNo IName | branchNo
Conceptual level staffNo | fName IName DOB salary | branchNo
struct STAFF {
int staffNo;
int branchNo:
char fName [15];
Internal level char IName [15];
struct date dateOf Birth;
float salary;
struct STAFF *next; /* pointer to next Staff record */
b
index staffNo; index branchNo; /* define indexes for staff */

Three-Schema Architecture

Data Independence: The capacity to change the schema at one level
of the database system without changing the schema at next higher

level.

Two types

Logical Data Independence: The capacity to change the conceptual
schema without having to change the external schemas and their
application programs.

Physical Data Independence: The capacity to change the internal
schema without having to change the conceptual schema.

Actors on the Scene |

* Database Administrators: Coordinates all the activities of the
database system; the database administrator has a good
understanding of the enterprise’s information resources and needs.

* Duties:

* Schema definition

* Storage structure and access method definition
* Schema and physical organization modification
* Granting user authority to access the database
* Specitying integrity constraints

* Monitoring performance and responding to changes in
requirements

Actors on the Scene

* Database Designers are responsible for identifying the data

structures to represent and store this data.

to be stored in the database and for choosing appropriate .

* End Users: are the people whose jobs require access to the
database for querying, updating, and generating reports:
Database 1s already developed for their use.

Actors on the Scene: Software Engineers

* System analysts determine the requirements of end

develop specifications

users, especially naive and parametric end users, and .

* Application programmers implement these
specifications as programs; then they test, debug,
document, and maintain these canned transactions.

Data models

Relatively simple representations, usually graphical,
of complex real-world data structures

Facilitate interaction among the designer, the
applications programmer, and the end user

End-users have different views and needs for data

Data model organizes data for various users

The Evolution of Data Models

Hierarchical

* Network > Record based

Relational /
* Entity relationship \

Object oriented (OO) — Object based

Hierarchical Data Model

* The hierarchical structure contains levels, or segments.

Basic logical structure 1s represented by an upside-down
(14 b
GlEE

* Depicts a set of one-to-many (1:M) relationships between a
parent and its children segments

* Each parent can have many children

* cach child has only one parent

DEPARTMENT

No Name
COURSES ¢ STUDENTS Q,
No Name Unit ID Name | Courses
Y
1D Name
PROFESSORS

* To retrieve data: Starts from Top and traverse
different levels to bottom.

Hierarchical Data Model

Advantage

* Promote data sharing

* Simple: parent child development

* Efficient in 1:M relationships

Disadvantage

* Requires knowledge about hierarchical paths
* No multi-parent relationship

* JTack of standards

Network Data Model

* Resembles hierarchical model

* Data 1s represented as Collection of records in 1:M
relationships

S et
* Relationship
* Composed of at least two record types
* Owner
* Equivalent to the hierarchical model’s parent
* Member
* Equivalent to the hierarchical model’s child

e

FIGURE A network data model
2.2

Commission set Sales set Payment set

PRODUCT

Inventory set Line set

Network Data Model

Advantage
* Support multi-parent
* Flexible than hierarchical system

Disadvantage

* Complex in implementation development,
management

* Complex limits efficiency

Relational Data Model

* Table (relations)

* Matrix consisting of a series of row/column intersections

* Related to each other through sharing a common entity
characteristic

* Relational diagram

* Representation of relational database’s entities, attributes
within those entities, and relationships between those entities

Relational Data Model

* Relational Table

* Stores a collection of related entities

* Relational table is purely logical structure

* How data are physically stored in the database is of no
concern to the user or the designer

* This property became the source of a real database revolution

DEPARTMENT

No

Name

PROFESSORS

ID

Name

Dept-No

Courses

COURSES

No

Dept-No

Prof-1D

Unit

STUDENTS

ID

Name Courses

Entity Relationship Model

* Entity relationship diagram (ERD)

* Uses graphic representations to model database
components

* Entity is mapped to a relational table
* Entity instance (or occurrence) is row in table
* Entity set is collection of like entities

* Connectivity labels types of relationships

* Diamond connected to related entities through a
relationship line

2.5

FIGURE The basic Chen ERD

A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs;

each PAINTING is painted by one PAINTER.

1 M
PAINTER PAINTING
A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs;
each SKILL can be learned by many EMPLOYEEs.
M N
EMPLOYEE SKILL

A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE;

each STORE is managed by one EMPLOYEE.

