Area \&

Perimeter

sanil jose

Without mathematics,

 there's nothing you can do. Everything around you is mathematics.Everything around you is numbers.
-Shakuntala Devi

Area \& Perimeter

Obiectives:

7.5.04 Develop fluency in the use of formulas to solve problems.

Essential Question:

How can I use formulas to find the perimeter and area of simple geometric figures?

Area \& Perimeter

Vocabulary:

Polygon: a closed plane figure bounded by three or more line segments.
Quadrilateral: any four sided polygon.
Parallelogram: a quadrilateral whose opposite sides are parallel.
Square: a four sided polygon characterized by four right angles and four sides of equal length.
Rectangle: a four sided polygon characterized by four right angles and opposite sides of equal measure.
Triangle: a three sided polygon.
Circle: a closed plane curve consisting of all points at a given distance from a point within it called the center.

Area \& Perimeter

Polysons:

What do they look like...
A regular polygon is a any polygon in which all sides and angles are congruent (equal).

An irregular polygon is a polygon whose sides are not all the same length and/or whose interior angles do not all have the same measure.

Area \& Perimeter

Polygons:

The following are some examples of regular polygons:

Area \& Perimeter

Trian:les:

First lets focus on Triangles since they represent the smallest polygon:

TRIANGLES

Scalene

Area \& Perimeter

Trian:les:

base (b)
 distance from a base to

height (h)

$A=y / b h$

Area \& Perimeter

Example 1: Triangles

Find the area of the triangle.

$$
\begin{aligned}
& A=1 / 2 b h \\
& A=1 / 2(8)(5)
\end{aligned}
$$

Area \& Perimeter

Example 2: Triangles

Find the area of the triangle.
$A=1 / 2 b h$
$A=1 / 2(15)(3)$

0 Area \& Perimeter
Example 3: Triangles
Find the area of the triangle.
$A=1 / 2 b h$

$A=1 / 2(15.5)(4.4)$

Area \& Perimeter

Analyzin! Quadrilaterals:

Area \& Perimeter

Quadrilaterals:

Now lets focus on some important kinds of Quadrilaterals:

SQUARE

RECTANGLE

PARALLELOGRAM

TRAPEZOID

EQUAL OPPOSING SIDES EQUAL ANGLES RECTANGLE

EQUAL OPPOSING SIDES EQUAL OPPOSING ANGLES

NO EQUAL SIDES NO EQUAL ANGLES TWO SIDES PARALLEL

Area \& Perimeter

EQUAL SIDES EOUALANGLES
$A=l w=b h$

Area \& Perimeter

Example 4: Squares

Find the perimeter and area of the square.

Area \& Perimeter

Example 5: Squares

Find the perimeter and area of a square whose sides measure 7 inches.

$$
7
$$

$$
\begin{array}{ll}
P=4 s & A=s^{2} \\
P=4 \cdot 7 & A=7^{2}
\end{array}
$$

Area \& Perimeter

Rectan\%les:

EQUAL OPPOSING SIDES EQUAL ANGLES RECTANGLE
$A=l w=b h$

Area \& Perimeter

Example 6: Rectangles
Find the perimeter and area of the rectangle.

Area \& Perimeter

Example 7: Rectangles

Find the perimeter and area of a rectangle whose length and width measure 7 cm and 4 cm .

$P=2 l+2 w$
$A=l w$
$P=2(7)+2(4)$
$A=(7)(4)$

Area \& Perimeter

Parallelograms:

Remove the piece to the left of the vertical line and translate it to the other side of the figure

Area \& Perimeter

Parallelograms:

EQUAL OPPOSING SIDES EQUAL OPPOSING ANGLES

The shortest distance from the base to the opposite side is the height of the parallelogram

$A=b h$

Area \& Perimeter

Example 8: Parallelograms
Find the area of the parallelogram.

The base is 6 and the height is 4 .

$$
A=b \cdot h
$$

$$
A=6 \cdot 4
$$

$$
A=2 \frac{1}{3} \mathrm{Sc}
$$

Area \& Perimeter

Example 9: Parallelograms

Find the area of the parallelogram.

The base is 9 and the height is 6 .

$$
\begin{aligned}
& \mathbf{A}=\mathbf{b} \cdot \mathbf{h} \\
& \mathbf{A}=\mathbf{6} \cdot \mathbf{4} \\
& A=2 \sqrt{3 c \mid} \text { un }
\end{aligned}
$$

Area \& Perimeter

Example 10: Parallelograms

Find the area of each parallelogram.

Area \& Perimeter

Trapezoids:

$$
A=y / h\left(b_{1}+b_{2}\right)
$$

Area \& Perimeter

Example 11: Trapezoids

Find the area of the trapezoid.

$$
\begin{aligned}
& A=1 / 2 h\left(b_{1}+b_{2}\right) \\
& A=1 / 2(15)(16+21) \\
& A=(7.5)(37)
\end{aligned}
$$

Area \& Perimeter

Example 12: Trapezoids

Find the area of the trapezoid.

$$
\begin{aligned}
& A=1 / 2 h\left(b_{1}+b_{2}\right) \\
& A=1 / 2(26.6)(19.2+30.4) \\
& A=(13.3)(49.6)
\end{aligned}
$$

Area \& Perimeter

Example 13: Trapezoids

Find the area of the trapezoid.

$$
\begin{aligned}
& A=1 / 2 h\left(b_{1}+b_{2}\right) \\
& A=1 / 2(21)(8.1+28.2) \\
& A=(10.5)(36.3)
\end{aligned}
$$

Area \& Perimeter

Independent Practice: Triangles

 Find the area of each triangle.
2.

