Thermodynamics

Branch of Physics which deals with concepts of heat and temperature.
It is a macroscopic science which deals with bulk system without going to the molecular constitution of the matter.

Deals with macroscopic variable like pressure, volume, temperature, mass etc called thermodynamic co ordinate.

Thermal equilibrium

A system is said to be in thermal equilibrium, if temperature at all points are equal and is equal to the temperature of the surroundings. Any two independent thermodynamic co ordinates of the system remains constant.

Heat

Energy which is transferred from one body (point) to another by conduction, convection and radiation on account of temperature difference.

SI unit is J
calorie $=4.186 \mathrm{~J}$ Btu $=1055 \mathrm{~J}$
Calorie $=4186 \mathrm{~J}$

Note : Total energy content of a system is called internal energy.
There are two types of internal energy i) ordered IE ii) Disordered IE Only disordered energy will be transferred due to the temperature difference and it is the heat energy.

Temperature

Measure of degree of

hotness or coldness of an

object (mean KE of random
motion of the molecules)
which determines direction
of heat flow.

Scales of temperature.

 i) Celsius (Anders Celsius)ii) Farenheit (Gabriel Farenheit)
iii)Absolute scale or Kelvin scale (Lord Kelvin)
iv) Rankine scale (John Mac Quorn Rankine)
492 to 672 with 180 equal parts.

Conversion equation

$$
\frac{\mathrm{C}-0}{100}=\frac{\mathrm{F}-32}{180}=\frac{\mathrm{K}-273}{100}=\frac{\mathrm{R}-492}{180}
$$

To find difference in temperature from one scale to another

$\frac{\Delta C}{100}$

$=\Delta K$
 100

$=\Delta \mathrm{F}$
=
ΔR
180

Kelvin Scale or Absolute scale

It does not depend upon any physical property of thermometric substance used.

Since heat and temperature are directly connected (does not depend on the properties of any thermometric substance), it is called ideal scale.

Standard fixed point used is triple point of water (273.16 K at 4.58 mm of Hg pressure).
One Kelvin is defined as $1 / 273.16$ of the temperature of triple point of water.
Method: Let the gas pressure measured using constant volume gas thermometer at triple point of water be P_{tr}. If P is the press of the gas at unknown temperature T , Then $\mathrm{T} / \mathrm{T}_{\mathrm{tr}}=\mathrm{P} / \mathrm{P}_{\mathrm{tr}}$.
Unknown temp. $\mathrm{T}=273.16\left(\mathrm{P} / \mathrm{P}_{\mathrm{tr}}\right)$

Adiabatic wall: ideal insulating wall. (no heat exchange is permitted through it) Eg: fibre glass, wood, plastic etc.

Diathermal wall: partition that allows two systems on its opposite sides to exchange heat. Eg: copper, aluminium etc.

Zeroth law of thermodynamics

Two systems in thermal eqbm with a third are in thermal eqbm with each other.
Note: temperature of a system can be defined as a property which determines whether or not the system is in thermal eqbm with other systems, when brought into contact.

Specific heat capacity of gases - C_{p} and $\mathrm{C}_{\boldsymbol{v}}$.

Molar sp.heat at constant volume is defined as the quantity of heat reqd to raise the temperature of one mole of a gas through 1 K keeping volume (or prssure as the case be).

Unit is $\mathrm{J} / \mathrm{mole} / \mathrm{K}$

Why $\mathrm{C}_{\mathrm{p}}>\mathrm{C}_{\mathrm{v}}$?

C_{v} - heat absorbed - used for increase in internal energy.
C_{p} - increase in internal energy + work done in expansion.
So.

