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Theorem 11.15 (Fejér). Assume that f e L([0, 2n]) and suppose that f is periodic
with period 2n. Define a function s by the following equation:

s(x)= lim f(-x +f)+f(.7¢— I),

1=0+ 2

whenever the limit exists. Then, for each x for which s(x) is defined, the Fourier -
series generated by f is Cesaro summable and has (C, 1) sum s(x). That is, we have

@)

lim o,(x) = s(x),

A= o

‘where {a,} is the sequence of arithmetic means defined by (23). If, in addition, f is
continuous on [0, 2], then the sequence {0,} converges uniformly to f on [0, 2x].




11.15 THE WEIERSTRASS APPROXIMATION THEOREM

Fejér’s theorem can also be used to prove a famous theorem of Weierstrass which
states that every continuous function on a compact interval can be uniformly
approximated by a polynomial. More precisely, we have:

Theorem 11.17. Let f be real-valued and continuous on a compact interval [a, b].
Then for every ¢ > 0 there is a polynomial p (which may depend on ¢) such that

|f(x) = p(x)| <&  for every x in [a, b]. (30)




Proof. If te[0, n), let g(t) = fla + t(b — a)/n]; if te[n, 2n], let g(t) =
fla + 2n — t)(b — a)/n] and define g outside [0, 2] so that g has period 2x.
For the ¢ given in the theorem, we can apply Fejér’s theorem to find a function o
defined by an equation of the form

N
o(t) = Ay + Y, (A, cos kt + B, sin kt)
k=1

. such that |g(t) — o(t)| < &/2 for every ¢ in [0, 2n]. (Note that N, and hence o, -

depends on &.) Since ¢ is a finite sum of trigonometric functions, it generates a
power series expansion about the origin which converges uniformly on every finite
interval. The partial sums of this power series expansion constitute a sequence of
polynomials, say {p,}, such that p, = ¢ uniformly on [0, 2z]. Hence, for the
same &, there exists an m such that

| p.(t) — a(t)] < ;E ,  for every tin [0, 2x].




We have By, (£) — g(t)| = |Br(8) — a(t) + a(t) — g(D)]
= |B(e) = alt)| ok (o) = g(t)]
= F —oviefipml o (1) |

m(x=a)
=)

Now define the polynomial p by the formula p(x) = Pm(=,

T e =0 () = e (5 99 aax-o =

= f(x) if ”éx__a) eflmu e 2)

a

e if (@) = (b a)
lex—a<b—a

iex<b




o~ from (1) ie |By(t) — g(t)| = e Vt € [0,21] , we get BY (2)
jpCe) = [ ()] = e

ie|f(x) —px)]| < e Yx € [a, b]
HENCE THE THEOREM




11.16 OTHER FORMS OF FOURIER SERIES

Using the formulas

- Inx

2cosnx = e™ + e~ "™  and 2i sin nx = ™ — e~ "%,

the Fourier series generated by fcan be expressed in terms of complex exponentials
as follows:

. f(x) ~ —2‘5’ + Z (a, cos nx + b, sin nx) = =2 + ) (a,€™ + B,e”™), .

n=1

¢ Eor

an . bn

j a > P a 3 \
Be e e (i le, ~ i A




a ) :
° If we put oy = 70 and a_,, = [,,, we can write the exponential

nx

formulaas flx) = )2 - a, et where

1 :
Ay E(an —iby) =
g S S W NS 2T S N i 2T =
== i f(t)cosn;dt — l;fo i )sinntdt] = = Jo f(@®)(cosnt
- isinnt)dt = — [ f(t)e~™Mdt (n = 0,£1,22,.....)

f(x) ~ D e

R=—=—4a0

The formulas (7) for the coefficients now become

i
o, = ~1—j f(t)e ™ dt (n=20,+1, +2,...).
21 o |

L e



If £ has period 2n, the interval of integration can be replaced by any other interval
of length 2x.
More generally, if f € L([O, p]) and if f has period p, we write

f(x) ~ 2o -+ Z a, cos 2nnx + b, sin 2nux)
2 n=1 P P

to mean that the coefficients are given by the formulas

2mnt
P

2nrtnt
P

dt,

a, == E Ipf(t} COS.
P Jo

I

b, dt (n=20,1,2,...).

2 [P i
= I f(t) sin
P Jo

In exponential form we can write

fG) ~ 3 e,

n= —ugo

where

P
o, = JJ‘ f(t)e 2=intip gy ifn =0, +1, +2,....
P Jo




" Theorem 11.18 ( Fourier integral tﬁ;nrtmj. Assume that f € L(— o0, + o0). Suppose

there is a point x in R and an interval [x — 6, x + 0] about x such that either

a) f is of bounded variation on [x — 8, x + 8],
or else
b) both limits f(x+) and f(x —) exist and both Lebesgue integrals

J"‘f{x PO S g g J“‘f(x -0~ fx-)
0 0

t
exist.
Then we have the formula

flx+) ;.ﬂ"‘:_} = ljm [J.m f(u) cos v(u — x) du] dv, (32)
T o o

 the integral | being an improper Riemann integral.




