Fourier series of odd and even functions

Sanil Jose

Department of Mathematics
Sacred Heart College, Thevara

FOURIER SERIES

TastryMather

Fourier Series

FQURIER SERUSSan be generzuvwhttenas:

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

Wheré

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
& b_{n} \quad=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{aligned}
$$

BASIS FORMUILAE OF FOURIER SERIES

The Fourier series of a periodic function $f(x)$ with period 2π is defined as the trigonometric series with the coefficient a0, an and bn, known as FOURIER COEFFICIENTS, determined by formulae (1.1), (1.2) and (1.3).

Definition: A function $\mathrm{f}(\mathrm{x})$ is said to be even if $f(-x)=f(x)$.
e.g. x^{2}, cosx are even function

Graphically, an even function is symmetrical about y-axis.

© Definition: A function $\mathrm{f}(\mathrm{x})$ is said to be odd if $f(-x)=-f(x)$. e.g. $\sin \mathrm{x}, x^{3}$ are odd functions. Graphically, an even function is symmetrical about the origion.

Important result

- 1) For even function, $g(x), \int_{-L}^{L} g(x) d x=2 \int_{0}^{L} g(x) d x$
(2) For odd function, $\mathrm{h}(\mathrm{x})$,

$$
\int_{-L}^{L} h(x) d x=0
$$

When function is even:
When $f(x)$ is an even function then $f(x) \sin x$ is an odd function.
Thus $\mathrm{a}_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x$

$$
\begin{aligned}
& \text { ao }=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x \\
& \text { an }=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& \text { bn }=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0
\end{aligned}
$$

Therefore $\mathrm{f}(\mathrm{x})=\frac{a 0}{2}+\sum_{n=1}^{\alpha}$ an $\cos n x$

Odd function

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=0 \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{cosn} x d x=0 \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \operatorname{sinn} x d x
\end{gathered}
$$

9. The product of two even functions or two odd funnctions is an even function. Whereas the product of an even function and an odd function is an odd function.
10. The given function not necessary even or odd or it may be neither. Every function can be uniquely decomposed into the sum of an even function, and an odd function.

$$
\text { that is } \mathrm{f}(\mathrm{x})=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}=\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})
$$

Where $\mathrm{f}_{1}(\mathrm{x})$ is even function and $\mathrm{f}_{2}(\mathrm{x})$ is odd function.
(b) Find the Fourier Series for $f(x)=x$ sin $x,-\pi \leq x \leq \pi$. Decturee uhite

$$
\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\ldots=\frac{\pi-2}{4}
$$

Solution $=$ Here $f(x)$ is an even function.

$$
\begin{aligned}
& \therefore b_{n}=0 \\
& \text { Let } f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{n} \cos n x \\
& \therefore a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin x d x \\
& =\frac{2}{\pi}[(x)(-\cos x)-(1)(-\sin x)]_{0}^{\pi} \\
& =\frac{2}{\pi} \pi=2 \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos n x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x\{\sin (n+1) x-\sin (n-1) x\} d x \\
& =\frac{1}{\pi}\left[(x)\left\{-\frac{\cos (n+1) x}{n+1}+\frac{\cos (n-1) x}{n-1}\right\}-(1)\left\{-\frac{\sin (n+1) x}{(n+1)^{2}}+\frac{\sin (n}{(n-}\right.\right. \\
& =\frac{1}{\pi}\left[\pi\left\{-\frac{(-1)^{n+1}}{n+1}+\frac{(-1)^{n-1}}{n-1}\right\}\right] \\
& =(-1)^{n-1}\left\{-\frac{1}{n+1}+\frac{1}{n-1}\right\}=\frac{2(-1)^{n+1}}{n^{2}-1} . \quad n=1
\end{aligned}
$$

For $n=1$,

$$
\begin{aligned}
& \text { Put } x=\frac{\pi}{2} \text {, we get } \\
& \quad \frac{\pi}{2}=1+2 \sum_{n=2}^{\pi} \frac{(-1)^{n+1}}{(n-1)(n+1)} \cos \frac{n \pi}{2} \\
& \therefore \frac{\pi}{2}-1=2\left\{\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\ldots\right\} \\
& \therefore \frac{\pi-2}{4}=\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\ldots
\end{aligned}
$$

(b) Express $f(x)=x \cos x$ as a Fourier Series in $(-\pi, \pi)$.

Solution : Here $f(x)$ is an odd function.
$\therefore \quad a_{0}=a_{n}=0$
Let $f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x$

$$
\begin{aligned}
\therefore b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos x \sin n x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x\{\sin (n+1) x+\sin (n-1) x\} d x \\
& =\frac{1}{\pi}\left[(x)\left\{-\frac{\cos (n+1) x}{n+1}-\frac{\cos (n-1) x}{n-1}\right\}-(1)\left\{-\frac{\sin (n+1) x}{(n+1)^{2}}-\frac{\sin (n-1) x}{(n-1)^{2}}\right\}\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[\pi\left\{-\frac{(-1)^{n+1}}{n+1}-\frac{(-1)^{n-1}}{n-1}\right\}\right]=-(-1)^{n+1}\left[\frac{1}{n+1}+\frac{1}{n-1}\right] \\
& =-\frac{2 n(-1)^{n+1}}{n^{2}-1}, \quad n=1
\end{aligned}
$$

For $n=1$

$$
\begin{aligned}
b_{1} & =\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \sin 2 x d x
\end{aligned}
$$

$x \cos x=b_{1} \sin x+\sum_{n=2}^{\infty} b_{n} \sin n x$

$$
=-\frac{1}{2} \sin x-2 \sum_{n=2}^{\infty} \frac{n(-1)^{n+1}}{n^{2}-1} \sin n x
$$

- $F(x)=x+x^{2}$ is neither even nor odd
Thank Youl