Mayer's relation

1 mole of a gas enclosed in a cylinder fitted with a tight frictionless piston of area of cross section ' a '. (press P, volume V)
Heat reqd to rise temp by $1^{\circ} \mathrm{C} \Delta \mathrm{Q}_{1}=\mathrm{C}_{\mathrm{v}}$.
(used for increasing the internal energy)
If gas is heated at constant press,

$$
\begin{aligned}
\Delta \mathrm{Q}=\mathrm{C}_{\mathrm{p}} & =\Delta \mathrm{Q}_{1}+\mathrm{W} \\
& =\mathrm{C}_{\mathrm{v}}+\mathrm{P} \text { adx }=\mathrm{C}_{\mathrm{v}}+\mathrm{Pdv}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PV}=\quad \mathrm{RT} \\
& \mathrm{P}(\mathrm{~V}+\mathrm{dv})=\mathrm{R}(\mathrm{~T}+1) \\
& \mathrm{PV}+\mathrm{Pdv}=\mathrm{RT}+\mathrm{R}
\end{aligned}
$$

Ratio of specific heats

$\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$ is a constant for a gas and depends on the atomicity of the gas. i. Monoatomic gas
$\mathrm{C}_{\mathrm{v}}=\mathrm{dU} / \mathrm{dT}=\frac{\mathrm{d}(1.5 \mathrm{RT})}{\mathrm{dT}}=1.5 \mathrm{R}$
$C_{p}=C_{v}+R=2.5 R$
$\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=2 / 3 \times 5 / 2=5 / 3=1.67$

ii. Diatomic gas

$\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=3.5 \mathrm{R} / 2.5 \mathrm{R}=1.4$
iii. Triatomic gas
$\gamma=C_{p} / C_{v}=4 \mathrm{R} / 3 \mathrm{R}=1.33$
(For linear triatomic gas $\mathrm{U}=7 / 2 \mathrm{RT}$)
$\gamma=C_{p} / C_{v}=9 / 7=1.28$
(as degree of freedom increases , γ approaches unity)
iv. Polyatomic gas having n degree of freedom . For 1 mole, $\quad U=n R T / 2$

$\mathrm{Cv}=\mathrm{dU} / \mathrm{dT}=\mathrm{nR} / 2$
 $\mathrm{Cp}=\mathrm{nR} / 2+\mathrm{R}$

$\gamma=$
$\mathrm{Cp} / \mathrm{Cv}=$ $n R / 2+R$
nR/2

$$
=1+2 / n
$$

Assembly of extremely large no. of particles (atoms or molecules) which has certain value of P, V and temperature.

Can be a solid, a liquid, or a gas or a combination of two or more of these .(no.of particles should be very large).

Surroundings.

Everything outside the

system which has a direct
effect on the system is
called its surroundings.

Thermodynamic variables or parameters or co-ordinates

Quantities like, pressure, volume, temperature which help us to study the behavior of a thermodynamic system.

Thermodynamic process.

A process in which, some changes occur in the state of a thermodynamic system. ie. thermodynamic variable change with time
Eg: isothermal, adiabatic, isobaric, isochoric, cyclic, non cyclic, quasistatic or eqbm process etc.

Cyclic process

A thermodynamic process in which a system, after undergoing a series of changes, comes back to the original state is called a cyclic process.
Work done in a cyclic process is, numerically equal to the area enclosed in indicator diagram.

Quasi - Static Process

A change in any of the parameter which takes place at such a slow speed that the values of P, V and T can be taken to be, practically, constant, is called a quasistatic or eqbm process.

First law of thermodynamics

The energy supplied to a system
$(\Delta \mathrm{Q})$ is used to raise the internal energy (ΔU) and for doing external work $(\Delta \mathrm{W})$.

$$
\text { ie. } \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}
$$

For infinitesimally small change $d Q=d U+d W \quad$ (differential form)

First Law of Thermodynamics

Any themodynamic syitem in an ecpalibrium state possesses a state variable called the internal energy (E). Betwesen aryy two eqpillberim stakes, the change in intemal ensergy is equal to the difference of the heat tranafer into the system and woek dane by the system.

Note:

i. It is law of conservation of energy and hence applicable to every process in nature.
ii. It introduce concept of internal energy .
iii. dQ and dW are path fns. So dQ cannot be written as Q_{1} - Q_{2}, similarily initial work and final work are meaningless.

