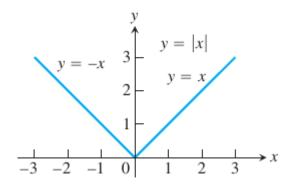
Calculus-1 (Bridge Course) 2020-2021 Complementary Course for B.Sc Chemistry/Physics

DEFINITION Function

A **function** from a set D to a set Y is a rule that assigns a *unique* (single) element $f(x) \in Y$ to each element $x \in D$.


Sketching a Graph

Graph the function $y = x^2$ over the interval [-2, 2].

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its domain. One example is the **absolute value function**

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0, \end{cases}$$

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Definition:

The function whose value at any number x is the *greatest integer less than or equal to x* is called the **greatest integer function** or the **integer floor function**. It is denoted $\lfloor x \rfloor$, or, in some books, $\lfloor x \rfloor$ or $\lfloor x \rfloor$ or int x.

Calculus-1 (Bridge Course) 2020-2021 Complementary Course for B.Sc Chemistry/Physics

Definition:

The function whose value at any number x is the smallest integer greater than or equal to x is called the **least integer function** or the **integer ceiling function**. It is denoted |x|.

In Exercises 1–6, find the domain and range of each function.

1.
$$f(x) = 1 + x^2$$

2.
$$f(x) = 1 - \sqrt{x}$$

3.
$$F(t) = \frac{1}{\sqrt{t}}$$

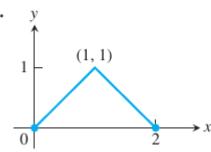
4.
$$F(t) = \frac{1}{1 + \sqrt{t}}$$

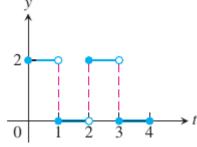
5.
$$g(z) = \sqrt{4 - z^2}$$

1.
$$f(x) = 1 + x^2$$

2. $f(x) = 1 - \sqrt{x}$
3. $F(t) = \frac{1}{\sqrt{t}}$
4. $F(t) = \frac{1}{1 + \sqrt{t}}$
5. $g(z) = \sqrt{4 - z^2}$
6. $g(z) = \frac{1}{\sqrt{4 - z^2}}$

Graph the following functions:


$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$$
$$g(x) = \begin{cases} 1 - x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$$


$$g(x) = \begin{cases} 1 - x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}$$

$$F(x) = \begin{cases} 3 - x, & x \le 1 \\ 2x, & x > 1 \end{cases}$$

$$G(x) = \begin{cases} 1/x, & x < 0 \\ x, & 0 \le x \end{cases}$$

Find a formula for each function graphed.

