STRUCTURE DETERMINATION USING IR & RAMAN SPECTROSCOPY

IR SPECTRUM

- Transitions between the vibrational levels result in the IR spectra.
- For a mode of vibration to be IR active, the vibrational mode must give rise to a change in dipole moment.

Vibrations can be divided into two, depending on dipole moment change:

1. Parallel to the axis of rotational symmetry

2.Perpendicular to the axis of rotational symmetry

RAMAN SPECTRUM

. When a beam of monochromatic light is passed through a trasparent medium the scattered light contains other frequencies in addition to the incident frequency.

 The new lines on the original spectral lines is known as Raman spectra.
 The spectrum contains :

 STOKES LINES
 ANTI-STOKES LINES

 For a molecule to be Raman active, there are three criteria:

• Molecular rotation or vibration must produce a change in the shape or size of the polarisability ellipsoid.

. Change in one of the six components of the polarisability tensor.

. It is also judged by the variation of polarisability as a function of some displacement coordinate.

MUTUAL EXCLUSION PRINCIPLE

If a molecule has centre of symmetry then Raman active vibrations are IR inactive and vice versa.

Determination of molecular structure is based on:

- Application of symmetry
- Vibrational selection rules
- State of polarisation of lines
- Observed frequencies

Molecules of type AB₂

Triatomic with possibilities :

- Linear symmetric- CO2 , CS2
- Bent symmetric SO2

- Linear asymetric- N2O
- * Linear symmetric molecule has to obey rule of mutual exclusion due to centre of symmetry.
- * In bend and linear asymmetric three different modes are IR and Raman active.
- * If molecule is linear P,R branches are present in IR spectrum while P,Q,R branches are present in non-linear molecules.

Fundamentals of AB₂ type molecule

Model	No.of fundamentals Allowed in IR	No. Permitted in Raman effect	No. Of IR & Raman coincidences	No.of polarized Raman lines
Linear Y— X — Y	2	1	0	1
Bent X Y Y	3	3	3	2
Linear YY X	3	3	3	2

Molecules of type AB₃

Mainly 2 types

- symmetric planar
 symmetric pyramidal
- . 3N-6= 6 fundamental vibrations.

. If molecular shape has symmetry this number of fundamental vibration will be reduced by degeneracy.

. In symmetrical planar and pyramidal shapes one stretching mode and one angle deformation mode are each doubly degenerate . So only 4 different fundamental frequencies.

Fundamentals of symmetric AB₃ molecule

Model	No. Of distinct fundamentals	No. Of fundamentals active in IR	No. Of fundamentals active in Raman	No. Of IR & Raman coincidences	No.of polarized Raman lines
Planar Y X Y Y	4	3	3	2	1
Pyramidal Y X y	4	4	4	4	2

Molecules of type AB₄

Common models in this category are :

Square planar – 7 fundamental modes
Tetrahedral – 4 fundamental modes

Model	No. Of distinct fundamentals	No. Of fundamentals active in IR	No. Of fundamentals active in Raman	No. Of IR & Raman coincidences	No.of polarized Raman lines
Square planar Y Y X Y Y	7	3	3	Ο	1
Tetrahedral	4	2	4	2	1

THANK YOU...