Note:

iv. Sign convention .

Heat gained by the system dQ is +ve Heat lost by the system dQ is -ve Work done by the sytem $\quad \mathrm{dW}$ is +ve Work done on the system dW is -ve Increase in internal energy dU is +ve Derease in internal energy dU is -ve.

Indicator diagram or P-V diagram
Graph connecting Pressure and volume. Helps to calculate amount of work done by the gas or on the gas during expansion or compression.
Area - work done.
For small area abcd, $\mathrm{dW}=\mathrm{Pdv}$ Total work $\mathrm{W}=\int \mathrm{Pdv}$ limit v_{1} to v_{2}.

Eqn for isothermal process

PV = RT
Isothermal process, $\mathrm{T}=$ constant. ie. $\mathrm{PV}=$ constant.
Isothermal process obey Boyle's law.
$\mathrm{dU}=0$.
So, $\mathrm{dQ}=\mathrm{dW}$
ie. ideal gas when expands isothermally, does mechanical work dW and absorbs equivalent amount heat from surroundings.

When a system goes from state A to state B, it is supplied with 400J of heat and it does 100 J of work.
i) For this transition, what is ΔU ?
ii) If the system moves from B to A , $\Delta \mathrm{U}$?
iii) If in moving from A to B along a different path in which $\mathrm{W}^{\prime}=400 \mathrm{~J}$ of work is done on the system , how heat does it absorb?
i) $\Delta \mathrm{U}_{\mathrm{AB}}=400-100=300 \mathrm{~J}$
ii) If system comes back to A ,

$$
\begin{aligned}
& \Delta \mathrm{U}=\Delta \mathrm{U}_{\mathrm{AB}}+\Delta \mathrm{U}_{\mathrm{BA}}=0 \\
& \Delta \mathrm{U}_{\mathrm{BA}}=-300 \mathrm{~J}
\end{aligned}
$$

iii) $\Delta \mathrm{U}$ is same for all the paths having same initial and final states.
$\Delta \mathrm{U}_{\mathrm{AB}}=\mathrm{Q}^{\prime}-\mathrm{W}^{\prime}$
$\mathrm{Q}^{\prime}=\Delta \mathrm{U}_{\mathrm{AB}}+\mathrm{W}^{\prime}=300+(-400)=-100 \mathrm{~J}$
-ve sign indicates that system loses heat .

Cyclic process

A thermodynamic process in which a system, after undergoing a series of changes, comes back to the original state is called a cyclic process.
Work done in a cyclic process is ,
numerically equal to the area enclosed in indicator diagram

$$
(\mathrm{dU}=0) \quad \mathrm{dQ}=\mathrm{dW}
$$

Isolated system

Neither take heat from outside , nor do work is called isolated system .

$\mathrm{dQ}=0=\mathrm{dW}$

$\mathrm{dU}=0$

Free expansion

Membrane separate two compartments of a container,
one ideal gas, other vacuum. Membrane breaks, gas expands. $\mathrm{dQ}=0, \mathrm{dW}=0($ into vacuum $)$ $\mathrm{dU}=0$

Name two
thermodynamic process - no change in internal energy

Isothermal process

$\Delta \mathrm{T}=0$ does not mean

 that $\Delta \mathrm{U}$ is zero .
Energy change appear

 as PE.$d Q=d U+d W$

Adiabatic process

No heat exchange with surroundings.

$$
d Q=0 \quad d U=-d W
$$

Eg. i) vigorous shaking a thermos containing tea.
ii) cycle pump gets heated up - (piston moves fast ,work on the gas dU - +ve).
iii) propagation of sound in air.
iv) deposition of CO_{2} particles on a cloth held at the nozzle of a vessel containing CO_{2}, due to cooling and solidification.

Isobaric process -at constant pressure.

$\mathrm{dW}=\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$

$\mathrm{dQ}=\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)+\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
Melting $\mathrm{dU}=0$, boiling, du
and dV are there .