11.8 THE RIEMANN-LEBESGUE LEMMA
Theorem 11.6. Assume that f € L(I). Then, for each real B, we have

lim | f(t)sin (at + B) dt = 0. (10)

o=+ 4 oo

Theorem 11.8 (Jordan). If g is of bounded variation on [0, 8], then

.2
I lim = {:} SIN & 4e — g(0+). (13)
a=+4+om T 0

Theorem 11.9 (Dini). Assume that g(0+) exists and suppose that for some & > 0

the Lebesgue integral
& .
J. E_l:_.r_} - ._g{p + } it
o I

exists. Then we have

lim EI g() S % 4y — 2(0+).
QO

x—+ + oo TT



Proof. The first step in the proof is to establish the following formula:

sinat . f(x+) + f(x—)

j flx + t)—— dt 5 (33)

a—* = o

For this purpose we write

Jlrerosa [ Ll I

When @ — + oo, the first and fourth integrals on the right tend to 0, because of
the Riemann—-Lebesgue lemma. In the third integral, we can apply either Theorem
11.8 or Theorem 11.9 (depending on whether (a) or (b) is satisfied) to get

sin ot dt =f{x+} +

&
lim flx <+ t)
0 Tl

o=+ = o

Similarly, we have

j filx + 1) ﬁm -':r.! dt = J-df[x — 1) Ein—!# dt —rf{-z__} as o — -4 oo,
0 T




- Thus we have established (33). If we make a translation, we get

J‘ Flx + 1) sin ot dr — J“"’ () sin a(u — x) du,

u — x

and if we use the elementary formula

sin o(u —x)zj'“

u — X

cos (u — x) dv,
0

- the limit relation in (33) becomes

lim J. f(w) [J. cos {u — x) dt:r] du = fx+) + fx— ) (34)

a=— 4+ oo JU 2

But the formula we seek to prove is (34) with only the order of integration reversed.
By Theorem 10.40 we have

J.I [Im f(u) cos v(u — x) du] dv = Jm [jaf{u} cos v(lu — x) du] du
(4] — oo i — an 0

1 for every @ > 0, since the cosine function is everywhere continuous and bounded.




Since the limit in (34) exists, this proves that

lim Eja[.[m f(u) cos v(u — x) du] dv = SxH) + fx-) :

a—++oo T 0 2

By Theorem 10.40, the integral [®_ f(u) cos v(u — x) du is a continuous function
of v on [0, «], so the integral | in (32) exists as an improper Riemann integral. .
It need not exist as a Lebesgue integral.




11.18 THE EXPONENTIAL FORM OF THE FOURIER INTEGRAL THEOREM

Theorem 11.19. If f satisfies the hypotheses of the Fourier integral theorem, then
we have

f(JH‘) +f(x ) = — lim 'r l:J.m f(u)eiu{u*.t} d!«t] dv. (35)
2 2?! a++w |_, -ap

Proof. Let F(v) = |*, f(u)cos v(u — x)du. Then F is continuous on
(-0, +00), F(v) = F(—v) and hence (2, F(v) dv = [§ F(—v)dv = (& F(v) db.
Therefore (32) becomes

fo4) +/x=) _ iy lrF(v) dv = lim lr F(v)dv.  (36)
0 —-a

a—=+4+o LT




Now define G on (0, +o) by the equation

G(v) = r f(u) sin v(u - x) du.

Then G is everywhere continuous and G(v) = —G(-v). Hence (%, G(v) dv = 0

. for every &, 5o lim,., ., %, G(v) dv = 0. Combining this with (36) we find I
flx+) +/(x-) = lim 1 {F(v) + iG(v)} dv.
2 a=+ao 2T -t

This is formula (35).




11.19 INTEGRAL TRANSFORMS

Many functions in analysis can be expressed as Lebesgue integrals or improper '
Riemann integrals of the form

9(y) = J.m K(x, y)f(x) dx. (37) .

= a0

A function g defined by an equati.ﬂn of this sort (in which y may be either real or
complex) is called an integral transform of f. The function K which appears in the
integrand is referred to as the kernel of the transform.




Exponential Fourier transform:

Fourier cosine transform:

Fourier sine transform:

Laplace transform:

Mellin transform:

J‘m e "f(x) dx.
J‘m sin xy f(x) dx.
J.m e f(x) dx.

J.m x’ " 1f(x) dx.

Jm cos xy f(x)dx. —







E INTEGRALS

2.3. FOURIER SINE AND COSIN

We know that cos At — x) = €0S AL €OS jx + sin A2 sin Ax
Fourier integral of flx} can be written as

l - » -
- )\x-»smhsm?.tldldl
fix) - L ‘L‘ f1t) lcos AL cos

& 1om ; lj‘ 3 J— ?) sin J
=;L cos/.xf: ﬂl)ms)Jdldl* = sin Ax | f1t) sin 2£ dt d).

When f(x) is an odd fu
integral in (4) vanishes and, we get

flx)= - sin)uj-ﬂﬂsinltdldl
n 0

0

This is called Fourier sine integral.
When f(x) is an even function, fI¢) cos M is even W
second integral in (4) vanishes and, we get

2 -
flx) = Ef: cos ix [ Ait)cos At dt i

This is called Fourier cosine integral.

A4
netion, fit) cos iz is odd while fi¢) sin Af is even. Thus the firy

«

hile f1f) sin At is odd. Thus the

. {6)




le 1. E ¢ =11 for |x|=1,
Example xpress the function [fix) & for. el T

sen ).;:08 ’x a7 - (M D.U. May 20085)

as a Fourier integral. Hence evaluate

Sol. The Founer integral for fix) is

1 r"""
- l<t< 1

AR s 4 1,
- LJ'., cos A (2 — x) dt d> [ f(n——I =ared }]

1 sin 2(f — x) -
3 g s

1 r snifl—x)—sinil—=1-x)
N di.

- >

. 1 sin {1+ x)+sin2il—x) e
A

= 2 sml;‘:og)..t A

” sin A cos Ax bad _JF for |x|<1
. _’: x d).=—2’ﬂxi-{o for |x|>1"

At | x | =1, i.e.,, x = = 1, flx) is discontinuous and the integral has the value

l(.’_[...).()) = Zt_-
2\ 2

<%
: sin A s L2
Note. anngx-:().wegetf: X dl--z' or J: = T S