EMPLOYEE

1 1
*_ STORE

Object Ortented Model

* Object 1s an abstraction of a real-world entity

* Attributes describe the properties of an object -

* Includes information about relationships between
facts within object, and relationships with other
objects

* Subsequent OODM development allowed an object
to also contain all operations

* Object becomes basic building block for autonomous
structures

FIGURE
7

A comparison of the OO model and the ER model

00 data model

CUSTOMER

INVOICE

INV_DATE
INV_NUMBER
INV_SHIP_DATE
INV_TOTAL

CUSTOMER

LINE

ER model
INVOICE
m generates »
INV NUMBER
INV_DATE
INV_SHIP_DATE
INV TOTAL
1E
T

hes

a

LINE

Database LLanguages

* Data Definition Language (DDL)
. * Data Manipulation Language (DML)

Data Definition LLanguage (DDL)

* A language that allows DBA or user to describe and
name the entities, attributes and relationships
required for an application, together with any
associated integrity and security constraints

Data Manipulation Language (]

D

* Language for accessing and manipulating the
data organized by the appropriate data model

* DML also known as query language

* 'Two classes of languages

* Procedural — user specifies what data 1s required and

how to get those data

* Nonprocedural — user specifies what data is required

without specifying how to get those data
* SQL 1s the most widely used query language

Database System Environment/
Component Modules

|
|
|

Users: DBA Staff Casual Users Application Parametric Users
/ \ l Programmers
Privileged Interactive Application
Statements Commands CQluery Programs
Y
DL a Host
: Liery - || Language
Compiler Compiler Precompiler Compiler
I
l ; l R
! Query DML Compiled
: Optimizer Compiler Transactions
! K4 e
I -
: i |
I - - =
i ’ ‘ -
| & -
< -
: 7 - DBA Commands,
i L) Cuweries, and Transactions
] ST _
- e o Runtime Stored
- . LT #| Database [= Data
System P - P Manager
Catalog/ - - rnclessor Concurrency Control/ g
Data - - Backup/Recovery
Dictionary - vy Subsystems
Stored Database Input/Output

Query and Transaction
Execution:

-

from Database

Database System Architectures

Centralized and Client-Server Systems

* Server System Architectures

Parallel Systems

* Distributed Systems

Network Types

Centralized Systems

* Run on a single computer system and do not interact with other
computer systems.

* General-purpose computer system: one to a few CPUs and a -

number of device controllers that are connected through a
common bus that provides access to shared memory:.

* Single-user system (e.g, personal computer or workstation):
desk-top unit, single user, usually has only one CPU and one
or two hard disks; the OS may support only one user.

* Multi-user system: more disks, more memory, multiple
CPUs, and a multi-user OS. Serve a large number of users
who are connected to the system vie terminals. Often called
server systems.

Centralized Systems

mouse keyboard printer monitor
disks é (T) J—on-line—k
oo ¢ &R
CPU el USB controller SR
controller adapter
memory
RS T T T

Client-Server Systems ;

client

client

client

client

network.

server

* Server systems satisfy requests generated at 7 client
systems, whose general structure 1s shown

SQL user forms repor-t gl US| front end E
interface interface generation and analysis
b tools tools ,
interface |
(SQL ATI)
SQL engine back end

* Database functionality can be divided into:

* Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

* Front-end: consists of tools such as forms, report-writers, and graphical
user interface facilities.

* The interface between the front-end and the back-end 1s
through SQL or through an application program interface.

Advantages |

* Advantages of replacing mainframes with networks

of workstations or personal computers connected to
back-end server machines:

* better functionality for the cost
* flexibility in locating resources and expanding facilities
* better user interfaces

®* easier maintenance

Two-tier client/server architecture

Diskless Client Server
Client with Disk Server and Client
PR D
T L -
S \m____|__ __|____/
W Server Server
Client | Client |
Site 1 Site 2 Site 3 Site n
Communication
Physical two-tier client/server e
architecture. .

Three-tier Client/server Architecture

A GUI, Presentation
Client [Web Interface } [Layer]

S
S

Application Server Application Buiiions
or Programs, { e }
Web Server Web Pages 9 y
‘ I
Y
Database Database Database
Serier Management Services
Logical three-tier client/server System Layer
architecture, with a couple of
commonly used nomenclatures. (a) (b)

Reference

* Fundamentals of database design: Ramiez Elsmari
and Shamakant Navathe

|
|
|
|