Isobaric process

Isochoric process -at constant volume

No work is done $\mathrm{dW}=0$
$\mathrm{dQ}=\mathrm{dU}$
Eg. Explosion in a petrol engine.
Sudden rise in T and associated P, before start of power
stroke, cause explosion .

Isochoric process

Application of First law of thermodynamics

i. Cooling caused in an

 adiabatic process .Expansion of 1mole of gas in perfectly insulating cylinder.
$\mathrm{dU}=\mathrm{Cv} d \mathrm{~d} \quad \mathrm{dW}=\mathrm{PdV}$
$\mathrm{CvdT}+\mathrm{PdV}=0$
dT = - PdV/ Cv
-ve sign shows cooling.

Application of First law of thermodynamics

ii. Melting
$\mathrm{dQ}=\mathrm{mL}_{\mathrm{f}}$.
Since no appreciable change in volume during melting, $\mathrm{dV}=0 . \mathrm{dW}=\mathrm{PdV}=0$.

$$
\begin{gathered}
\mathrm{mL}_{\mathrm{f}}=\mathrm{dU}+0 . \\
\mathrm{dU}=\mathrm{mL}_{\mathrm{f}} .
\end{gathered}
$$

ie. whole of the supplied heat is used in raising the internal energy of the substance, inspite of the fact that there is no rise of temperature.
iii. Boiling
$\mathrm{dQ}=\mathrm{mL}_{\mathrm{v}}$.
Volume change V_{i} to $\mathrm{V}_{\mathrm{f}} \cdot \mathrm{dW}=\mathrm{P}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)$
$\mathrm{dU}=\mathrm{dQ}-\mathrm{PdV}$

$$
=m L_{v}-P\left(V_{f}-V_{i}\right)
$$

ie. total heat supplied to the system is utilized in raising the internal energy as well as in doing external work.

$$
\mathrm{dQ}=\quad(\mathrm{dW}=0)
$$

If heated at constant pressure, for same dT,

$$
\mathrm{dQ}^{\prime}=\mathrm{C}_{\mathrm{p}} \mathrm{dT} \quad \mathrm{dW} \mathrm{~W}^{\prime}=\mathrm{PdV}
$$

$$
\mathrm{dU}^{\prime}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}-\mathrm{PdV}=
$$

(U point fn)

$$
\mathrm{C}_{\mathrm{v}} \mathrm{dT}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}-\mathrm{PdV}
$$

$$
\mathrm{C}_{\mathrm{p}} \mathrm{dT}=\mathrm{C}_{\mathrm{v}} \mathrm{dT}+\mathrm{PdV}
$$

Note:

i. It is law of conservation of energy and hence applicable to every process in nature.
ii. It introduce concept of internal energy .
iii. $d Q$ and $d W$ are path fns. So dQ cannot be written as $Q_{1}-Q_{2}$, similarily initial work and final work are meaningless.
iv . dU is path independent.

Salary $(\mathrm{dQ})=$ Expenditure $(\mathrm{dw})+$ Savings (dU)

Work done in isothermal process

1 mole of ideal gas enclosed in a cylinder having perfectly non conducting walls and conducting bottom.
$\mathrm{W}=\int \mathrm{Pdv}$ limit v_{1} to v_{2}.

$$
\begin{array}{lr}
=\int(\mathrm{RT} / \mathrm{V}) \mathrm{dv} & \mathrm{PV}=\mathrm{RT} \\
=\mathrm{RT} \log _{\mathrm{e}}\left[\mathrm{~V}_{2} / \mathrm{V}_{1}\right] \quad \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} . \\
=2.303 \mathrm{RT} \log _{10}\left[\mathrm{P}_{1} / \mathrm{P}_{2}\right]
\end{array}
$$

Equation For Adiabatic process.

