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Objectives

• Develop an intuitive understanding of the cross-
correlation of two signals.

• Define the meaning of the auto-correlation of a signal.

• Develop a method to calculate the cross-correlation and 
auto-correlation of signals.

• Demonstrate the relationship between auto-correlation 
and signal power.

• Demonstrate how to detect periodicities in noisy signals 
using auto-correlation techniques.

• Demonstrate the application of cross-correlation to sonar 
or radar ranging
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Correlation

• Correlation addresses the question: “to what 

degree is signal A similar to signal B.”

• An intuitive answer can be developed by 

comparing deterministic signals with stochastic 

signals.

– Deterministic = a predictable signal equivalent to that 

produced by a mathematical function

– Stochastic = an unpredictable signal equivalent to that 

produced by a random process
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Three Signals

>> n=0:23;   

>> A=[ones(1,4),zeros(1,8),ones(1,4),zeros(1,8)];

>> subplot (3,1,1),stem(n,A);axis([0 25 0 1.5]);title('Signal A')

>> B1=randn(size(A));  %The signal B1 is Gaussian noise with the same length as A

>> subplot(3,1,2),stem(n,B1);axis([0 25 -3 3]);title('Signal B1') 

>> B2=A;

>> subplot(3,1,3),stem(n,B2); axis([0 25 0 1.5]);title('Signal B2');xlabel('Sample')
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By inspection, A is “correlated” 

with B2, but B1 is 

“uncorrelated” with both A and 

B2.  This is an intuitive and 

visual definition of “correlation.”
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Quantitative Correlation

• We seek a quantitative and algorithmic way of 

assessing correlation

• A possibility is to multiple signals sample-by-

sample and average the results.  This would 

give a relatively large positive value for identical 

signals and a near zero value for two random 

signals.
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Simple Cross-Correlation

• Taking the previous signals, A, 

B1(random), and B2 (identical to A):

>> A*B1'/length(A)

ans =

-0.0047

>> A*B2'/length(A)

ans =

0.3333

The small numerical 

result with A and B1 

suggests those signals 

are uncorrelated while A 

and B2 are correlated.
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Simple Cross-Correlation of 

Random Signals
>> n=0:100;

>> noise1=randn(size(n));

>> noise2=randn(size(n));

>> noise1*noise2'/length(noise1)

ans =

0.0893

Are the two signals 

correlated?

With high probability, the result is expected to be

≤ ±2/√N = ±0.1990

for two random (uncorrelated) signals

We would conclude these two signals are uncorrelated.
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The Flaw in Simple Cross-

Correlation
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In this case, the simple cross-correlation would be zero 

despite the fact the two signals are obviously “correlated.”
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Sample-Shifted Cross-Correlation

• Shift the signals k steps with respect to one another and calculate 

r12(k).

• All possible k shifts would produce a vector of values, the “full” 

cross-correlation.

• The process is performed in MATLAB by the command xcorr

• xcorr is equivalent to conv (convolution) with one of the signals 

taken in reverse order.
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Full Cross-Correlation

>> A=[ones(1,4),zeros(1,8),ones(1,4),zeros(1,8)];

>> A2=filter([0,0,0,0,0,1],1,A);

>> [acor,lags]=xcorr(A,A2);

>> subplot(3,1,1),stem(A); title('Original Signal A')

>> subplot(3,1,2),stem(A2); title('Sample Shifted Signal A2')

>> subplot(3,1,3),stem(lags,acor/length(A)),title('Full Cross-Correlation of A and A2')

Signal A2 shifted 

to the left by 5 

steps makes the 

signals identical 

and r12 = 0.333
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Full Cross-Correlation of Two 

Random Signals
>> N=1:100;

>> n1=randn(size(N));

>> n2=randn(size(N));

>> [acor,lags]=xcorr(n1,n2);

>> stem(lags,acor/length(n1));
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The cross-

correlation is 

random and 

shows no peak, 

which implies no 

correlation
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Auto-Correlation

• The cross-correlation of a signal with itself 

is called the auto-correlation

• The “zero-lag” auto-correlation is the same 

as the mean-square signal power.
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Auto-Correlation of a Random 

Signal
>> n=0:50;

>> N=randn(size(n));

>> [rNN,k]=xcorr(N,N);

>> stem(k,rNN/length(N));title('Auto-correlation of a Random Signal')

Mathematically, the 

auto-correlation of a 

random signal is like 

the impulse function
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Auto-Correlation of a Sinusoid

>> n=0:99;

>> omega=2*pi*100/1000;

>> d1000=sin(omega*n);

>> [acor_d1000,k]=xcorr(d1000,d1000);

>> plot(k,acor_d1000/length(d1000));

>> title('Auto-correlation of signal d1000')
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The auto-

correlation vector 

has the same 

frequency 

components as 

the original signal
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Identifying a Sinusoidal Signal 

Masked by Noise
>> n=0:1999;

>> omega=2*pi*100/1000;

>> d=sin(omega*n);

>> d3n=d+3*randn(size(d));  % The sinusoid is contaminated with 3X noise

>> d5n=d+5*randn(size(d));  % The sinusoid is contaminated with 5X noise.

