
Principles of

Database Design

Santhosh Kumar K P

Asst. Professor,

Dept. of Computer Science

SH College Thevara

Introduction to

Database Management System

Data: structured, semi-structured

and unstructured data

 Data: Known facts that can recorded and that has

implicit meaning.

 Structured data: Information stored in databases is

known as structured data because it is represented in

a strict format.

 The DBMS then checks to ensure that all data

follows the structures and constraints specified in the

schema.

Data: structured, semi-structured

and unstructured data

 Unstructured data, because there is very limited

indication of the type of data.

 Example: File (text, excel, pdf etc)

Data: structured, semi-structured

and unstructured data

• This data may have a certain structure, but not all the

information collected will have identical structure. This

type of data is known as semi-structured data.

• In semi-structured data, the schema information is

mixed in with the data values, since each data object

can have different attributes that are not known in

advance.

• Example: Email (email id, subject, body,

file(unstructured))

Data base

• Database: is a collection of related data.

• Traditional database: text, numbers

• Multimedia database: videos, mp3, movies

• GIS(geographical information system): satellite

images

• Real Time db: related to time, eg: used in supermarket

• Data Warehouse: huge and historical

Database Management System

(DBMS)

 DBMS is a general purpose software system that facilitates the
process of defining, constructing, manipulating and sharing
databases among various users and applications.

• Defining a database involves specifying the data types, structures,
and constraints of the data to be stored in the database

• Constructing the database is the process of storing the data on some
storage medium that is controlled by the DBMS.

• Manipulating is querying the database to retrieve specific data,
updating the database, generating reports from the data

• Sharing a database allows multiple users and programs to access
the database simultaneously.

Database Applications:

• Banking: all transactions

• Airlines: reservations, schedules

• Universities: registration, grades

• Sales: customers, products, purchases

• Manufacturing: production, inventory, orders, supply
chain

• Human resources: employee records, salaries, tax
deductions

Drawbacks of using file systems to

store data:

• Data redundancy and inconsistency

• Multiple file formats, duplication of information in different
files

• Difficulty in accessing data

• Need to write a new program to carry out each new task

• Data isolation — multiple files and formats

• Integrity problems

• Integrity constraints (e.g. account balance > 0) become part of
program code

• Hard to add new constraints or change existing ones

Drawbacks of using file systems to

store data:

• Atomicity of updates

• Failures may leave database in an inconsistent state with partial

updates carried out

• E.g. transfer of funds from one account to another should either

complete or not happen at all

• Concurrent access by multiple users

• Concurrent accessed needed for performance

• Uncontrolled concurrent accesses can lead to inconsistencies

• E.g. two people reading a balance and updating it at the same time

• Security problems

Three-Schema Architecture

• External schemas/High level at the external level to describe

the various user views.

• Conceptual schema at the conceptual level to describe the

structure and constraints for the whole database for a community

of users. Uses a conceptual or an implementation data model.

• Internal schema/low level at the internal level to describe

physical storage structures and access paths. Typically uses a

physical data model.

Three-Schema Architecture

• Mappings among schema levels are needed to

transform requests and data.

• Programs refer to an external schema, and are

mapped by the DBMS to the internal schema for

execution.

Three-Schema Architecture

• Data Independence: The capacity to change the schema at one level

of the database system without changing the schema at next higher

level.

Two types

• Logical Data Independence: The capacity to change the conceptual

schema without having to change the external schemas and their

application programs.

• Physical Data Independence: The capacity to change the internal

schema without having to change the conceptual schema.

Actors on the Scene

• Database Administrators: Coordinates all the activities of the
database system; the database administrator has a good
understanding of the enterprise’s information resources and needs.

• Duties:

• Schema definition

• Storage structure and access method definition

• Schema and physical organization modification

• Granting user authority to access the database

• Specifying integrity constraints

• Monitoring performance and responding to changes in
requirements

Actors on the Scene

• Database Designers are responsible for identifying the data

to be stored in the database and for choosing appropriate
structures to represent and store this data.

• End Users: are the people whose jobs require access to the

database for querying, updating, and generating reports:

Database is already developed for their use.

Actors on the Scene: Software Engineers

• System analysts determine the requirements of end

users, especially naive and parametric end users, and

develop specifications

• Application programmers implement these

specifications as programs; then they test, debug,

document, and maintain these canned transactions.