$0=\mathrm{dU}+\mathrm{PdV}$
$0=\mathrm{CvdT}+\mathrm{PdV}$
$\mathrm{PV}=\mathrm{RT} \quad \mathrm{PdV}+\mathrm{VdP}=\mathrm{RdT} \quad \mathrm{dT}=[\mathrm{PdV}+\mathrm{VdP}] / \mathrm{R}$
$0=\mathrm{Cv}[\mathrm{PdV}+\mathrm{VdP}] / \mathrm{R}+\mathrm{PdV}$
$0=\mathrm{Cv}[\mathrm{PdV}+\mathrm{VdP}]+\mathrm{RPdV}$
$0=\mathrm{Cv}[\mathrm{PdV}+\mathrm{VdP}]+[\mathrm{Cp}-\mathrm{Cv}] \mathrm{PdV}$
$0=\mathrm{Cv} V d \mathrm{P}+\mathrm{Cp} \mathrm{PdV}$
$0=\mathrm{dP} / \mathrm{P}+\gamma \mathrm{dV} / \mathrm{V}$
Integrating, $\log P+\gamma \log V=$ constant.
$\log \left(\mathrm{PV}^{\gamma}\right)=$ constant \quad or $\quad \mathrm{PV}^{\gamma}=$ constant

Equation For Adiabatic process.

$\mathrm{PV}^{\gamma}=$ constant.

RT $\mathrm{V}^{\gamma}=$ constant $\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$
$\mathrm{P}=\mathrm{RT} / \mathrm{V}$
V
$\mathrm{TV}^{\gamma-1}=$ constant
$\mathrm{P}(\mathrm{RT} / \mathrm{P})^{\gamma}=\mathrm{constant}$
$\mathrm{V}=\mathrm{RT} / \mathrm{P}$
$\mathrm{T}^{\gamma} \mathrm{P}^{1-\gamma}=$ constant

Work done in Adiabatic process

Adiabatic process $\mathrm{dQ}=0, \mathrm{dW}=-\mathrm{dU}=-\mathrm{C}_{\mathrm{v}} \mathrm{dT}$

$$
\begin{aligned}
\mathrm{W} & =\int-\mathrm{C}_{\mathrm{v}} \mathrm{dT} \\
& =-\mathrm{C}_{\mathrm{v}}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right]
\end{aligned}
$$

$$
\text { limit } T_{1} \text { to } T_{2} .
$$

$$
=\mathrm{C}_{\mathrm{v}}\left[\mathrm{~T}_{1}-\mathrm{T}_{2}\right] \quad\{\text { Mayer's relation } \div \mathrm{Cv} \text { and }
$$

$$
\text { solving, } \left.C_{v}=R /(\gamma-1)\right\}
$$

$$
=\mathrm{R}\left[\mathrm{~T}_{1}-\mathrm{T}_{2}\right]
$$

$$
\gamma-1
$$

$$
\mathrm{W} \quad \alpha\left[\mathrm{~T}_{1}-\mathrm{T}_{2}\right]
$$

Comparison of slopes of isothermal and adiabatic.

Isothermal. $\mathrm{PV}=\mathrm{RT}, \quad \mathrm{PdV}+\mathrm{VdP}=0$
$\mathrm{dP} / \mathrm{dV}=-\mathrm{P} / \mathrm{V}$ gives slope of isothermal
Adiabatic $\mathrm{PV}^{\gamma}=\mathrm{constant}$.
$\mathrm{V}^{\gamma} \mathrm{dP}+\mathrm{P} \mathrm{\gamma} \mathrm{~V}^{\gamma-1} \mathrm{dV}=0$
$\mathrm{dP} / \mathrm{dV}=-\gamma \mathrm{P} / \mathrm{V}$ gives slope of adiabatic.
ie. Slope of adiabatic $=\gamma^{*}$ slope of isothermal (under same conditions of pressure and volume.)
Since $\gamma>1$, slope of adiabatic is steeper.