>> subplot(3,1,1),plot(d(1:100)),title('Clean Signal')

>> subplot(3,1,2),plot(d3n(1:100)),title('3X Noisy Signal'), axis([0,100,-15,15])

>> subplot(3,1,3),plot(d5n(1:100)),title('5X Noisy Signal'), axis([0,100,-15,15])

It is very difficult 

to “see” the 

sinusoid in the 

noisy signals
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Identifying a Sinusoidal Signal 

Masked by Noise (Normal Spectra) 
>> n=0:1999;

>> omega=2*pi*100/1000;

>> d=sin(omega*n);

>> d3n=d+3*randn(size(d));  % The sinusoid is contaminated with 3X noise

>> d5n=d+5*randn(size(d));  % The sinusoid is contaminated with 5X noise.

>> subplot(2,1,1),fft_plot(d3n,1000);title('100 Hz 3X Noise')

>> subplot(2,1,2),fft_plot(d5n,1000);title('100 Hz 5X Noise')

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

Hz

100 Hz 3X Noise

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

Hz

100 Hz 5X Noise

Normal spectra 

of a sinusoid 

masked by noise: 

High noise power 

makes detection 

less certain
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Identifying a Sinusoidal Signal Masked by 

Noise ( Auto-correlation Spectra)

>> acor3n=xcorr(d3n,d3n);

>> acor5n=xcorr(d5n,d5n);

>> subplot(2,1,1),fft_plot(d3n,1000);title('100 Hz, 3X Noise, Signal Spectrum')

>> subplot(2,1,2),fft_plot(acor3n,1000);title('100 Hz, 3X Noise, Auto-correlation Spectrum')

>> figure, subplot(2,1,1),fft_plot(d5n,1000);title('100 Hz, 5X Noise, Signal Spectrum')

>> subplot(2,1,2),fft_plot(acor5n,1000);title('100 Hz, 5X Noise, Auto-correlation Spectrum')
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The auto-

correlation of a 

noisy signal 

provides greater 

S/N in detecting 

dominant frequency 

components 

compared to a 

normal FFT
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Detecting Periodicities in Noisy 

Data: Annual Sunspot Data
>> load wolfer_numbers

>> year=sunspots(:,1);

>> spots=sunspots(:,2);

>> stem(year,spots);title('Wolfer Sunspot Numbers');xlabel('Year')
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Detecting Periodicities in Noisy 

Data: Annual Sunspot Data
>> [acor,lag]=xcorr(spots);

>> stem(lag,acor/length(spots));

>> title('Full Auto-correlation of Wolfer Sunspot Numbers')

>> xlabel('Lag, in years')

>> figure, stem(lag(100:120),acor(100:120)/length(spots));

>> title('Auto-correlation from 0 to 20 years')

>> xlabel('Years')
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Autocorrelation 

has detected a 

periodicity of 9 

to 11 years
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Sonar and Radar Ranging

>> x=[ones(1,100),zeros(1,924)];

>> n=0:1023;

>> plot(n,x); axis([0 1023 -.2, 1.2])

>> title('Transmitted Pulse');xlabel('Sample,n')

>> h=[zeros(1,399),1];             % Impulse response for z-400 delay

>> x_return=filter(h,1,x);          % Put signal thru delay filter

>> figure,plot(n,x_return); axis([0 1023 -.2, 1.2])

>> title('Pulse Return Signal');xlabel('Sample, n')
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Simulation of a 

transmitted and 

received pulse (echo) 

with a 400 sample 

delay
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Sonar and Radar Ranging

>> [xcor_pure,lags]=xcorr(x_return,x);

>> plot(lags,xcor_pure/length(x))

>> title('Cross-correlation, transmitted and received pure signals')

>> xlabel('lag, samples')
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The cross-correlation 

of the transmitted and 

received signals 

shows they are 

correlated with a 400 

sample delay
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Sonar and Radar Ranging

>> x_ret_n=x_return+1.5*randn(size(x_return));

>> plot(n,x_ret_n); axis([0 1023 -6, 6])             %Note change in axis range

>> title('Return signal contaminated with noise')

>> xlabel('Sample,n')
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The presence of 

the return signal in 

the presence of 

noise is almost 

impossible to see
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Sonar and Radar Ranging

>> [xcor,lags]=xcorr(x_ret_n,x);

>> plot(lags,xcor/length(x))
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Cross-correlation 

of the transmitted 

signal with the 

noisy echo clearly 

shows a 

correlation at a 

delay of 400 

samples
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Summary

• Cross-correlation allows assessment of 

the degree of similarity between two 

signals.

– Its application to identifying a sonar/radar 

return echo in heavy noise was illustrated.

• Auto-correlation (the correlation of a signal 

with itself) helps identify signal features 

buried in noise.
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