Data models

• Relatively simple representations, usually graphical,

of complex real-world data structures

• Facilitate interaction among the designer, the

applications programmer, and the end user

• End-users have different views and needs for data

• Data model organizes data for various users

The Evolution of Data Models

• Hierarchical

• Network Record based

• Relational

• Entity relationship

• Object oriented (OO) Object based

Hierarchical Data Model

• The hierarchical structure contains levels, or segments.

• Basic logical structure is represented by an upside-down

―tree‖

• Depicts a set of one-to-many (1:M) relationships between a

parent and its children segments

• Each parent can have many children

• each child has only one parent

• To retrieve data: Starts from Top and traverse

different levels to bottom.

Hierarchical Data Model

Advantage

• Promote data sharing

• Simple: parent child development

• Efficient in 1:M relationships

Disadvantage

• Requires knowledge about hierarchical paths

• No multi-parent relationship

• Lack of standards

Network Data Model

• Resembles hierarchical model

• Data is represented as Collection of records in 1:M
relationships

• Set

• Relationship

• Composed of at least two record types

• Owner

• Equivalent to the hierarchical model’s parent

• Member

• Equivalent to the hierarchical model’s child

Network Data Model

Advantage

• Support multi-parent

• Flexible than hierarchical system

Disadvantage

• Complex in implementation development,

management

• Complex limits efficiency

Relational Data Model

• Table (relations)

• Matrix consisting of a series of row/column intersections

• Related to each other through sharing a common entity
characteristic

• Relational diagram

• Representation of relational database’s entities, attributes
within those entities, and relationships between those entities

Relational Data Model

• Relational Table

• Stores a collection of related entities

• Relational table is purely logical structure

• How data are physically stored in the database is of no
concern to the user or the designer

• This property became the source of a real database revolution

Entity Relationship Model

• Entity relationship diagram (ERD)

• Uses graphic representations to model database
components

• Entity is mapped to a relational table

• Entity instance (or occurrence) is row in table

• Entity set is collection of like entities

• Connectivity labels types of relationships

• Diamond connected to related entities through a
relationship line

Object Oriented Model

• Object is an abstraction of a real-world entity

• Attributes describe the properties of an object

• Includes information about relationships between
facts within object, and relationships with other
objects

• Subsequent OODM development allowed an object
to also contain all operations

• Object becomes basic building block for autonomous
structures

Database Languages

• Data Definition Language (DDL)

• Data Manipulation Language (DML)

Data Definition Language (DDL)

• A language that allows DBA or user to describe and

name the entities, attributes and relationships

required for an application, together with any

associated integrity and security constraints

Data Manipulation Language (DML)

• Language for accessing and manipulating the
data organized by the appropriate data model

• DML also known as query language

• Two classes of languages

• Procedural – user specifies what data is required and
how to get those data

• Nonprocedural – user specifies what data is required
without specifying how to get those data

• SQL is the most widely used query language

Database System Environment/

Component Modules

Database System Architectures

• Centralized and Client-Server Systems

• Server System Architectures

• Parallel Systems

• Distributed Systems

• Network Types

Centralized Systems

• Run on a single computer system and do not interact with other
computer systems.

• General-purpose computer system: one to a few CPUs and a
number of device controllers that are connected through a
common bus that provides access to shared memory.

• Single-user system (e.g., personal computer or workstation):
desk-top unit, single user, usually has only one CPU and one
or two hard disks; the OS may support only one user.

• Multi-user system: more disks, more memory, multiple
CPUs, and a multi-user OS. Serve a large number of users
who are connected to the system vie terminals. Often called
server systems.

Centralized Systems

Client-Server Systems

• Server systems satisfy requests generated at m client

systems, whose general structure is shown

• Database functionality can be divided into:

• Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

• Front-end: consists of tools such as forms, report-writers, and graphical
user interface facilities.

• The interface between the front-end and the back-end is
through SQL or through an application program interface.

Advantages

• Advantages of replacing mainframes with networks

of workstations or personal computers connected to

back-end server machines:

• better functionality for the cost

• flexibility in locating resources and expanding facilities

• better user interfaces

• easier maintenance

Two-tier client/server architecture

Three-tier Client/server Architecture

Reference

• Fundamentals of database design: Ramiez Elsmari

and Shamakant Navathe

