GRAPH THEORY MORE DEFINITIONS

SANIL JOSE
DEPARTMENT OF MATHEMATICS SACRED HEART COLLEGE

we cannot solve our problems with the same thinking we used when we created them

~ Albent Cinstein

- Let H be a graph with vertex set $V(H)$ and edge set $E(H)$ and, similarly, let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Then we say that H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. In such a case, we also say that G is a supergraph of H.

DEFINITION

- Any graph isomorphic to a subgraph of G is also referred to as a subgraph of G.

If H is a subgraph of G we write $H \subseteq G$. If $H \subseteq G$ and $H \neq G$ ie $V(G) \neq$ $V(H)$ or $E(G) \neq E(H)$ then we say that H is a proper subgraph of G .

- A spanning subgraph (or spanning supergraph) of G is a subgraph (or supergraph) H with $V(H)=V(G)$, i.e., Hand G have exactly the same vertex set.
- Example : G1 is a proper spanning subgraph of G3.

Vertex deleted subgraph.

- If $G=(V, E)$ and V has at least two elements (i.e., G haS at least two vertices), then for any vertex v of $G, G-v$ denotes the subgraph of G with vertex set $V-\{\mathrm{v}\}$ and whose edges are all those of U which are not incident with v, i.e., $G-v$ is obtained from G by removing v and all the edges of G which have v as an end. $G-v$ is referred to as a vertex deleted subgraph.
- If $G=(V, E)$ and e is an edge of G then G - e denotes the subgraph of G having V as its vertex set and $E-\{\mathrm{e}\}$ as its edge set, i.e., $G-\mathrm{e}$ is obtained from G by removing the edge e, (but not its endpoint(s)). G - e is referred to as an edge deleted subgraph.

Example
G

$$
G-\{e 1\}
$$

edge e1 deleted graph

G- $\{5\}$
vertex 5 deleted graph

VERTEX DELETED AND EDGE DELETED SUBGRAPHS

- If $G=(V, E)$ and U is a proper subset of V then G - U denotes the subgraph of G with vertex set V - U and whose edges are all those of G which are not incident with any vertex in U.
- If F is a subset of the edge set E then $G-F$ denotes the subgraph of G with vertex set V and edge set $E-F$, i.e., obtained by deleting all the edges in F, but not their endpoints.
- G - U and $G-F$ are also referred to as vertex deleted and edge deleted subgraphs (respectively).

Underlying simple graph

By deleting from a graph G all loops and in each collection of parallel edges all edges but one in the collection we obtain a simple spanning subgraph of G, called the underlying simple graph of G.

INDUCED SUBGRAPHS

- If U is a nonempty subset of the vertex set V of the graph G then the subgraph $\mathrm{G}[\mathrm{U}]$ of G induced by U is defined to be the graph having vertex set U and edge set consisting of those edges of G that have both ends in U.
- Similarly if F is a nonempty subset of the edge set E of G then the subgraph $G[F]$ of G induced by F is the graph whose vertex set is the set of ends of edges in F and whose edge set is F.

For the graph G of Figure 1.24, taking $U=\{\mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 5\}$ and $F=\{\mathrm{e} 1, \mathrm{e} 3, \mathrm{e} 7, \mathrm{e} 9\}$ we get $\mathrm{G}[\mathrm{U}]$ and $\mathrm{G}[\mathrm{F}]$

- Two subgraphs G1 and G_{2} of a graph G are said to be disjoint if they have no vertex in common, and edge disjoint if they have no edge in common.

Figure 1.26: G_{1} and G_{2} are disjoint and G_{1} and G_{3} are edge disjoint.

Union of Two Subgraphs

- Given two subgraphs G1 and G2 of G, the union $G_{1} U G_{2}$ is the subgraph of G with vertex set consisting of all those vertices which are in either G_{1} or G2 (or both) and with edge set consisting of all those edges which are in either G1 or G2 (or both); symbolically
- $V\{G 1 \mathrm{U}$ G2) $=\mathrm{V}(\mathrm{G} 1) \mathrm{U} \mathrm{V}(\mathrm{G} 2)$,
- $E(G 1 \mathrm{U}$ G2) $=\mathrm{E}(\mathrm{G} 1) \mathrm{U} \mathrm{E}(\mathrm{G} 2)$.

Intersection of two subgraphs

- If G1 and G2 are two subgraphs of G with at least one vertex in common then the intersection G1n G2 is given by
- $V(G 1 n G 2)=V(G 1) n V(G 2)$,
- $\mathrm{E}(\mathrm{G} 1 \mathrm{n} \mathrm{G} 2)=\mathrm{E}(\mathrm{G} 1) \mathrm{n} \mathrm{E}(\mathrm{G} 2)-$

THE COMPLEMENT OF A GRAPH

- Let G be a simple graph with n vertices. The complement \bar{G} of G is defined to be the simple graph with the same vertex set as G and where two vertices u and v are adjacent precisely when they are not adjacent in G. Roughly speaking then, the complement of G can be obtained from the complete graph Kn by "rubbing out" all the edges of \bar{G}

G

K_{6}

\bar{G}

Self-complementary graph

- A simple graph is called self-complementary if it is isomorphic to its own complement.

ASSIGNMENT

18UMAT6440 COMMON TO ALL 1.5.1
18UMAT6401 HARIKRISHNAN T R 1.5.2
18UMAT6402 ARCHANA S 1.5.3
18UMAT6404 MITHALI S KUMAR 1.5.4
18UMAT6405 JOFFIN C CLEMENT 1.5.5

THANK YOU

