GRAPH THEORY MORE DEFINITIONS

SANIL JOSE DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE

we cannot solve **OUR PROBLEMS WITH** THE SAME THINKING we used when we created them

~ Albert Einstein

• Let *H* be a graph with vertex set V(H) and edge set E(H) and, similarly, let *G* be a graph with vertex set V(G) and edge set E(G). Then we say that *H* is a **subgraph** of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. In such a case, we also say that *G* is a **supergraph** of *H*.

Figure 1.22: $G_1 \subseteq G_2$, $G_1 \subseteq G_3$ but $G_3 \not\subseteq G_2$.

DEFINITION

• Any graph *isomorphic* to a subgraph of *G* is also referred to as a **subgraph** of *G*.

If H is a subgraph of G we write $H \subseteq G$. If $H \subseteq G$ and $H \neq G$ ie $V(G) \neq V(H)$ or $E(G) \neq E(H)$ then we say that H is a proper subgraph of G.

- A spanning subgraph (or spanning supergraph) of *G* is a subgraph (or supergraph) *H* with *V*(*H*) = *V*(*G*), i.e., Hand *G* have exactly the same vertex set.
- Example : G1 is a proper spanning subgraph of G3.

Vertex deleted subgraph.

- If G = (V, E) and V has at least two elements (i.e., G haS at least two vertices), then for any vertex v of G, G v denotes the subgraph of G with vertex set V { v} and whose edges are all those of U which are not incident with v, i.e., G v is obtained from G by removing v and all the edges of G which have v as an end. G v is referred to as a vertex deleted subgraph.
- If G = (V, E) and e is an edge of G then G e denotes the subgraph of G having V as its vertex set and E { e} as its edge set, i.e., G e is obtained from G by removing the edge e, (but not its endpoint(s)). G e is referred to as an edge deleted subgraph.

VERTEX DELETED AND EDGE DELETED SUBGRAPHS

- If G = (V, E) and U is a proper subset of V then G U denotes the subgraph of G with vertex set V U and whose edges are all those of G which are not incident with any vertex in U.
- If *F* is a subset of the edge set *E* then *G F* denotes the subgraph of *G* with vertex set *V* and edge set *E F*, i.e., obtained by deleting all the edges in *F*, but not their endpoints.
- *G*-*U* and *G*-*F* are also referred to as vertex deleted and edge deleted **subgraphs** (respectively).

Underlying simple graph

By deleting from a graph G all loops and in each collection of parallel edges all edges but one in the collection we obtain a simple spanning subgraph of G, called the **underlying simple graph** of G.

G-U ٧_e where $U = \{ v_1, v_2 \}$ **e**11 ê., V₃ V₅ eg e₉ е₁₀ V, 3

INDUCED SUBGRAPHS

- If U is a nonempty subset of the vertex set V of the graph G then the subgraph G[U] of G induced by U is defined to be the graph having vertex set U and edge set consisting of those edges of G that have both ends in U.
- Similarly if F is a nonempty ·subset of the edge set E of G then the subgraph G[F] of G induced by F is the graph whose vertex set is the set of ends of edges in F and whose edge set is F.

For the graph G of Figure 1.24, taking $U = \{v2, v3, v5\}$ and $F = \{e1, e3, e7, e9\}$ we get G[U] and G[F]

• Two subgraphs G1 and G_2 of a graph G are said to be disjoint if they have no vertex in common, and edge disjoint if they have no edge in common.

Figure 1.26: G_1 and G_2 are disjoint and G_1 and G_3 are edge disjoint.

Union of Two Subgraphs

- Given two subgraphs G1 and G2 of G, the union $G_1 \cup G_2$ is the subgraph of G with vertex set consisting of all those vertices which are in either G_1 or G2 (or both) and with edge set consisting of all those edges which are in either G1 or G2 (or both); symbolically
- $V{G1 U G2} = V(G1) U V(G2),$
- $E(G1 \cup G2) = E(G1) \cup E(G2).$

Intersection of two subgraphs

- If G1 and G2 are two subgraphs of *G* with at least one vertex in common then the **intersection** G1n G2 is given by
- V(G1 n G2) = V(G1) n V(G2),
- E(G1 n G2) = E(G1) n E(G2)-

THE COMPLEMENT OF & GRAPH

Let G be a simple graph with n vertices. The complement G
of G is defined to be the simple graph with the same vertex set as G and where two vertices n and v are adjacent precisely when they are not adjacent in G. Roughly speaking then, the complement of G can be obtained from the complete graph Kn by "rubbing out" all the edges of G

Self-complementary graph

• A simple graph is called **self-complementary** if it is isomorphic to its own complement.

ASSIGNMENT

18UMAT6440	COMMON TO ALL	1.5.1
18UMAT6401	HARIKRISHNAN T R	1.5.2
18UMAT6402	ARCHANA S	1.5.3
18UMAT6404	MITHALI S KUMAR	1.5.4
18UMAT6405	JOFFIN C CLEMENT	1.5.5