3.

Find the area.

4.

Area \& Perimeter

Independent Practice: Triangles

Answers.

1. $A=18 \mathrm{sqj}$ in 2. $A=6.625 \mathrm{sg} \mathrm{m}$

3.
 $A=185$
 4.

Area \& Perimeter

Independent Practice: Parallelograms

 Answers.

12

3.1
2.

Area \& Perimeter

Independent Practice: Parallelograms

Find the area of each parallelogram.

12
2.

Area \& Perimeter

Independent Practice: Trapezoids

Find the area of each trapezoid.
1.

2.

3. $b_{1}=8 \frac{1}{2} \mathrm{~m}, \mathrm{~b}_{2}=31 / 4 \mathrm{~m}, \mathrm{~h}=73 / 4 \mathrm{~m}$
4. $\mathrm{b}_{1}=16 \mathrm{~cm}, \mathrm{~b}_{2}=9 \mathrm{~cm}, \mathrm{~h}=12 \mathrm{~cm}$

Area \& Perimeter

Independent Practice: Traperoids

Answers.

1. $A=21173 / 189 \mathrm{sq}$ in \quad 2. $A=232.2 \mathrm{sq} \mathrm{ft}$
2. $A=45.53125 \mathrm{sq} \mathrm{m}$
3. $A=150 \mathrm{sg} \mathrm{cm}$

Area \& Perimeter

Summary:
Formula Review:

triangle
$A=1 / 2 b h$

$$
A=1 / 2 h\left(b_{1}+b_{2}\right)
$$

square

$A=\mid w=b h$

rectangle

$$
A=I w=b h
$$

parallelogram
$A=b h$
i.Sum of the angles of a triangle is 180°.
ii. The sum of any two sides of a triangle is greater than the third side.
iv.In a right-angled triangle, $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Height })^{2}$.
v.The line joining the mid-point of a side of a triangle to the opposite vertex is called the median.
vi. The point where the three medians of a triangle meet, is called centroid. The centroid divided each of the medians in the ratio 2 : 1.
vii. In an isosceles triangle, the altitude from the vertex bisects the base. viii. The median of a triangle divides it into two triangles of the same area.
ix. The area of the triangle formed by joining the mid-points of the sides of a given triangle is one-fourth of the area of the given triangle.
i.The diagonals of a parallelogram bisect each other.
ii.Each diagonal of a parallelogram divides it into triangles of the same area.
iii. The diagonals of a rectangle are equal and bisect each other. iv.The diagonals of a square are equal and bisect each other at right angles.
v.The diagonals of a rhombus are unequal and bisect each other at right angles.
vi.A parallelogram and a rectangle on the same base and between the same parallels are equal in area. vii.Of all the parallelogram of given sides, the parallelogram which is a rectangle has the greatest area.

1. The ratio between the length and the breadth of a rectangular park is 3 $: 2$. If a man cycling along the boundary of the park at the speed of 12 $\mathrm{km} / \mathrm{hr}$ completes one round in 8 minutes, then the area of the park (in sq. $\mathrm{m})$ is:
2. An error 2% in excess is made while measuring the side of a square. The percentage of error in the calculated area of the square is:
3. The ratio between the perimeter and the breadth of a rectangle is $5: 1$. If the area of the rectangle is $216 \mathrm{sq} . \mathrm{cm}$, what is the length of the rectangle?
4. The percentage increase in the area of a rectangle, if each of its sides is increased by 20% is:
5. A rectangular park 60 m long and 40 m wide has two concrete crossroads running in the middle of the park and rest of the park has been used as a lawn. If the area of the lawn is 2109 sq. m , then what is the width of the road?
6. A towel, when bleached, was found to have lost 20% of its length and 10% of its breadth. The percentage of decrease in area is:
7. A man walked diagonally across a square lot. Approximately, what was the percent saved by not walking along the edges?
8. The diagonal of a rectangle is $\sqrt{41} \mathrm{~cm}$ and its area is $20 \mathrm{sq} . \mathrm{cm}$. The perimeter of the rectangle must be:
9 . What is the least number of squares tiles required to pave the floor of a room 15 m 17 cm long and 9 m 2 cm broad?
9. The difference between the length and breadth of a rectangle is 23 m . If its perimeter is 206 m , then its area is:
10. The length of a rectangular plot is 20 metres more than its breadth. If the cost of fencing the plot @ 26.50 per metre is Rs. 5300 , what is the length of the plot in metres?
11. A tank is 25 m long, 12 m wide and 6 m deep. The cost of plastering its walls and bottom at 75 paise per sq. m , is:

The only way
 to learin mathematics is to clo mathematics.

PAUL HALMOS

The detailed answer

 with audlio explanation will be$$
\begin{aligned}
& \text { published todlay } \\
& \text { evening by 5:00 pmo }
\end{aligned}
$$