Isothermal Process

$\Delta T=0$
System is thermally conducting to the surroundings.
Change occur slowly
ΔU may or maynot be 0
Sp.heat - infinite
Eqn PV = constant.
Isotherm slope $d P / d V=-(P / V)$
Isothermal elasticity = P

Adiabatic process

$\Delta Q=0$
Thermally insulated.

Sudden change
$\Delta U \neq 0$
Sp.heat $=0$
Eqn $\mathrm{PV}^{\gamma}=$ constant.
Adiabatic slope $\mathrm{dP} / \mathrm{dV}=-\gamma(\mathrm{P} / \mathrm{V})$
Adiabatic elasticity $=\gamma \mathrm{P}$

Reversible process.

One that is performed in such a

 way that, at the conclusion of the process, both the system and its surroundings are restored to their initial states, without producing ay change in the rest of the universe.Conditions reqd for reversible process i. P and V of system undergoing process, must not be very different from those of surroundings. ie. thermal eqbm with surroundings.

ii. Slow

iii. Working parts must be frictionlesss iv. No loss due to conduction ,
radiation.

Irreversible process.

One in which, at the conclusion of the process, the system cannot be restored to its initial state when the process is reversed.
A permanent change is left somewhere. Eg. Chemical reaction, heat loss due to friction, heat conduction, radiation etc.

What is the angle which

 the curve of P-V diagram of an isobaric change makes with the positive direction of V-axis ?It has been observed that air coming out of the hole of a punctured foot ball is cooler. Why is it so ?

The climate of a harbour

 town is more termperate than that of a town in desert at the same latitude? Relative humidity is high. Sodoes not go to extreme condition .

Super heated water and super cooled vapour

Water above its boiling point and water vapour below boiling point. Unstable states, donot lie on P-V-T surface. Used in cloud chamber, and bubble chamber for detection of charged nuclear particles.

Limitations of First law of thermodynamics
i. Does not indicate the direction in which the change can occur. ($\mathrm{H} \rightarrow \mathrm{C}$ and $\mathrm{C} \rightarrow \mathrm{H}$) a) why no flow of heat from cold to hot. ? b) Applying car brake - work friction - heat. Why - cools - does not move ?
First law silent about reverse conversion .

Limitations of First law of thermodynamics
ii. No idea about extent of change.(100 $\%$ heat \rightarrow Work. But not possible)
a) any amount of work to heat. Eg. Friction. But restriction on reverse.
b) extenrnal agency is reqd for reverse.
c) no heat engine can covert all heat received into mechanical energy .

First law deytessiage

qualititafiver statement of

 beat into work. But nature hasumposed restrictions. So require a device called heat engine and a medium called working○!以

Q_{1} - amount absorbed.

Q_{2} - rejected.
W - work done.
Efficiency $\eta=\frac{\text { work out put }}{\text { Heat in put }}$

$$
\begin{aligned}
& =W / Q_{1} \\
& =\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}}
\end{aligned}
$$

Note: it is not possible to covert heat derived from a single body into work.
i) So ship cannot run with enormous energy available in sea water.
ii) Factories cannot run with vast amount of heat available in the atmosphere.

CARNOT ENGINE

It is an ideal theoretical engine devised by Sadi Carnot.

Parts:
i) Source - reservoir of heat having conducting top at T_{1} Kwih infinite thermal capacity .

CARNOT ENGINE

ii) Body or engine- 1 mole of

 ideal gas (working substance) taken in an adiabatic cylinder with frictioless piston, having conducting bottom .iii) Sink - like source (at $\left.T_{2} K<T_{1} K\right)$

Working of Carnot engine
Carnot's cycle : working substance is subjected to a cycle of operations consisting of two isothermal operations and two adiabatic operations . This cycle of operations is called carnot's cycle.

Working of Carnot engine
Working substance is 1 mole of ideal gas at temperature $\mathrm{T}_{1} \mathrm{~K}$ same as that of source.

P_{1} - pressure

$$
\mathrm{V}_{1} \text { - volume. }
$$

Working of Carnot engine

i)Isothermal expansion :

Cylinder on source. Pressure on piston is slowly reduced and allowed to expand.

$$
\begin{aligned}
\text { ie } \mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1} & \rightarrow \mathrm{P}_{2,} \mathrm{~V}_{2,} \mathrm{~T}_{1} \\
\mathrm{Q}_{1}=\mathrm{W}_{1} & =\mathrm{RT}_{1} \log \mathrm{~V}_{2} / \mathrm{V}_{1} \\
& =\text { Area BCHGB }
\end{aligned}
$$

Working of Carnot engine

ii) Adiabatic expansion :

Cylinder on platform. Pressure on piston is slowly reduced and allowed to expand until temp $\mathrm{T}_{2} \mathrm{~K}$.

$$
\begin{aligned}
& \text { ie } \mathrm{P}_{2}, \mathrm{~V}_{2,} \mathrm{~T}_{1} \rightarrow \mathrm{P}_{3,}, \mathrm{~V}_{3,}, \mathrm{~T}_{2} . \\
& \begin{aligned}
\mathrm{W}_{2} & =\frac{\mathrm{R}}{(\gamma-1)}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \\
& =\text { Area BCHGB }
\end{aligned}
\end{aligned}
$$

Working of Carnot engine

iii) Isothermal compression :

Cylinder on sink. Pressure on piston is slowly increased and gas inside is compressed to V_{3} at $T_{2} \mathrm{~K}$.

$-\mathrm{Q}_{2}=-\mathrm{W}_{3}=-\mathrm{RT}_{2} \log \mathrm{~V}_{3} / \mathrm{V}_{4}$.

$$
=- \text { Area CDFHC }
$$

Working of Carnot engine

 iv) Adiabatic compression :Cylinder on platform. Pressure on piston is slowly increased so that gas regains initial conditions.

$$
\begin{aligned}
\text { ie } P_{4}, & V_{4,} T_{2} \rightarrow P_{1}, V_{1}, T_{1} \\
-W_{4} & =\frac{-\mathrm{R}}{(\gamma-1)}\left(T_{1}-T_{2}\right) \\
& =- \text { Area DAEFD }
\end{aligned}
$$

Working of Carnot engine

Note: Points A and D are on same adiabatic $\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{4}{ }^{\gamma-1} \quad \mathrm{~T}_{2} / \mathrm{T}_{1}=\left[\mathrm{V}_{1} / \mathrm{V}_{4}\right]^{\gamma-1}$. Points B and C are on same adiabatic $\mathrm{T}_{1} \mathrm{~V}_{2}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{3}^{\gamma-1} \quad \mathrm{~T}_{2} / \mathrm{T}_{1}=\left[\mathrm{V}_{2} / \mathrm{V}_{3}\right]^{\gamma-1}$. $\mathrm{V}_{1} / \mathrm{V}_{4}=\mathrm{V}_{2} / \mathrm{V}_{3} \quad$ or $\quad \mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{V}_{3} / \mathrm{V}_{4}$ Since initial and final state are same $\mathrm{dU}=0$

$$
\mathrm{W}=\mathrm{Q}_{1}-\mathrm{Q}_{2} .
$$

$$
=\mathrm{RT}_{1} \log \mathrm{~V}_{2} / \mathrm{V}_{1}-\mathrm{RT}_{2} \log \mathrm{~V}_{3} / \mathrm{V}_{4} .
$$

$$
=\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log \mathrm{V}_{2} / \mathrm{V}_{1} .
$$

η in terms of temperature of source and sink

$$
\begin{aligned}
\eta & =\mathrm{W} / \mathrm{Q}_{1}=\frac{\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right)}{\mathrm{Q}_{1}} \\
& =\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log \mathrm{V}_{2} / \mathrm{V}_{1} \\
& =\frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}} \\
\eta & =1-\left(\mathrm{Q}_{2} / \mathrm{Q}_{1}\right)=1-\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)
\end{aligned}
$$

Q: Show that efficiency of
a heat engine depends
on the temperature of
the source and sink and not on the properties of the working substance?

Nicolas Léonard Sadi Carnot (1796-1832)

Characteristics of Carnot's Engine i) Operations are perfectly reversible
ii) η is independent of the working substance. iii) η depends only on the temperature of the source and sink .

Reversibility of carnot's engine is possible due to following reasons.
i) Slow
ii) frictionless piston. iii) source and sink are at constant temperatures.
iv)No loss of heat.

Characteristics of Carnot's Engine

 aistandardotoyjudge the реғformance tof acteratnd enginine .

- F:\1212\video\adiabatic process.flv

Refrigerator : device used to transfer heat from a cold region to a relatively hotter region .
(A carnot's engine works in the reverse order) When external work is put on the working substance, it extracts an amount of heat Q_{2} from a body at a lower temperature $\mathrm{T}_{2} \mathrm{~K}$ and rejects a larger amount of heat Q_{1} to a body at a higher temp $\mathrm{T}_{1} \mathrm{~K}$.

Coefficient of performance β :
Defined as the ratio of the heat taken Obtain' relation' $\mathrm{b} / \mathrm{w}^{\circ} \beta^{\mathrm{n}}$ and n

Second law of thermodynamics

It is a generalisation of certain experiences and observations and is mainly concerned with the direction in which heat transfer takes place.
Stated in a number of ways, but all the statements are logically equivalent to one another.

Based on Heat engine.

Steam engine takes hot steam and reject comparatively cold steam to sink (surrounding or atmosphere).ie. Mechanical work is derived due to the flow of heat from a hotter source to a colder sink. Or colder sink is a must.

No direct proof of the law is available, but it is acknowledged to be universally true.

Proof of this law is that it has

 never been possible to construct a machine which disobey thei) No engine can be more efficient than a reversible engine working b/w the same limits of temperature.
ii) All reversible engines working b/w the same limits of temperature have the same efficiency .

Practical heat engines: i) External combustion engine (STEAM ENGINE).
Steam is produced outside in separate boiler.
Widely used in industry and for locomotion .
Cycle in ideal - Rankine's cycle .

Practical heat engines:
ii) Internal combustion engines.
a) Otto engine (petrol) heat is absorbed at constant volume .
b) Diesel engine - at const Pressure.

- F:\1212\video\YouTube - The BEST OLD STEAM LOCOMOTIVE VIDEO from Sibley Iowa 2008 PART 1.flv

An ideal gas is compressed at constant temperature. Will its internal energy increase or decrease?

No Change ,

(T constant)

Can a room be cooled by

 leaving the door of an electric refrigerator open?No. Room will be heated up.

Is it possible for the internal energy of a substance to increase without showing any increase in its temperature? Illustrate by giving example.
Change of Phase.

Give the value of mechanical equivalent of heat. Is it a physical quntity ? Mechanical equnt $J=4.186 \mathrm{~J} / \mathrm{cal}$. It is not a physical quantity, but a conversion factor.

Why are the brake drums of a car heated when the car moves down a hill at constant speed ?
Force is applied to cancel the acceleration which does work and produce heat.

The internal latent heat of ice is equal its latent heat; while internal latent heat of vapourisation is less than its total latent heat. Why?

Latent heat consists of true

 (internal) latent heat and work of evaporation. Since work is done in liquid - vapor phase change , internal LH is less.The internal energy of a substance can be increases by two ways - by performing work on it or adding heat to it. Can you distinguish whether the internal energy has been increases by doing work or by transfer of heat? Explain.

- F:\1212\video\YouTube - nordic skiing stunts HD - fun.flv

Draw schematically

the isobaric
process in (V,T)
(P,V) and
(P, T) diagrams .

A given quantity of gas has an initial state P1,V1 and T1. The expands V1 to V2 under i) const temp ii) constant Press. In which case is the work done by the gas more?

Hint: second case.

Area under hyperbola < area under straight line parallel to V axis in the second case.

